rdoerfler commited on
Commit
69971fb
·
verified ·
1 Parent(s): bb18d4d

Updated Docs

Browse files
Files changed (3) hide show
  1. CITATION.cff +9 -6
  2. README.md +82 -47
  3. USAGE.txt +114 -0
CITATION.cff CHANGED
@@ -6,14 +6,14 @@ authors:
6
  - family-names: "Doerfler"
7
  given-names: "Robin"
8
  orcid: "https://orcid.org/0009-0007-3904-1941"
 
9
  version: "1.0.0"
10
- date-released: 2025-08-15
11
- url: "https://huggingface.co/datasets/rdoerfler/procedural-engine-sounds"
12
- repository-code: "https://huggingface.co/datasets/rdoerfler/procedural-engine-sounds"
13
  license: "CC-BY-NC-4.0"
14
  keywords:
15
  - "audio"
16
- - "synthetic data"
17
  - "engine sounds"
18
  - "procedural generation"
19
  - "automotive"
@@ -26,7 +26,7 @@ abstract: |
26
  contains procedurally generated engine sounds with detailed annotations
27
  encoded as 4-channel audio, designed for research in audio processing,
28
  vehicle acoustics, and synthetic sound generation. The dataset includes
29
- 5.935 high resolution audio files (48 kHz, 16 bit) totaling ~19 hours
30
  and 24.47 GB of content across 8 distinct sets, with RPM and torque
31
  information embedded as continuous audio signals alongside stereo engine sounds.
32
  preferred-citation:
@@ -35,5 +35,8 @@ preferred-citation:
35
  authors:
36
  - family-names: "Doerfler"
37
  given-names: "Robin"
 
38
  year: 2025
39
- url: "https://huggingface.co/datasets/rdoerfler/procedural-engine-sounds"
 
 
 
6
  - family-names: "Doerfler"
7
  given-names: "Robin"
8
  orcid: "https://orcid.org/0009-0007-3904-1941"
9
+ doi: "10.5281/zenodo.16883336"
10
  version: "1.0.0"
11
+ date-released: 2025-08-21
12
+ url: "https://doi.org/10.5281/zenodo.16883336"
13
+ repository-code: "https://zenodo.org/records/16883336"
14
  license: "CC-BY-NC-4.0"
15
  keywords:
16
  - "audio"
 
17
  - "engine sounds"
18
  - "procedural generation"
19
  - "automotive"
 
26
  contains procedurally generated engine sounds with detailed annotations
27
  encoded as 4-channel audio, designed for research in audio processing,
28
  vehicle acoustics, and synthetic sound generation. The dataset includes
29
+ 5,935 high resolution audio files (48 kHz, 16 bit) totalling ~19 hours
30
  and 24.47 GB of content across 8 distinct sets, with RPM and torque
31
  information embedded as continuous audio signals alongside stereo engine sounds.
32
  preferred-citation:
 
35
  authors:
36
  - family-names: "Doerfler"
37
  given-names: "Robin"
38
+ orcid: "https://orcid.org/0009-0007-3904-1941"
39
  year: 2025
40
+ publisher: "Zenodo"
41
+ doi: "10.5281/zenodo.16883336"
42
+ url: "https://doi.org/10.5281/zenodo.16883336"
README.md CHANGED
@@ -6,19 +6,24 @@ task_categories:
6
  - automatic-speech-recognition
7
  tags:
8
  - audio
9
- - synthetic
10
  - engine-sounds
 
11
  - procedural-generation
 
 
 
12
  - automotive
13
- - sound-synthesis
14
- - mechanical-sounds
15
- - audio-analysis
16
  - vehicle-acoustics
 
 
17
  size_categories:
18
  - 10B<n<100B
19
  license: cc-by-nc-4.0
20
  ---
21
 
 
22
  # Procedural Engine Sounds Dataset
23
 
24
  ## Dataset Description
@@ -30,21 +35,22 @@ The Procedural Engine Sounds Dataset is a comprehensive collection of synthetica
30
  ### Dataset Summary
31
 
