Upload README.md
Browse files
README.md
CHANGED
|
@@ -1,15 +1,23 @@
|
|
| 1 |
# Criteo_x1
|
| 2 |
|
| 3 |
-
|
| 4 |
|
| 5 |
-
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+ **Used by papers:**
|
|
|
|
| 10 |
- Kelong Mao, Jieming Zhu, Liangcai Su, Guohao Cai, Yuru Li, Zhenhua Dong. [FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction](https://arxiv.org/abs/2304.00902). In AAAI 2023.
|
| 11 |
- Jieming Zhu, Qinglin Jia, Guohao Cai, Quanyu Dai, Jingjie Li, Zhenhua Dong, Ruiming Tang, Rui Zhang. [FINAL: Factorized Interaction Layer for CTR Prediction](https://dl.acm.org/doi/10.1145/3539618.3591988). In SIGIR 2023.
|
| 12 |
-
- Weiyu Cheng, Yanyan Shen, Linpeng Huang. [Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://ojs.aaai.org/index.php/AAAI/article/view/5768). In AAAI 2020.
|
| 13 |
|
| 14 |
+ **Check the md5sum for data integrity:**
|
| 15 |
```bash
|
|
@@ -17,4 +25,4 @@ The Criteo dataset is a widely-used benchmark dataset for CTR prediction, which
|
|
| 17 |
30b89c1c7213013b92df52ec44f52dc5 train.csv
|
| 18 |
f73c71fb3c4f66b6ebdfa032646bea72 valid.csv
|
| 19 |
2c48b26e84c04a69b948082edae46f8c test.csv
|
| 20 |
-
```
|
|
|
|
| 1 |
# Criteo_x1
|
| 2 |
|
| 3 |
+
+ **Dataset description:**
|
| 4 |
|
| 5 |
+
The Criteo dataset is a widely-used benchmark dataset for CTR prediction, which contains about one week of click-through data for display advertising. It has 13 numerical feature fields and 26 categorical feature fields. Following the [AFN](https://ojs.aaai.org/index.php/AAAI/article/view/5768) work, we randomly split the data into 7:2:1\* as the training set, validation set, and test set, respectively.
|
| 6 |
|
| 7 |
+
The dataset statistics are summarized as follows:
|
| 8 |
+
|
| 9 |
+
| Dataset Split | Total | #Train | #Validation | #Test |
|
| 10 |
+
| :--------: | :-----: |:-----: | :----------: | :----: |
|
| 11 |
+
| Criteo_x1 | 45,840,617 | 33,003,326 | 8,250,124 | 4,587,167 |
|
| 12 |
+
|
| 13 |
+
+ **Source:** https://www.kaggle.com/c/criteo-display-ad-challenge/data
|
| 14 |
+
+ **Download:** https://huggingface.co/datasets/reczoo/Criteo_x1/tree/main
|
| 15 |
+
+ **Repository:** https://github.com/reczoo/Datasets
|
| 16 |
|
| 17 |
+ **Used by papers:**
|
| 18 |
+
- Weiyu Cheng, Yanyan Shen, Linpeng Huang. [Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://ojs.aaai.org/index.php/AAAI/article/view/5768). In AAAI 2020.
|
| 19 |
- Kelong Mao, Jieming Zhu, Liangcai Su, Guohao Cai, Yuru Li, Zhenhua Dong. [FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction](https://arxiv.org/abs/2304.00902). In AAAI 2023.
|
| 20 |
- Jieming Zhu, Qinglin Jia, Guohao Cai, Quanyu Dai, Jingjie Li, Zhenhua Dong, Ruiming Tang, Rui Zhang. [FINAL: Factorized Interaction Layer for CTR Prediction](https://dl.acm.org/doi/10.1145/3539618.3591988). In SIGIR 2023.
|
|
|
|
| 21 |
|
| 22 |
+ **Check the md5sum for data integrity:**
|
| 23 |
```bash
|
|
|
|
| 25 |
30b89c1c7213013b92df52ec44f52dc5 train.csv
|
| 26 |
f73c71fb3c4f66b6ebdfa032646bea72 valid.csv
|
| 27 |
2c48b26e84c04a69b948082edae46f8c test.csv
|
| 28 |
+
```
|