File size: 5,172 Bytes
3dc5ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40b765b
 
 
3dc5ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f40fc2
 
3dc5ee1
93f02a8
3dc5ee1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import datasets
from datasets import Dataset, load_dataset

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
TBA
"""

_DESCRIPTION = """\
Dataset from the Economy Watchers Survey for use as evaluation tasks
"""

_HOMEPAGE = "https://github.com/retarfi/economy-watchers-survey"
_LICENSE = "CC-BY 4.0"
VERSION = datasets.Version("0.1.0")
EWS_REPO_NAME = "retarfi/economy-watchers-survey"

LABEL_REASON_OTHER: str = "それ以外"


class EconomyWatchersSurveyConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        self.ews_version = kwargs.pop("ews_version", None)
        super(EconomyWatchersSurveyConfig, self).__init__(**kwargs)


class EconomyWatchersSurveyDataset(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIG_CLASS = EconomyWatchersSurveyConfig

    BUILDER_CONFIGS = [
        EconomyWatchersSurveyConfig(
            name="sentiment", version=VERSION, description="Sentiment analysis"
        ),
        EconomyWatchersSurveyConfig(
            name="domain", version=VERSION, description="Domain classification"
        ),
        EconomyWatchersSurveyConfig(
            name="reason",
            version=VERSION,
            description="Classification of reason to decision of sentiment",
        ),
    ]

    def _info(self):
        feat_label: datasets.ClassLabel
        if self.config.name == "sentiment":
            feat_label = datasets.ClassLabel(
                num_classes=5, names=["×", "▲", "□", "○", "◎"]
            )
        elif self.config.name == "domain":
            feat_label = datasets.ClassLabel(
                num_classes=3, names=["家計動向", "企業動向", "雇用"]
            )
        elif self.config.name == "reason":
            feat_label = datasets.ClassLabel(
                num_classes=12,
                names=[
                    "来客数の動き",
                    "販売量の動き",
                    "お客様の様子",
                    "受注量や販売量の動き",
                    "単価の動き",
                    "取引先の様子",
                    "求人数の動き",
                    "競争相手の様子",
                    "受注価格や販売価格の動き",
                    "周辺企業の様子",
                    "求職者数の動き",
                    LABEL_REASON_OTHER,
                ],
            )
        else:
            raise NotImplementedError(self.config.name)
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "label": feat_label,
                    "id": datasets.Value("string"),
                }
            ),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> list[datasets.SplitGenerator]:
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"split": "train"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={"split": "validation"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"split": "test"}
            ),
        ]

    def _generate_examples(self, split: str):
        ds_current: Dataset = load_dataset(
            EWS_REPO_NAME, "current", revision=self.config.ews_version, split=split
        )
        if self.config.name == "reason":
            ds_current = ds_current.filter(lambda example: example["判断の理由"] is not None)
        else:
            ds_future: Dataset = load_dataset(
                EWS_REPO_NAME, "future", revision=self.config.ews_version, split=split
            )
            ds_current = datasets.concatenate_datasets(
                [
                    ds_current.remove_columns("判断の理由"),
                    ds_future.rename_columns(
                        {
                            "景気の先行き判断": "景気の現状判断",
                            "景気の先行きに対する判断理由": "追加説明及び具体的状況の説明",
                        }
                    ),
                ]
            )
        for example in ds_current:
            str_label: str
            if self.config.name == "sentiment":
                str_label = example["景気の現状判断"]
            elif self.config.name == "domain":
                str_label = example["関連"]
            elif self.config.name == "reason":
                str_label = example["判断の理由"]
                if str_label not in self.info.features["label"].names:
                    str_label = LABEL_REASON_OTHER
            yield example["id"], {
                "id": example["id"],
                "text": example["追加説明及び具体的状況の説明"],
                "label": self.info.features["label"].str2int(str_label),
            }