32
  - **Repository:** procedural-engine-sounds
33
- - **Paper:** [Coming Soon]
34
- - **Point of Contact:** [email protected]
 
 
35
 
36
- ### Supported Tasks
37
 
38
  - **Audio Generation**: Train models to generate realistic engine sounds conditioned to time-varying engine operation states
39
  - **Audio Classification**: Predict RPM and Engine Torque based on audio signals
40
  - **Audio Analysis**: Research vehicle acoustics and engine sound patterns
41
  - **Sound Synthesis**: Develop procedural audio generation techniques
42
- - **Data Augmentation**: Use as augmentation material for in-cabin speech detection and recognition, noise supression or other related tasks
43
-
44
 
45
- ### Languages
46
 
47
- This dataset contains only audio signals - no textual or linguistic content. Both the engine sounds and annotations (RPM/torque information) are provided as audio signals at 48 kHz sample rate.
48
 
49
  ## Dataset Structure
50
 
@@ -66,26 +72,41 @@ The dataset is organized into 8 distinct sets with two categories:
66
 
67
  **Dataset Total: 5,935 files, ~19.01 hours, ~24.47 GB**
68
 
 
 
69
  ```
70
- dataset/
71
- ├── audio/
72
- │ ├── A_full_set/
73
- ├── B_full_set/
74
- ├── C_full_set/
75
- ├── D_full_set/
76
- ├── E_large_set/
77
- ├── F_large_set/
78
- ├── G_large_set/
79
- │ └── H_large_set/
80
- └── metadata/
81
- ├── A_full_set_summary.json
82
- ├── A_full_set_stats.csv
83
- ├── B_full_set_summary.json
84
- ├── B_full_set_stats.csv
85
- └── … (16 metadata files total)
 
86
  ```
87
 
88
- ### Data Instances
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  Each audio file contains **4-channel audio** at 48 kHz sample rate:
91
  - **Channel 1-2**: Stereo engine sound audio
@@ -111,22 +132,22 @@ Per-file metrics with columns:
111
  - `rpm_min/max/mean/std`: RPM statistics for the file
112
  - `torque_min/max/mean/std`: Torque statistics for the file
113
 
114
- ### Data Fields
115
 
116
- When loaded programmatically:
117
- - `audio`: 4-channel audio array [channels, samples]
118
- - `sample_rate`: 48000 Hz
119
- - `filename`: Original audio filename
120
- - `duration`: Audio length in seconds
121
- - `rpm_range`: [min, max] RPM values from channel 3
122
- - `torque_range`: [min, max] torque values from channel 4
123
 
124
  ### Audio Signal Encoding
125
 
126
- - **RPM Signal**: Channel 3 contains engine speed values in RPM scaled by 0.0001 (multiply by 10000 to get actual RPM)
127
- - **Torque Signal**: Channel 4 contains torque values in Newton meters scaled by 0.001 (multiply by 1000 to get actual Nm)
128
  - **Engine Audio**: Channels 1-2 contain the stereo procedural engine sound
129
 
 
 
 
 
 
 
130
 
131
  ## Dataset Creation
132
 
@@ -134,7 +155,7 @@ When loaded programmatically:
134
 
135
  All audio samples are synthetically generated using procedural audio synthesis techniques.
136
  No real-world engine recordings were used for audio generation.
137
- Dataset results were thoroughly analysed and compared to real world recordings to varify representiveness and similarity regarding engine order magnitudes and harmonic deviations.
138
 
139
  ### Annotations
140
 
@@ -160,22 +181,36 @@ As a synthetic dataset, it reflects the biases inherent in the procedural genera
160
  - May not represent all engine types or acoustic environments
161
  - Generated with empirically determined synthesis parameters, hence contains fictional engine types and exhaust pipe configurations
162
 
163
- ## Additional Information
164
 
165
  ### License
166
 
167
- This dataset is released under CC BY-NC 4.0 license.
168
 
169
  **Attribution Required**: Please cite this dataset in any research or publications.
170
 
