|
import Mathlib |
|
|
|
|
|
lemma aux_1 |
|
(f : ℕ → NNReal → ℝ) |
|
(h₀ : ∀ (x : NNReal), f 1 x = ↑x) |
|
(h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) : |
|
∀ (n : ℕ) (x : NNReal), 0 < n ∧ 0 < x → 0 < f n x := by |
|
intros n x hp |
|
have hz₇: n ≤ 7 ∨ 7 < n := by |
|
exact le_or_lt n 7 |
|
cases' hp with hn₀ hx₀ |
|
by_cases hn₁: 1 < n |
|
. refine Nat.le_induction ?_ ?_ n hn₁ |
|
. rw [h₁ 1 x (by norm_num)] |
|
rw [h₀ x] |
|
refine mul_pos hx₀ ?_ |
|
refine add_pos hx₀ (by norm_num) |
|
. intros m hm₀ hm₁ |
|
rw [h₁ m x (by linarith)] |
|
refine mul_pos hm₁ ?_ |
|
refine add_pos hm₁ ?_ |
|
refine one_div_pos.mpr ?_ |
|
norm_cast |
|
exact Nat.zero_lt_of_lt hm₀ |
|
. interval_cases n |
|
rw [h₀ x] |
|
exact hx₀ |
|
|
|
|
|
lemma aux_2 |
|
(f : ℕ → NNReal → ℝ) |
|
(h₀ : ∀ (x : NNReal), f 1 x = ↑x) |
|
(h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) |
|
(h₂ : ∀ (n : ℕ) (x : NNReal), 0 < n ∧ 0 < x → 0 < f n x) |
|
(h₃ : ∀ (n : ℕ) (x : NNReal), 0 < n → 0 ≤ f n x) : |
|
∀ (n : ℕ) (x y : NNReal), 0 < n → x < y → f n x < f n y := by |
|
intros n x y hn hxy |
|
by_cases hn₁: 1 < n |
|
. refine Nat.le_induction ?_ ?_ n hn₁ |
|
. rw [h₁ 1 x (by norm_num)] |
|
rw [h₁ 1 y (by norm_num)] |
|
norm_num |
|
refine mul_lt_mul ?_ ?_ ?_ ?_ |
|
. rw [h₀ x, h₀ y] |
|
exact hxy |
|
. refine _root_.add_le_add ?_ (by norm_num) |
|
rw [h₀ x, h₀ y] |
|
exact le_of_lt hxy |
|
. refine add_pos_of_nonneg_of_pos ?_ (by linarith) |
|
rw [h₀ x] |
|
exact NNReal.zero_le_coe |
|
. refine le_of_lt ?_ |
|
refine h₂ 1 y ?_ |
|
norm_num |
|
exact pos_of_gt hxy |
|
. intros m hm₀ hm₁ |
|
rw [h₁ m x (by linarith)] |
|
rw [h₁ m y (by linarith)] |
|
refine mul_lt_mul hm₁ ?_ ?_ ?_ |
|
. refine _root_.add_le_add ?_ (by norm_num) |
|
exact le_of_lt hm₁ |
|
. refine add_pos_of_nonneg_of_pos ?_ ?_ |
|
. exact h₃ m x (by linarith) |
|
. refine one_div_pos.mpr ?_ |
|
norm_cast |
|
exact Nat.zero_lt_of_lt hm₀ |
|
. refine le_of_lt ?_ |
|
refine h₂ m y ?_ |
|
constructor |
|
. exact Nat.zero_lt_of_lt hm₀ |
|
. exact pos_of_gt hxy |
|
. interval_cases n |
|
rw [h₀ x, h₀ y] |
|
exact hxy |
|
|
|
|
|
lemma aux_3 |
|
(f : ℕ → NNReal → ℝ) |
|
(h₀ : ∀ (x : NNReal), f 1 x = ↑x) |
|
(h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) |
|
(h₄ : ∀ (n : ℕ) (x y : NNReal), 0 < n → x < y → f n x < f n y) : |
|
∀ (n : ℕ) (x : NNReal), 1 < n ∧ 1 ≤ x → 1 < f n x := by |
|
intros n x hx₀ |
|
cases' hx₀ with hn₀ hx₁ |
