import datasets import os from PIL import Image _KITTI2012_URL = "https://s3.eu-central-1.amazonaws.com/avg-kitti/data_stereo_flow.zip" class KITTIStereo2012(datasets.GeneratorBasedBuilder): """KITTI Stereo 2012 dataset with stereo grayscale/color images and disparity ground truth.""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=( "KITTI Stereo 2012 dataset: includes stereo grayscale and color images captured at two timepoints," " along with disparity ground truth and calibration matrices. Designed for stereo vision and flow tasks." ), features=datasets.Features( { "ImageGray_t0": datasets.Sequence(datasets.Image()), "ImageGray_t1": datasets.Sequence(datasets.Image()), "ImageColor_t0": datasets.Sequence(datasets.Image()), "ImageColor_t1": datasets.Sequence(datasets.Image()), "calib": { "P0": datasets.Sequence(datasets.Value("float32")), "P1": datasets.Sequence(datasets.Value("float32")), "P2": datasets.Sequence(datasets.Value("float32")), "P3": datasets.Sequence(datasets.Value("float32")), }, "disp_noc": datasets.Image(), "disp_occ": datasets.Image(), "disp_refl_noc": datasets.Image(), "disp_refl_occ": datasets.Image(), "flow_noc": datasets.Image(), "flow_occ": datasets.Image(), } ), supervised_keys=("ImageGray_t0", "disp_noc"), homepage="http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo", license="CC BY-NC-SA 3.0", citation="""@inproceedings{Geiger2012CVPR, author = {Andreas Geiger and Philip Lenz and Raquel Urtasun}, title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite}, booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2012} }""", ) def _split_generators(self, dl_manager): archive_path = dl_manager.download_and_extract(_KITTI2012_URL) train_path = os.path.join(archive_path, "training") test_path = os.path.join(archive_path, "testing") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"base_path": train_path, "split": "training"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"base_path": test_path, "split": "testing"}, ), ] def _generate_examples(self, base_path, split): image_0_path = os.path.join(base_path, "image_0") image_1_path = os.path.join(base_path, "image_1") color_0_path = os.path.join(base_path, "colored_0") color_1_path = os.path.join(base_path, "colored_1") calib_path = os.path.join(base_path, "calib") if split == "training": disp_path = os.path.join(base_path, "disp_noc") disp_path_occ = os.path.join(base_path, "disp_occ") disp_path_refl_noc = os.path.join(base_path, "disp_refl_noc") disp_path_refl_occ = os.path.join(base_path, "disp_refl_occ") flow_noc_path = os.path.join(base_path, "flow_noc") flow_occ_path = os.path.join(base_path, "flow_occ") files = sorted(os.listdir(image_0_path)) ids = sorted(set(f.split("_")[0] for f in files)) for id_ in ids: example = { "ImageGray_t0": [ Image.open(os.path.join(image_0_path, f"{id_}_10.png")), Image.open(os.path.join(image_1_path, f"{id_}_10.png")), ], "ImageGray_t1": [ Image.open(os.path.join(image_0_path, f"{id_}_11.png")), Image.open(os.path.join(image_1_path, f"{id_}_11.png")), ], "ImageColor_t0": [ Image.open(os.path.join(color_0_path, f"{id_}_10.png")), Image.open(os.path.join(color_1_path, f"{id_}_10.png")), ], "ImageColor_t1": [ Image.open(os.path.join(color_0_path, f"{id_}_11.png")), Image.open(os.path.join(color_1_path, f"{id_}_11.png")), ], "calib": { "P0": [], "P1": [], "P2": [], "P3": [], }, "disp_noc": Image.open(os.path.join(disp_path, f"{id_}_10.png")) if split == "training" else None, "disp_occ": Image.open(os.path.join(disp_path_occ, f"{id_}_10.png")) if split == "training" else None, "disp_refl_noc": Image.open(os.path.join(disp_path_refl_noc, f"{id_}_10.png")) if split == "training" else None, "disp_refl_occ": Image.open(os.path.join(disp_path_refl_occ, f"{id_}_10.png")) if split == "training" else None, "flow_noc": Image.open(os.path.join(flow_noc_path, f"{id_}_10.png")) if split == "training" else None, "flow_occ": Image.open(os.path.join(flow_occ_path, f"{id_}_10.png")) if split == "training" else None, } calib_file = os.path.join(calib_path, f"{id_}.txt") with open(calib_file, "r") as f: lines = f.readlines() for line in lines: key, value = line.strip().split(":", 1) if key in ["P0", "P1", "P2", "P3"]: example["calib"][key] = [float(x) for x in value.strip().split()] yield id_, example