171
  ### Citation
172
 
173
  ```bibtex
174
- @dataset{procedural_engine_sounds,
175
- title={Procedural Engine Sounds Dataset},
176
- author={Robin Doerfler},
177
- year={2025},
178
- url={https://huggingface.co/datasets/rdoerfler/procedural-engine-sounds},
179
- license={CC-BY-NC-4.0}
 
 
 
180
  }
181
  ```
 
 
 
 
 
 
 
 
 
 
 
 
6
  - automatic-speech-recognition
7
  tags:
8
  - audio
9
+ - audio-dataset
10
  - engine-sounds
11
+ - combustion-engine
12
  - procedural-generation
13
+ - time-aligned
14
+ - rpm
15
+ - torque
16
  - automotive
17
+ - nvh
 
 
18
  - vehicle-acoustics
19
+ - sound-synthesis
20
+ - noise-free
21
  size_categories:
22
  - 10B<n<100B
23
  license: cc-by-nc-4.0
24
  ---
25
 
26
+
27
  # Procedural Engine Sounds Dataset
28
 
29
  ## Dataset Description
 
35
  ### Dataset Summary
36
 
37
  - **Repository:** procedural-engine-sounds
38
+ - **Version:** 1.0
39
+ - **Publication Year:** 2025
40
+ - **Point of Contact:** [email protected]
41
+ - **License:** CC BY-NC 4.0
42
 
43
+ ### Research Applications
44
 
45
  - **Audio Generation**: Train models to generate realistic engine sounds conditioned to time-varying engine operation states
46
  - **Audio Classification**: Predict RPM and Engine Torque based on audio signals
47
  - **Audio Analysis**: Research vehicle acoustics and engine sound patterns
48
  - **Sound Synthesis**: Develop procedural audio generation techniques
49
+ - **Data Augmentation**: Use as augmentation material for in-cabin speech detection and recognition, noise suppression or other related tasks
 
50
 
51
+ ### Technical Specifications
52
 
53
+ This dataset contains only audio signals - no textual or linguistic content. Both the engine sounds and annotations (RPM/torque information) are provided as audio signals at 48 kHz sample rate in WAV format.
54
 
55
  ## Dataset Structure
56
 
 
72
 
73
  **Dataset Total: 5,935 files, ~19.01 hours, ~24.47 GB**
74
 
75
+ ### File Organization
76
+
77
  ```
78
+ README.txt (this file)
79
+ USAGE.txt (quick start guide)
80
+ audio/
81
+ ├── A_full_set/ (767 files, ~2.46 hours, ~3.16 GB)
82
+ ├── B_full_set/ (767 files, ~2.46 hours, ~3.16 GB)
83
+ ├── C_full_set/ (767 files, ~2.46 hours, ~3.16 GB)
84
+ ├── D_full_set/ (767 files, ~2.46 hours, ~3.16 GB)
85
+ ├── E_large_set/ (717 files, ~2.30 hours, ~2.96 GB)
86
+ ├── F_large_set/ (717 files, ~2.30 hours, ~2.96 GB)
87
+ ├── G_large_set/ (717 files, ~2.30 hours, ~2.96 GB)
88
+ └── H_large_set/ (717 files, ~2.30 hours, ~2.96 GB)
89
+ metadata/
90
+ ├── A_full_set_summary.json
91
+ ├── A_full_set_stats.csv
92
+ ├── B_full_set_summary.json
93
+ ├── B_full_set_stats.csv
94
+ └── … (16 metadata files total)
95
  ```
96
 
97
+ ### File Formats
98
+
99
+ **Audio Files:**
100
+ - Format: WAV
101
+ - Sample Rate: 48 kHz
102
+ - Channels: 4 (quad-channel)
103
+ - Bit Depth: 16 bit
104
+
105
+ **Metadata Files:**
106
+ - Summary files: JSON format
107
+ - Statistics files: CSV format (comma-separated values)
108
+
109
+ ### Data Structure
110
 
111
  Each audio file contains **4-channel audio** at 48 kHz sample rate:
112
  - **Channel 1-2**: Stereo engine sound audio
 
132
  - `rpm_min/max/mean/std`: RPM statistics for the file
133
  - `torque_min/max/mean/std`: Torque statistics for the file
134
 
135
+ ### Data Access
136
 
137
+ Each audio file is a standard WAV file containing a 4-channel audio array at 48 kHz sample rate. When loaded, you receive the raw multichannel audio data from which RPM and torque information can be extracted from channels 3 and 4 respectively.
 