|
have g₂₀: f n 1 ≤ f n x := by |
|
by_cases hx₂: 1 < x |
|
. refine le_of_lt ?_ |
|
refine h₄ n 1 x ?_ hx₂ |
|
exact Nat.zero_lt_of_lt hn₀ |
|
. push_neg at hx₂ |
|
have hx₃: x = 1 := by exact le_antisymm hx₂ hx₁ |
|
rw [hx₃] |
|
have g₂₁: f 1 1 < f n 1 := by |
|
rw [h₀] |
|
refine Nat.le_induction ?_ ?_ n hn₀ |
|
. rw [h₁ 1 1 (by norm_num), h₀] |
|
norm_num |
|
. intros m hm₀ hm₁ |
|
rw [h₁ m 1 (by linarith)] |
|
refine one_lt_mul_of_lt_of_le hm₁ ?_ |
|
nth_rw 1 [← add_zero 1] |
|
refine add_le_add ?_ ?_ |
|
. exact le_of_lt hm₁ |
|
. refine one_div_nonneg.mpr ?_ |
|
exact Nat.cast_nonneg' m |
|
refine lt_of_lt_of_le ?_ g₂₀ |
|
exact (lt_iff_lt_of_cmp_eq_cmp (congrFun (congrArg cmp (h₀ 1)) (f n 1))).mp g₂₁ |
|
|
|
|
|
lemma aux_4 |
|
(f : ℕ → NNReal → ℝ) |
|
(h₃ : ∀ (n : ℕ) (x : NNReal), 0 < n → 0 ≤ f n x) |
|
(h₄ : ∀ (n : ℕ) (x y : NNReal), 0 < n → x < y → f n x < f n y) |
|
(f₀ : ℕ → NNReal → NNReal) |
|
(hf₀ : f₀ = fun n x => (f n x).toNNReal) : |
|
∀ (n : ℕ), 0 < n → StrictMono (f₀ n) := by |
|
intros n hn₀ |
|
refine Monotone.strictMono_of_injective ?_ ?_ |
|
. refine monotone_iff_forall_lt.mpr ?_ |
|
intros a b hab |
|
refine le_of_lt ?_ |
|
rw [hf₀] |
|
exact (Real.toNNReal_lt_toNNReal_iff_of_nonneg (h₃ n a hn₀)).mpr (h₄ n a b hn₀ hab) |
|
. intros p q hpq |
|
contrapose! hpq |
|
apply lt_or_gt_of_ne at hpq |
|
cases' hpq with hpq hpq |
|
. refine ne_of_lt ?_ |
|
rw [hf₀] |
|
exact (Real.toNNReal_lt_toNNReal_iff_of_nonneg (h₃ n p hn₀)).mpr (h₄ n p q hn₀ hpq) |
|
. symm |
|
refine ne_of_lt ?_ |
|
rw [hf₀] |
|
exact (Real.toNNReal_lt_toNNReal_iff_of_nonneg (h₃ n q hn₀)).mpr (h₄ n q p hn₀ hpq) |
|
|
|
|
|
lemma aux_5 |
|
(f : ℕ → NNReal → ℝ) |
|
(hmo₁ : ∀ (n : ℕ), 0 < n → Function.Injective (f n)) |
|
(f₀ : ℕ → NNReal → NNReal) |
|
(hmo₂ : ∀ (n : ℕ), 0 < n → StrictMono (f₀ n)) |
|
(fi : ℕ → NNReal → NNReal) |
|
(hfi : fi = fun n => Function.invFun (f₀ n)): |
|
∀ (n : ℕ) (x y : NNReal), 0 < n → f₀ n x = y → fi n y = x := by |
|
intros n x y hn₀ hn₁ |
|
have hf₃: ∀ n y, fi n y = Function.invFun (f₀ n) y := by |
|
exact fun n y => congrFun (congrFun hfi n) y |
|
rw [← hn₁, hf₃] |
|
have hmo₃: ∀ n, 0 < n → Function.Injective (f₀ n) := by |
|
exact fun n a => StrictMono.injective (hmo₂ n a) |
|
have hn₂: (Function.invFun (f₀ n)) ∘ (f₀ n) = id := by exact Function.invFun_comp (hmo₃ n hn₀) |
|
rw [Function.comp_def (Function.invFun (f₀ n)) (f₀ n)] at hn₂ |
|
