--- language: en tags: - image-retrieval - oxford5k - paris6k - revisitop1m --- # Dataset Card for RevisitOP (Oxford5k, Paris6k, RevisitOP1M) ## Dataset Description **RevisitOP** provides popular benchmark datasets for large-scale image retrieval research: - **roxford5k**: Oxford 5k buildings dataset containing ~5,000 images. - **rparis6k**: Paris 6k buildings dataset with ~6,000 images. - **revisitop1m**: RevisitOP 1M distractor dataset with ~1 million distractor images. - **oxfordparis**: Combination of Oxford 5k and Paris 6k datasets. These datasets are widely used for evaluating image retrieval algorithms and contain real-world building photographs and distractors. ## Dataset Features Each example contains: - `image` (`Image`): An image file (JPEG or PNG). - `filename` (`string`): The original filename of the image. - `dataset` (`string`): The source dataset the image belongs to (`roxford5k`, `rparis6k`, or `revisitop1m`). - `query_id` (`int32`): Query ID for query images (-1 for database images). - `bbx` (`Sequence[float32]`): Bounding box coordinates [x1, y1, x2, y2] for query images. - `easy` (`Sequence[int32]`): Easy relevant images for queries. - `hard` (`Sequence[int32]`): Hard relevant images for queries. - `junk` (`Sequence[int32]`): Junk images for queries. ## Dataset Splits - **qimlist**: Query images with ground truth annotations (bounding boxes and relevance labels). - **imlist**: Database images for retrieval. ## Dataset Versions - Version 1.0.0 ## Example Usage Use the Hugging Face `datasets` library to load one of the configs: ```python import datasets from aiohttp import ClientTimeout dataset_name = "randall-lab/revisitop" timeout_period = 500000 # very long timeout to prevent timeouts storage_options = {"client_kwargs": {"timeout": ClientTimeout(total=timeout_period)}} # These are the config names defined in the script dataset_configs = ["roxford5k", "rparis6k", "oxfordparis"] # "revisitop1m" is large and may take a long time to load # Load query split for evaluation for i, config_name in enumerate(dataset_configs, start=1): # Load query images query_dataset = datasets.load_dataset( path=dataset_name, name=config_name, split="qimlist", trust_remote_code=True, storage_options=storage_options, ) # Load database images db_dataset = datasets.load_dataset( path=dataset_name, name=config_name, split="imlist", trust_remote_code=True, storage_options=storage_options, ) # Example query image query_example = query_dataset[0] ``` ## Dataset Structure - The datasets consist of images downloaded and extracted from official URLs hosted by the Oxford Visual Geometry Group and the RevisitOP project. - The `roxford5k` and `rparis6k` datasets come from `.tgz` archives with corresponding `.pkl` ground truth files. - The `revisitop1m` dataset consists of 100 `.tar.gz` archives with JPEG images as distractors. - The combined `oxfordparis` dataset merges the Oxford and Paris sets. - Ground truth files contain query lists, database lists, and annotations (bounding boxes, easy/hard/junk labels). ## Dataset Citation If you use this dataset, please cite the original paper: ```bibtex @inproceedings{Radenovic2018RevisitingOP, title={Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking}, author={Filip Radenovic and Ahmet Iscen and Giorgos Tolias and Yannis Avrithis and Ondrej Chum}, year={2018} } ``` ## Dataset Homepage [RevisitOP project page](http://cmp.felk.cvut.cz/revisitop/)