 
 
 
 
 
138
 
139
  ### Audio Signal Encoding
140
 
141
+ - **RPM Signal**: Channel 3 contains engine speed values in RPM scaled by 0.0001 (multiply by 10,000 to get actual RPM)
142
+ - **Torque Signal**: Channel 4 contains torque values in Newton meters scaled by 0.001 (multiply by 1,000 to get actual Nm)
143
  - **Engine Audio**: Channels 1-2 contain the stereo procedural engine sound
144
 
145
+ ## Technical Requirements
146
+
147
+ To work with this dataset, you will need:
148
+ - Audio processing software capable of reading multi-channel WAV files
149
+ - Programming languages: Python (recommended with librosa, soundfile, or scipy), MATLAB, R, or similar
150
+ - For metadata: JSON and CSV reading capabilities
151
 
152
  ## Dataset Creation
153
 
 
155
 
156
  All audio samples are synthetically generated using procedural audio synthesis techniques.
157
  No real-world engine recordings were used for audio generation.
158
+ Dataset results were thoroughly analysed and compared to real world recordings to verify representativeness and similarity regarding engine order magnitudes and harmonic deviations.
159
 
160
  ### Annotations
161
 
 
181
  - May not represent all engine types or acoustic environments
182
  - Generated with empirically determined synthesis parameters, hence contains fictional engine types and exhaust pipe configurations
183
 
184
+ ## License and Usage
185
 
186
  ### License
187
 
188
+ This dataset is released under CC BY-NC 4.0 license (Creative Commons Attribution-NonCommercial 4.0 International).
189
 
190
  **Attribution Required**: Please cite this dataset in any research or publications.
191
 