have hn₃: (fun x => Function.invFun (f₀ n) (f₀ n x)) x = id x := by exact Eq.symm (NNReal.eq (congrArg NNReal.toReal (congrFun (id (Eq.symm hn₂)) x))) |
|
exact hmo₁ n hn₀ (congrArg (f n) hn₃) |
|
|
|
|
|
lemma aux_6 |
|
(f : ℕ → NNReal → ℝ) |
|
(h₀ : ∀ (x : NNReal), f 1 x = ↑x) |
|
(h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) |
|
(f₀ : ℕ → NNReal → NNReal) |
|
(hf₀ : f₀ = fun n x => (f n x).toNNReal) : |
|
∀ (n : ℕ), 0 < n → Continuous (f₀ n) := by |
|
intros n hn₀ |
|
rw [hf₀] |
|
refine Continuous.comp' ?_ ?_ |
|
. exact continuous_real_toNNReal |
|
. refine Nat.le_induction ?_ ?_ n hn₀ |
|
. have hn₁: f 1 = fun (x:NNReal) => (x:ℝ) := by exact (Set.eqOn_univ (f 1) fun x => ↑x).mp fun ⦃x⦄ _ => h₀ x |
|
rw [hn₁] |
|
exact NNReal.continuous_coe |
|
. intros d hd₀ hd₁ |
|
have hd₂: f (d + 1) = fun x => f d x * (f d x + 1 / ↑d) := by |
|
exact (Set.eqOn_univ (f (d + 1)) fun x => f d x * (f d x + 1 / ↑d)).mp fun ⦃x⦄ _ => h₁ d x hd₀ |
|
rw [hd₂] |
|
refine Continuous.mul hd₁ ?_ |
|
refine Continuous.add hd₁ ?_ |
|
exact continuous_const |
|
|
|
|
|
lemma aux_7 |
|
(f : ℕ → NNReal → ℝ) |
|
(h₀ : ∀ (x : NNReal), f 1 x = ↑x) |
|
(h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) |
|
(h₃ : ∀ (n : ℕ) (x : NNReal), 0 < n → 0 ≤ f n x) |
|
(h₅ : ∀ (n : ℕ) (x : NNReal), 1 < n ∧ 1 ≤ x → 1 < f n x) |
|
(f₀ : ℕ → NNReal → NNReal) |
|
(hf₂ : ∀ (n : ℕ) (x : NNReal), 0 < n → f₀ n x = (f n x).toNNReal) |
|
(hmo₂ : ∀ (n : ℕ), 0 < n → StrictMono (f₀ n)) |
|
(hmo₄ : ∀ (n : ℕ), 0 < n → Continuous (f₀ n)) : |
|
∀ (n : ℕ), 0 < n → Function.Surjective (f₀ n) := by |
|
intros n hn₀ |
|
refine Continuous.surjective (hmo₄ n hn₀) ?_ ?_ |
|
. refine Monotone.tendsto_atTop_atTop ?_ ?_ |
|
. exact StrictMono.monotone (hmo₂ n hn₀) |
|
. intro b |
|
use (b + 1) |
|
refine Nat.le_induction ?_ ?_ n hn₀ |
|
. rw [hf₂ 1 (b + 1) (by linarith), h₀] |
|
simp |
|
. intros d hd₀ hd₁ |
|
rw [hf₂ (d + 1) (b + 1) (by linarith), h₁ d (b + 1) (by linarith)] |
|
have hd₂: b ≤ f d (b + 1) := by |
|
rw [hf₂ d (b + 1) (by linarith)] at hd₁ |
|
exact (Real.le_toNNReal_iff_coe_le (h₃ d (b + 1) hd₀)).mp hd₁ |
|
have hd₃: 1 < (f d (b + 1) + 1 / ↑d) := by |
|
by_cases hd₄: 1 < d |
|
. refine lt_add_of_lt_of_pos ?_ ?_ |
|
. refine h₅ d (b + 1) ?_ |
|
constructor |
|
. exact hd₄ |
|
. exact le_add_self |
|
. refine div_pos (by linarith) ?_ |
|
exact Nat.cast_pos'.mpr hd₀ |
|
. have hd₅: d = 1 := by linarith |
|
rw [hd₅, h₀] |
