Datasets:

Languages:
Japanese
ArXiv:
DOI:
License:
File size: 7,535 Bytes
3dc5ee1
66d83ec
3dc5ee1
 
 
 
 
 
 
 
 
 
 
 
 
302319f
3dc5ee1
 
 
302319f
3dc5ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302319f
66d83ec
 
3dc5ee1
 
66d83ec
 
40b765b
66d83ec
 
 
 
 
 
 
302319f
 
66d83ec
302319f
 
66d83ec
 
 
 
 
 
 
 
 
 
40b765b
66d83ec
3dc5ee1
 
66d83ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import datasets
from datasets import load_dataset

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
TBA
"""

_DESCRIPTION = """\
Dataset from the Economy Watchers Survey for use as evaluation tasks
"""

_HOMEPAGE = "https://github.com/retarfi/economy-watchers-survey"
_LICENSE = "CC-BY 4.0"
VERSION = datasets.Version("0.1.2")
EWS_REPO_NAME = "retarfi/economy-watchers-survey"

LABEL_REASON_OTHER: str = "それ以外"
DISABLED_BARS: bool = datasets.are_progress_bars_disabled()


class EconomyWatchersSurveyConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        self.ews_version = kwargs.pop("ews_version", None)
        super(EconomyWatchersSurveyConfig, self).__init__(**kwargs)


class EconomyWatchersSurveyDataset(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIG_CLASS = EconomyWatchersSurveyConfig

    BUILDER_CONFIGS = [
        EconomyWatchersSurveyConfig(
            name="sentiment", version=VERSION, description="Sentiment analysis"
        ),
        EconomyWatchersSurveyConfig(
            name="domain", version=VERSION, description="Domain classification"
        ),
        EconomyWatchersSurveyConfig(
            name="reason",
            version=VERSION,
            description="Classification of reason to decision of sentiment",
        ),
    ]

    def _info(self):
        feat_label: datasets.ClassLabel
        if self.config.name == "sentiment":
            feat_label = datasets.ClassLabel(
                num_classes=5, names=["×", "▲", "□", "○", "◎"]
            )
        elif self.config.name == "domain":
            feat_label = datasets.ClassLabel(
                num_classes=3, names=["家計動向", "企業動向", "雇用"]
            )
        elif self.config.name == "reason":
            feat_label = datasets.ClassLabel(
                num_classes=12,
                names=[
                    "来客数の動き",
                    "販売量の動き",
                    "お客様の様子",
                    "受注量や販売量の動き",
                    "単価の動き",
                    "取引先の様子",
                    "求人数の動き",
                    "競争相手の様子",
                    "受注価格や販売価格の動き",
                    "周辺企業の様子",
                    "求職者数の動き",
                    LABEL_REASON_OTHER,
                ],
            )
        else:
            raise NotImplementedError(self.config.name)
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "label": feat_label,
                    "id": datasets.Value("string"),
                }
            ),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> list[datasets.SplitGenerator]:
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"split": "train"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={"split": "validation"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"split": "test"}
            ),
        ]

    def _generate_examples(self, split: str):
        batch_size = 1000
        
        ds_info_current = load_dataset(
            EWS_REPO_NAME, "current", revision=self.config.ews_version, split=split
        )
        total_current = len(ds_info_current)
        
        if self.config.name == "reason":
            for start_idx in range(0, total_current, batch_size):
                end_idx = min(start_idx + batch_size, total_current)
                ds_current_batch = load_dataset(
                    EWS_REPO_NAME, "current", revision=self.config.ews_version, 
                    split=f"{split}[{start_idx}:{end_idx}]"
                )
                
                if not DISABLED_BARS:
                    datasets.disable_progress_bars()
                ds_current_batch = ds_current_batch.filter(lambda example: example["判断の理由"] is not None)
                if not DISABLED_BARS:
                    datasets.enable_progress_bars()
                for example in ds_current_batch:
                    str_label = example["判断の理由"]
                    if str_label not in self.info.features["label"].names:
                        str_label = LABEL_REASON_OTHER
                    
                    yield example["id"], {
                        "id": example["id"],
                        "text": example["追加説明及び具体的状況の説明"],
                        "label": self.info.features["label"].str2int(str_label),
                    }
        else:
            ds_info_future = load_dataset(
                EWS_REPO_NAME, "future", revision=self.config.ews_version, split=split
            )
            total_future = len(ds_info_future)
            for start_idx in range(0, total_current, batch_size):
                end_idx = min(start_idx + batch_size, total_current)
                ds_current_batch = load_dataset(
                    EWS_REPO_NAME, "current", revision=self.config.ews_version, 
                    split=f"{split}[{start_idx}:{end_idx}]"
                )
                
                ds_current_no_reason = ds_current_batch.remove_columns("判断の理由")
                for example in ds_current_no_reason:
                    str_label: str
                    if self.config.name == "sentiment":
                        str_label = example["景気の現状判断"]
                    elif self.config.name == "domain":
                        str_label = example["関連"]
                    
                    yield example["id"], {
                        "id": example["id"],
                        "text": example["追加説明及び具体的状況の説明"],
                        "label": self.info.features["label"].str2int(str_label),
                    }
            
            for start_idx in range(0, total_future, batch_size):
                end_idx = min(start_idx + batch_size, total_future)
                
                ds_future_batch = load_dataset(
                    EWS_REPO_NAME, "future", revision=self.config.ews_version, 
                    split=f"{split}[{start_idx}:{end_idx}]"
                )
                ds_future_renamed = ds_future_batch.rename_columns(
                    {"景気の先行き判断": "景気の現状判断", "景気の先行きに対する判断理由": "追加説明及び具体的状況の説明"}
                )
                for example in ds_future_renamed:
                    str_label: str
                    if self.config.name == "sentiment":
                        str_label = example["景気の現状判断"]
                    elif self.config.name == "domain":
                        str_label = example["関連"]
                    
                    yield example["id"], {
                        "id": example["id"],
                        "text": example["追加説明及び具体的状況の説明"],
                        "label": self.info.features["label"].str2int(str_label),
                    }