--- license: apache-2.0 --- # Dataset Card for MedIAnomaly ## Dataset Description **MedIAnomaly** is a benchmark designed to evaluate anomaly detection methods in the medical imaging domain. It provides a standardized evaluation protocol across **seven real-world medical image datasets**, including both **image-level anomaly classification (AnoCls)** and **pixel-level anomaly segmentation (AnoSeg)** tasks. All datasets follow a **one-class training setting**, where **only normal (non-anomalous) images are available in the training set**, and the **test set includes both normal and abnormal cases**. This reflects real-world scenarios where anomalies are rare and not annotated during training. The benchmark includes a total of **seven datasets**, spanning across various imaging modalities (X-ray, MRI, fundus, dermatoscopy, histopathology), and ensures unified data format and preprocessing to support fair and reproducible comparison of anomaly detection methods. ![dataset](https://huggingface.co/datasets/randall-lab/medianomaly/resolve/main/example.png) ## Dataset Source - **Homepage**: [https://github.com/caiyu6666/MedIAnomaly](https://github.com/caiyu6666/MedIAnomaly) - **License**: [Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0) - **Paper**: Yu Cai et al. _MedIAnomaly: A Comparative Study of Anomaly Detection in Medical Images_, arXiv 2024. ## Dataset Structure | Dataset | Modality | Task | 𝒟train | 𝒟test (Normal+Abnormal) | |--------------|-----------------------|-------------------|------------------|----------------------------| | RSNA | Chest X-ray | AnoCls | 3851 | 1000 + 1000 | | VinDr-CXR | Chest X-ray | AnoCls | 4000 | 1000 + 1000 | | Brain Tumor | Brain MRI | AnoCls | 1000 | 600 + 600 | | LAG | Retinal fundus image | AnoCls | 1500 | 811 + 811 | | ISIC2018 | Dermatoscopic image | AnoCls | 6705 | 909 + 603 | | Camelyon16 | Histopathology image | AnoCls | 5088 | 1120 + 1113 | | BraTS2021 | Brain MRI | AnoCls & AnoSeg | 4211 | 828 + 1948 | ### Notes on Dataset-Specific Definitions - **RSNA**: Training images are all normal chest X-rays. Test set contains a balanced mix of normal and pneumonia images. - **VinDr-CXR**: Training set consists only of normal chest X-rays. Test set includes both normal and abnormal findings. - **Brain Tumor**: MRI scans. All training samples are healthy brains; test set contains normal and tumor cases. - **LAG**: Retinal fundus images. Training set includes only normal cases; glaucomatous images appear in test set. - **ISIC2018**: One-hot multi-label data. Only images with `NV = 1` and all other labels = 0 are considered **normal**. All others (with any other disease present) are considered **abnormal**. - **Camelyon16**: Histopathological whole-slide patches. Training includes only benign tissue. Abnormal cancerous regions are tested. - **BraTS2021**: Brain MRI for both classification and segmentation. Training includes only normal images. Test set includes tumor cases with segmentation masks. ## Example Usage ### RSNA ```python from datasets import load_dataset dataset = load_dataset("randall-lab/medianomaly", name="rsna", split="train", trust_remote_code=True) # dataset = load_dataset("randall-lab/medianomaly", name="rsna", split="test", trust_remote_code=True) # View a sample example = dataset[0] image = example["image"] label = example["label"] # "normal" or "abnormal" image.show() print(f"Label: {label}") ``` ### Vin-CXR ```python from datasets import load_dataset dataset = load_dataset("randall-lab/medianomaly", name="vincxr", split="train", trust_remote_code=True) # dataset = load_dataset("randall-lab/medianomaly", name="vincxr", split="test", trust_remote_code=True) # View a sample example = dataset[0] image = example["image"] label = example["label"] # "normal" or "abnormal" image.show() print(f"Label: {label}") ``` ### Brain Tumor ```python from datasets import load_dataset dataset = load_dataset("randall-lab/medianomaly", name="braintumor", split="train", trust_remote_code=True) # dataset = load_dataset("randall-lab/medianomaly", name="braintumor", split="test", trust_remote_code=True) # View a sample example = dataset[0] image = example["image"] label = example["label"] # "normal" or "abnormal" image.show() print(f"Label: {label}") ``` ### LAG ```python from datasets import load_dataset dataset = load_dataset("randall-lab/medianomaly", name="lag", split="train", trust_remote_code=True) # dataset = load_dataset("randall-lab/medianomaly", name="lag", split="test", trust_remote_code=True) # View a sample example = dataset[0] image = example["image"] label = example["label"] # "normal" or "abnormal" image.show() print(f"Label: {label}") ``` ### Camelyon16 ```python from datasets import load_dataset dataset = load_dataset("randall-lab/medianomaly", name="camelyon16", split="train", trust_remote_code=True) # dataset = load_dataset("randall-lab/medianomaly", name="camelyon16", split="test", trust_remote_code=True) # View a sample example = dataset[0] image = example["image"] label = example["label"] # "normal" or "abnormal" image.show() print(f"Label: {label}") ``` ### BraTS2021 ```python from datasets import load_dataset # Train dataset = load_dataset("randall-lab/medianomaly", name="brats2021", split="train", trust_remote_code=True) example = dataset[0] image = example["image"] label = example["label"] # "normal" or "abnormal" image.show() print(f"Label: {label}") # Test dataset = load_dataset("randall-lab/medianomaly", name="brats2021", split="test", trust_remote_code=True) example = dataset[828] # >= 828 is abnormal images with seg mask image = example["image"] label = example["label"] # "normal" or "abnormal" anno = example["annotation"] # None if label is 0, seg mask if label is 1 image.show() anno.show() print(f"Label: {label}") ``` ### ISIC2018 ```python from datasets import load_dataset dataset = load_dataset("randall-lab/medianomaly", name="isic2018_task3", split="train", trust_remote_code=True) # dataset = load_dataset("randall-lab/medianomaly", name="isic2018_task3", split="test", trust_remote_code=True) # View a sample example = dataset[0] image = example["image"] label = example["label"] # "normal" or "abnormal" labels = example["labels"] # one-hot multi label for different disease [MEL, NV, BCC, AKIEC, BKL, DF, VASC] # Individual binary class labels (0 or 1) mel_label = example["MEL"] nv_label = example["NV"] bcc_label = example["BCC"] akiec_label = example["AKIEC"] bkl_label = example["BKL"] df_label = example["DF"] vasc_label = example["VASC"] image.show() print(f"Label: {label}") ``` If you are using colab, you should update datasets to avoid errors ``` pip install -U datasets ``` ## Citation ``` @article{cai2024medianomaly, title={MedIAnomaly: A comparative study of anomaly detection in medical images}, author={Cai, Yu and Zhang, Weiwen and Chen, Hao and Cheng, Kwang-Ting}, journal={arXiv preprint arXiv:2404.04518}, year={2024} } ```