|
simp |
|
norm_cast |
|
refine add_pos_of_nonneg_of_pos ?_ ?_ |
|
. exact _root_.zero_le b |
|
. exact zero_lt_one' NNReal |
|
refine NNReal.le_toNNReal_of_coe_le ?_ |
|
nth_rw 1 [← mul_one (↑b:ℝ)] |
|
refine mul_le_mul hd₂ (le_of_lt hd₃) (by linarith) ?_ |
|
exact h₃ d (b + 1) hd₀ |
|
. refine Filter.tendsto_atBot_atBot.mpr ?_ |
|
intro b |
|
use 0 |
|
intro a ha₀ |
|
have ha₁: a = 0 := by exact nonpos_iff_eq_zero.mp ha₀ |
|
have ha₂: f₀ n 0 = 0 := by |
|
refine Nat.le_induction ?_ ?_ n hn₀ |
|
. rw [hf₂ 1 0 (by linarith), h₀] |
|
exact Real.toNNReal_coe |
|
. intros d hd₀ hd₁ |
|
rw [hf₂ (d + 1) 0 (by linarith), h₁ d 0 (by linarith)] |
|
have hd₂: 0 ≤ f d 0 := by exact h₃ d 0 hd₀ |
|
have hd₃: f d 0 = 0 := by |
|
rw [hf₂ d 0 (by linarith)] at hd₁ |
|
apply Real.toNNReal_eq_zero.mp at hd₁ |
|
exact eq_of_le_of_le hd₁ hd₂ |
|
rw [hd₃, zero_mul] |
|
exact Real.toNNReal_zero |
|
rw [ha₁, ha₂] |
|
exact _root_.zero_le b |
|
|
|
|
|
lemma aux_8 |
|
(f : ℕ → NNReal → ℝ) |
|
(h₀ : ∀ (x : NNReal), f 1 x = ↑x) |
|
(h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) |
|
(hmo₀ : ∀ (n : ℕ), 0 < n → StrictMono (f n)) |
|
(hmo₁ : ∀ (n : ℕ), 0 < n → Function.Injective (f n)) |
|
(f₀ : ℕ → NNReal → NNReal) |
|
(hf₂ : ∀ (n : ℕ) (x : NNReal), 0 < n → f₀ n x = (f n x).toNNReal) |
|
(sn : Set ℕ) |
|
(fb : ↑sn → NNReal) |
|
(hsn₁ : ∀ (n : ↑sn), ↑n ∈ sn ∧ 0 < n.1) |
|
(hfb₁ : ∀ (n : ↑sn), f₀ (↑n) (fb n) = 1 - 1 / ↑↑n) : |
|
∀ (n : ↑sn), fb n < 1 := by |
|
intros n |
|
have hn₀: 0 < (n:ℕ) := by exact (hsn₁ n).2 |
|
let z := fb n |
|
have hz₀: z = fb n := by rfl |
|
rw [← hz₀] |
|
by_contra! hc₀ |
|
have hc₁: 1 ≤ f n z := by |
|
by_cases hn₁: 1 < (n:ℕ) |
|
. refine le_of_lt ?_ |
|
refine aux_3 f h₀ h₁ ?_ (↑n) z ?_ |
|
. exact fun n x y a a_1 => hmo₀ n a a_1 |
|
. exact ⟨hn₁, hc₀⟩ |
|
. have hn₂: (n:ℕ) = 1 := by linarith |
|
rw [hn₂, h₀] |
|
exact hc₀ |
|
have hz₁: f₀ n z = 1 - 1 / n := by |
|
exact hfb₁ n |
|
have hz₃: f n z = 1 - 1 / n := by |
|
rw [hf₂ n z hn₀] at hz₁ |
|
by_cases hn₁: 1 < (n:ℕ) |
|
. have hz₂: 1 - 1 / (n:NNReal) ≠ 0 := by |
|
have g₀: (n:NNReal) ≠ 0 := by |
|
norm_cast |
|
linarith |
|
nth_rw 1 [← div_self g₀, ← NNReal.sub_div] |
|
refine div_ne_zero ?_ g₀ |
|
norm_cast |
|
exact Nat.sub_ne_zero_iff_lt.mpr hn₁ |
|
apply (Real.toNNReal_eq_iff_eq_coe hz₂).mp at hz₁ |
|
rw [hz₁] |
|
exact Eq.symm ((fun {r} {p:NNReal} hp => (Real.toNNReal_eq_iff_eq_coe hp).mp) hz₂ (hmo₁ n hn₀ rfl)) |
