| import json | |
| import os | |
| from itertools import combinations | |
| from random import seed, randint, shuffle | |
| import pandas as pd | |
| from datasets import load_dataset | |
| def get_stats(filename): | |
| with open(filename) as f: | |
| _data = [json.loads(i) for i in f.read().splitlines()] | |
| return len(_data), list(set([len(i['choice']) for i in _data])), len(list(set([i['prefix'] for i in _data]))) | |
| def create_analogy(_data): | |
| analogy_data = [] | |
| seed(12) | |
| for i in _data: | |
| source = [] | |
| target = [] | |
| for s, t in zip(i['source'], i['target']): | |
| if s not in source and t not in target: | |
| source.append(s) | |
| target.append(t) | |
| assert len(source) == len(target), f"{len(source)} != {len(target)}" | |
| all_combinations = list(combinations(range(len(source)), 2)) | |
| for n, (q_h_id, q_t_id) in enumerate(all_combinations): | |
| choice = [[target[x], target[y]] for m, (x, y) in enumerate(all_combinations) if m != n] | |
| answer_id = randint(0, len(source) - 1) | |
| choice = choice[:answer_id] + [[target[q_h_id], target[q_t_id]]] + choice[answer_id:] | |
| assert choice[answer_id] == [target[q_h_id], target[q_t_id]] | |
| analogy_data.append({ | |
| "stem": [source[q_h_id], source[q_t_id]], | |
| "choice": choice, | |
| "answer": answer_id, | |
| "prefix": i["type"] | |
| }) | |
| return analogy_data | |
| data = load_dataset("relbert/scientific_and_creative_analogy", split='test') | |
| data = create_analogy(data) | |
| data_m = [i for i in data if i['prefix'] == 'metaphor'] | |
| data_s = [i for i in data if i['prefix'] != 'metaphor'] | |
| seed(12) | |
| shuffle(data_m) | |
| shuffle(data_s) | |
| validation = data_s[:int(0.1 * len(data_s))] + data_m[:int(0.1 * len(data_m))] | |
| test = data_s[int(0.1 * len(data_s)):] + data_m[int(0.1 * len(data_m)):] | |
| os.makedirs("dataset/scan", exist_ok=True) | |
| with open("dataset/scan/valid.jsonl", "w") as f: | |
| f.write("\n".join([json.dumps(i) for i in validation])) | |
| with open("dataset/scan/test.jsonl", "w") as f: | |
| f.write("\n".join([json.dumps(i) for i in test])) | |
| t_size, t_num_choice, t_relation_type = get_stats("dataset/scan/test.jsonl") | |
| v_size, v_num_choice, v_relation_type = get_stats("dataset/scan/valid.jsonl") | |
| stat = [{ | |
| "name": "`scan`", | |
| "Size (valid/test)": f"{v_size}/{t_size}", | |
| "Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/{','.join([str(n) for n in t_num_choice])}", | |
| "Num of relation group (valid/test)": f"{v_relation_type}/{t_relation_type}", | |
| "Original Reference": "[relbert/scientific_and_creative_analogy](https://huggingface.co/datasets/relbert/scientific_and_creative_analogy)" | |
| }] | |
| print(pd.DataFrame(stat).to_markdown(index=False)) | |