192
  ### Citation
193
 
194
  ```bibtex
195
+ @dataset{doerfler_2025_procedural_engine_sounds,
196
+ author = {Doerfler, Robin},
197
+ title = {Procedural Engine Sounds Dataset},
198
+ month = {August},
199
+ year = 2025,
200
+ publisher = {Zenodo},
201
+ version = {1.0},
202
+ doi = {10.5281/zenodo.16883336},
203
+ url = {https://doi.org/10.5281/zenodo.16883336}
204
  }
205
  ```
206
+
207
+ ## Contact Information
208
+
209
+ For questions, issues, or collaboration opportunities:
210
+ - **Email:** [email protected]
211
+ - **Dataset DOI:** 10.5281/zenodo.16883336
212
+ - **Related Publications:** Available upon paper publication
213
+
214
+ ## Acknowledgments
215
+
216
+ This dataset was created through procedural audio synthesis leveraging established principles from engine acoustics research, including engine order analysis, extended harmonic-plus-noise synthesis methodologies, and exhaust system resonance modeling. The synthesis methodology builds upon decades of foundational research in vehicle acoustics and internal combustion engine sound modeling. Special thanks to the digital signal processing and vehicle acoustics research communities for their foundational work that made this dataset possible.
USAGE.txt ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ USAGE.txt - Procedural Engine Sounds Dataset
2
+ ==========================================
3
+
4
+ QUICK START GUIDE
5
+ -----------------
6
+
7
+ This dataset contains 4-channel WAV audio files with engine sounds and embedded RPM/torque data.
8
+
9
+ FILE STRUCTURE:
10
+ - audio/[A-H]_*_set/: WAV files organized in 8 sets
11
+ - metadata/: JSON summaries and CSV statistics for each set
12
+
13
+ AUDIO CHANNEL LAYOUT:
14
+ - Channel 1-2: Stereo engine sound audio
15
+ - Channel 3: RPM values (multiply by 10,000 for actual RPM)
16
+ - Channel 4: Torque values (multiply by 1,000 for actual Newton-meters)
17
+
18
+ BASIC USAGE EXAMPLES:
19
+
20
+ 1. PYTHON (with soundfile):
21
+ ```python
22
+ import soundfile as sf
23
+ import numpy as np
24
+
25
+ # Load a 4-channel audio file
26
+ audio, sr = sf.read('audio/A_full_set/engine_001.wav')
27
+
28
+ # Extract channels
29
+ engine_left = audio[:, 0] # Left engine audio
30
+ engine_right = audio[:, 1] # Right engine audio
31
+ rpm_signal = audio[:, 2] * 10000 # RPM values
32
+ torque_signal = audio[:, 3] * 1000 # Torque in Nm
33
+ ```
34
+
35
+ 2. PYTHON (with librosa):
36
+ ```python
37
+ import librosa
38
+
39
+ # Load specific channels
40
+ engine_audio, sr = librosa.load('audio/A_full_set/engine_001.wav',
41
+ sr=48000, mono=False)
42
+ # Result shape: (4, samples) - channels x samples
43
+ ```
44
+
45
+ 3. MATLAB:
46
+ ```matlab
47
+ [audio, fs] = audioread('audio/A_full_set/engine_001.wav');
48
+
49
+ engine_left = audio(:,1);
50
+ engine_right = audio(:,2);
51
+ rpm = audio(:,3) * 10000;
52
+ torque = audio(:,4) * 1000;
53
+ ```
54
+
55
+ METADATA ACCESS:
56
+
57
+ 1. Load set summary (JSON):
58
+ ```python
59
+ import json
60
+ with open('metadata/A_full_set_summary.json', 'r') as f:
61
+ summary = json.load(f)
62
+ print(f"Set A contains {summary['num_files']} files")
63
+ ```
64
+
65
+ 2. Load file statistics (CSV):
66
+ ```python
67
+ import pandas as pd
68
+ stats = pd.read_csv('metadata/A_full_set_stats.csv')
69
+ print(stats.head()) # View first few files' stats
70
+ ```
71
+
72
+ DATASET ORGANIZATION:
73
+ - Full Sets (A,B,C,D): ~767 files each, ~2.46 hours each
74
+ - Large Sets (E,F,G,H): ~717 files each, ~2.30 hours each
75
+ - Total: 5,935 files, ~19 hours, ~24.5 GB
76
+
77
+ TECHNICAL SPECS:
78
+ - Sample Rate: 48 kHz
79
+ - Format: WAV (uncompressed)
80
+ - Channels: 4 (quad)
81
+ - Total Duration: ~19.01 hours
82
+ - Total Size: ~24.47 GB
83
+
84
+ COMMON WORKFLOWS:
85
+
86
+ 1. AUDIO ANALYSIS:
87
+ - Load engine audio (channels 1-2)
88
+ - Analyze spectral content, harmonics
89
+ - Correlate with RPM/torque data (channels 3-4)
90
+
91
+ 2. MACHINE LEARNING:
92
+ - Use engine audio as input features
93
+ - Use RPM/torque as target labels
94
+ - Train regression or classification models
95
+
96
+ 3. AUDIO SYNTHESIS:
97
+ - Study relationship between RPM/torque and audio features
98
+ - Train generative models conditioned on engine parameters
99
+ - Use for data augmentation in automotive applications
100
+
101
+ REQUIREMENTS:
102
+ - Audio processing software supporting multi-channel WAV
103
+ - ~25 GB free disk space
104
+ - Python/MATLAB/R with audio processing libraries (recommended)
105
+
106
+ TROUBLESHOOTING:
107
+ - If files won't load: Check multi-channel WAV support in your software
108
+ - If values seem wrong: Remember to apply scaling (RPM×10000, Torque×1000)
109
+ - For large dataset: Consider loading files individually rather than all at once
110
+
111
+ LICENSE: CC BY-NC 4.0 (Attribution-NonCommercial)
112
+ CONTACT: [email protected]
113
+
114
+ For detailed documentation, see README.txt