|
. have hn₂: (n:ℕ) = 1 := by linarith |
|
rw [hn₂, h₀] at hz₁ |
|
simp at hz₁ |
|
rw [hn₂, h₀, hz₁] |
|
simp |
|
rw [hz₃] at hc₁ |
|
have hz₄: 0 < 1 / (n:ℝ) := by |
|
refine div_pos (by linarith) ?_ |
|
exact Nat.cast_pos'.mpr hn₀ |
|
linarith |
|
|
|
|
|
lemma aux_9 |
|
(f : ℕ → NNReal → ℝ) |
|
(h₀ : ∀ (x : NNReal), f 1 x = ↑x) |
|
(h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) |
|
(f₀ : ℕ → NNReal → NNReal) |
|
(hf₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f n x = ↑(f₀ n x)) |
|
(hf₂ : ∀ (n : ℕ) (x : NNReal), 0 < n → f₀ n x = (f n x).toNNReal) |
|
(hmo₂ : ∀ (n : ℕ), 0 < n → StrictMono (f₀ n)) |
|
(fi : ℕ → NNReal → NNReal) |
|
(hf₅ : ∀ (x : NNReal), fi 1 x = x) |
|
(hmo₇ : ∀ (n : ℕ), 0 < n → Function.RightInverse (fi n) (f₀ n)) |
|
(hf₇ : ∀ (n : ℕ) (x y : NNReal), 0 < n → (f₀ n x = y ↔ fi n y = x)) |
|
(fb : ℕ → NNReal) |
|
(hfb₀ : fb = fun n => fi n (1 - 1 / ↑n)) |
|
(sn : Set ℕ) |
|
(hsn : sn = Set.Ici 1) : |
|
StrictMonoOn fb sn := by |
|
rw [hsn] |
|
refine strictMonoOn_Ici_of_pred_lt ?hψ |
|
intros m hm₀ |
|
rw [hfb₀] |
|
refine Nat.le_induction ?_ ?_ m hm₀ |
|
. have g₁: fi 1 0 = 0 := by exact hf₅ 0 |
|
have g₂: (2:NNReal).IsConjExponent (2:NNReal) := by |
|
refine (NNReal.isConjExponent_iff_eq_conjExponent ?_).mpr ?_ |
|
. exact one_lt_two |
|
. norm_cast |
|
simp |
|
simp |
|
norm_cast |
|
rw [g₁, NNReal.IsConjExponent.one_sub_inv g₂] |
|
let x := fi 2 2⁻¹ |
|
have hx₀: x = fi 2 2⁻¹ := by rfl |
|
have hx₁: f₀ 2 x = 2⁻¹ := by |
|
rw [hx₀] |
|
have g₃: Function.RightInverse (fi 2) (f₀ 2) := by exact hmo₇ 2 (by linarith) |
|
exact g₃ 2⁻¹ |
|
rw [← hx₀] |
|
contrapose! hx₁ |
|
have hc₁: x = 0 := by exact nonpos_iff_eq_zero.mp hx₁ |
|
have hc₃: f₀ 2 x = 0 := by |
|
rw [hc₁, hf₂ 2 0 (by linarith), h₁ 1 0 (by linarith), h₀ 0] |
|
norm_cast |
|
rw [zero_mul] |
|
exact Real.toNNReal_zero |
|
rw [hc₃] |
|
exact Ne.symm (NNReal.IsConjExponent.inv_ne_zero g₂) |
|
. simp |
|
intros n hn₀ _ |
|
let i := fi n (1 - (↑n)⁻¹) |
|
let j := fi (n + 1) (1 - ((↑n:NNReal) + 1)⁻¹) |
|
have hi₀: i = fi n (1 - (↑n)⁻¹) := by rfl |
|
have hj₀: j = fi (n + 1) (1 - ((↑n:NNReal) + 1)⁻¹) := by rfl |
|
have hi₁: f₀ n i = (1 - (↑n)⁻¹) := by exact (hf₇ n i (1 - (↑n:NNReal)⁻¹) (by linarith)).mpr hi₀.symm |
|
have hj₁: f₀ (n + 1) j = (1 - ((↑n:NNReal) + 1)⁻¹) := by |
|
exact (hf₇ (n + 1) j _ (by linarith)).mpr hj₀.symm |
|
have hj₂: (1 - ((↑n:NNReal) + 1)⁻¹) = (1 - ((n:ℝ) + 1)⁻¹).toNNReal := by |
