Datasets:
Tasks:
Image Segmentation
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
Add comprehensive dataset card for MM-RIS (#2)
Browse files- Add comprehensive dataset card for MM-RIS (ef37cca438be6cdf678ea78d702c0aab3ef1cfe3)
Co-authored-by: Niels Rogge <[email protected]>
README.md
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
task_categories:
|
| 3 |
+
- image-segmentation
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
tags:
|
| 7 |
+
- multimodal
|
| 8 |
+
- referring-image-segmentation
|
| 9 |
+
- infrared
|
| 10 |
+
- visible
|
| 11 |
+
- image-fusion
|
| 12 |
+
size_categories:
|
| 13 |
+
- 10K<n<100K
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# MM-RIS: Multimodal Referring Image Segmentation Dataset
|
| 17 |
+
|
| 18 |
+
The **MM-RIS** dataset was introduced in the paper [RIS-FUSION: Rethinking Text-Driven Infrared and Visible Image Fusion from the Perspective of Referring Image Segmentation](https://huggingface.co/papers/2509.12710).
|
| 19 |
+
|
| 20 |
+
This large-scale benchmark supports the multimodal referring image segmentation (RIS) task by providing a goal-aligned approach to supervise and evaluate how effectively natural language contributes to infrared and visible image fusion outcomes.
|
| 21 |
+
|
| 22 |
+
## Paper
|
| 23 |
+
|
| 24 |
+
[RIS-FUSION: Rethinking Text-Driven Infrared and Visible Image Fusion from the Perspective of Referring Image Segmentation](https://huggingface.co/papers/2509.12710)
|
| 25 |
+
|
| 26 |
+
## Code
|
| 27 |
+
|
| 28 |
+
The official code repository for the associated RIS-FUSION project can be found on GitHub: [https://github.com/SijuMa2003/RIS-FUSION](https://github.com/SijuMa2003/RIS-FUSION)
|
| 29 |
+
|
| 30 |
+
## Introduction
|
| 31 |
+
|
| 32 |
+
Text-driven infrared and visible image fusion has gained attention for enabling natural language to guide the fusion process. However, existing methods often lack a goal-aligned task to supervise and evaluate how effectively the input text contributes to the fusion outcome.
|
| 33 |
+
|
| 34 |
+
We observe that **referring image segmentation (RIS)** and text-driven fusion share a common objective: highlighting the object referred to by the text. Motivated by this, we propose **RIS-FUSION**, a cascaded framework that unifies fusion and RIS through joint optimization.
|
| 35 |
+
|
| 36 |
+
To support the multimodal referring image segmentation task, we introduce **MM-RIS**, a large-scale benchmark with **12.5k training** and **3.5k testing** triplets, each consisting of an infrared-visible image pair, a segmentation mask, and a referring expression.
|
| 37 |
+
|
| 38 |
+
## Dataset Structure
|
| 39 |
+
|
| 40 |
+
The MM-RIS dataset is available in this Hugging Face repository and consists of the following Parquet files:
|
| 41 |
+
|
| 42 |
+
- `mm_ris_test.parquet`
|
| 43 |
+
- `mm_ris_val.parquet`
|
| 44 |
+
- `mm_ris_train_part1.parquet`
|
| 45 |
+
- `mm_ris_train_part2.parquet`
|
| 46 |
+
|
| 47 |
+
These files together comprise 12.5k training and 3.5k testing triplets. Each triplet includes an infrared image, a visible image, a segmentation mask, and a natural language referring expression.
|
| 48 |
+
|
| 49 |
+
## Sample Usage
|
| 50 |
+
|
| 51 |
+
To prepare the MM-RIS dataset for use with the RIS-FUSION code, you will need to download all the dataset files from this repository and merge the training partitions.
|
| 52 |
+
|
| 53 |
+
1. **Download the dataset files**:
|
| 54 |
+
Download `mm_ris_test.parquet`, `mm_ris_val.parquet`, `mm_ris_train_part1.parquet`, and `mm_ris_train_part2.parquet` from this Hugging Face repository and place them under a `data/` directory in your project, ideally within a cloned RIS-FUSION GitHub repository.
|
| 55 |
+
|
| 56 |
+
2. **Merge partitioned parquet files**:
|
| 57 |
+
The RIS-FUSION GitHub repository provides a script to merge the partitioned training data. Assuming you have cloned the repository and placed the parquet files in `./data/`:
|
| 58 |
+
|
| 59 |
+
```bash
|
| 60 |
+
python ./data/merge_parquet.py
|
| 61 |
+
```
|
| 62 |
+
This script will combine `mm_ris_train_part1.parquet` and `mm_ris_train_part2.parquet` into a single `mm_ris_train.parquet` file.
|
| 63 |
+
|
| 64 |
+
Once the dataset is prepared, you can use it for training and testing models as shown in the examples below.
|
| 65 |
+
|
| 66 |
+
### Training Example
|
| 67 |
+
|
| 68 |
+
```bash
|
| 69 |
+
python train_with_lavt.py \
|
| 70 |
+
--train_parquet ./data/mm_ris_train.parquet \
|
| 71 |
+
--val_parquet ./data/mm_ris_val.parquet \
|
| 72 |
+
--prefusion_model unet_fuser --prefusion_base_ch 32 \
|
| 73 |
+
--epochs 10 -b 16 -j 16 \
|
| 74 |
+
--img_size 480 \
|
| 75 |
+
--swin_type base \
|
| 76 |
+
--pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth \
|
| 77 |
+
--bert_tokenizer ./bert/pretrained_weights/bert-base-uncased \
|
| 78 |
+
--ck_bert ./bert/pretrained_weights/bert-base-uncased \
|
| 79 |
+
--init_from_lavt_one ./pretrained_weights/lavt_one_8_cards_ImgNet22KPre_swin-base-window12_refcoco+_adamw_b32lr0.00005wd1e-2_E40.pth \
|
| 80 |
+
--lr_seg 5e-5 --wd_seg 1e-2 --lr_pf 1e-4 --wd_pf 1e-2 \
|
| 81 |
+
--lambda_prefusion 3.0 \
|
| 82 |
+
--w_sobel_vis 0.0 \
|
| 83 |
+
--w_sobel_ir 1.0 \
|
| 84 |
+
--w_grad 1.0 \
|
| 85 |
+
--w_ssim_vis 0.5 \
|
| 86 |
+
--w_ssim_ir 0.0 \
|
| 87 |
+
--w_mse_vis 0.5 \
|
| 88 |
+
--w_mse_ir 2.0
|
| 89 |
+
--eval_vis_dir ./eval_vis \
|
| 90 |
+
--output-dir ./ckpts/risfusion
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
### Testing Example
|
| 94 |
+
|
| 95 |
+
```bash
|
| 96 |
+
python test.py \
|
| 97 |
+
--ckpt ./ckpts/risfusion/model_best_lavt.pth \
|
| 98 |
+
--test_parquet ./data/mm_ris_test.parquet \
|
| 99 |
+
--out_dir ./your_output_dir \
|
| 100 |
+
--bert_tokenizer ./bert/pretrained_weights/bert-base-uncased \
|
| 101 |
+
--ck_bert ./bert/pretrained_weights/bert-base-uncased
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
## Citation
|
| 105 |
+
|
| 106 |
+
If you find this dataset or the associated paper useful, please consider citing:
|
| 107 |
+
|
| 108 |
+
```bibtex
|
| 109 |
+
@article{RIS-FUSION2025,
|
| 110 |
+
title = {RIS-FUSION: Rethinking Text-Driven Infrared and Visible Image Fusion from the Perspective of Referring Image Segmentation},
|
| 111 |
+
author = {Ma, Siju and Gong, Changsiyu and Fan, Xiaofeng and Ma, Yong and Jiang, Chengjie},
|
| 112 |
+
journal = {...},
|
| 113 |
+
year = {2025}
|
| 114 |
+
}
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
## Acknowledgements
|
| 118 |
+
|
| 119 |
+
- [Swin Transformer](https://github.com/microsoft/Swin-Transformer)
|
| 120 |
+
- [LAVT](https://github.com/yz93/LAVT)
|
| 121 |
+
- [MMEngine](https://github.com/open-mmlab/mmengine)
|