|
exact rfl |
|
have hn₂: f₀ (n + 1) i < f₀ (n + 1) j := by |
|
rw [hj₁, hj₂, hf₂ (n + 1) _ (by linarith), h₁ n i (by linarith)] |
|
rw [hf₁ n i (by linarith), hi₁] |
|
refine (Real.toNNReal_lt_toNNReal_iff ?_).mpr ?_ |
|
. refine sub_pos.mpr ?_ |
|
refine inv_lt_one_of_one_lt₀ ?_ |
|
norm_cast |
|
exact Nat.lt_add_right 1 hn₀ |
|
. have g₀: (↑n:NNReal)⁻¹ ≤ 1 := by exact Nat.cast_inv_le_one n |
|
rw [NNReal.coe_sub g₀, NNReal.coe_inv] |
|
simp |
|
refine inv_strictAnti₀ ?_ ?_ |
|
. norm_cast |
|
exact Nat.zero_lt_of_lt hn₀ |
|
. norm_cast |
|
exact lt_add_one n |
|
refine (StrictMono.lt_iff_lt ?_).mp hn₂ |
|
exact hmo₂ (n + 1) (by linarith) |
|
|
|
|
|
lemma aux_10 |
|
(f : ℕ → NNReal → ℝ) |
|
(h₀ : ∀ (x : NNReal), f 1 x = ↑x) |
|
(h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) |
|
(f₀ : ℕ → NNReal → NNReal) |
|
(hf₂ : ∀ (n : ℕ) (x : NNReal), 0 < n → f₀ n x = (f n x).toNNReal) |
|
(fi : ℕ → NNReal → NNReal) |
|
(hmo₇ : ∀ (n : ℕ), 0 < n → Function.RightInverse (fi n) (f₀ n)) |
|
(sn : Set ℕ) |
|
(sb : Set NNReal) |
|
(fb : ↑sn → NNReal) |
|
(hsn₀ : sn = Set.Ici 1) |
|
(hfb₀ : fb = fun n:↑sn => fi (↑n) (1 - 1 / ↑↑n)) |
|
(hsb₀ : sb = Set.range fb) |
|
(fr : NNReal → ℝ) |
|
(hfr: fr = fun x => ↑x) |
|
(sbr : Set ℝ) |
|
(hsbr: sbr = fr '' sb) |
|
(br: ℝ) |
|
(hbr₀ : IsLUB sbr br) : |
|
0 < br := by |
|
have hnb₀: 2 ∈ sn := by |
|
rw [hsn₀] |
|
decide |
|
let nb : ↑sn := ⟨2, hnb₀⟩ |
|
have g₀: 0 < fb nb := by |
|
have g₁: (2:NNReal).IsConjExponent (2:NNReal) := by |
|
refine (NNReal.isConjExponent_iff_eq_conjExponent ?_).mpr ?_ |
|
. exact one_lt_two |
|
. norm_cast |
|
simp |
|
rw [hfb₀] |
|
simp |
|
have hnb₁: nb.val = 2 := by exact rfl |
|
rw [hnb₁] |
|
norm_cast |
|
rw [NNReal.IsConjExponent.one_sub_inv g₁] |
|
let x := fi 2 2⁻¹ |
|
have hx₀: x = fi 2 2⁻¹ := by rfl |
|
have hx₁: f₀ 2 x = 2⁻¹ := by |
|
rw [hx₀] |
|
have g₃: Function.RightInverse (fi 2) (f₀ 2) := by exact hmo₇ 2 (by linarith) |
|
exact g₃ 2⁻¹ |
|
rw [← hx₀] |
|
contrapose! hx₁ |
|
have hc₁: x = 0 := by exact nonpos_iff_eq_zero.mp hx₁ |
|
have hc₃: f₀ 2 x = 0 := by |
|
rw [hc₁, hf₂ 2 0 (by linarith), h₁ 1 0 (by linarith), h₀ 0] |
|
norm_cast |
|
rw [zero_mul] |
|
exact Real.toNNReal_zero |
|
rw [hc₃] |
|
exact Ne.symm (NNReal.IsConjExponent.inv_ne_zero g₁) |
|
have g₁: ∃ x, 0 < x ∧ x ∈ sbr := by |
|
use (fb nb).toReal |
|
constructor |
|
. exact g₀ |
|
. rw [hsbr] |
|
simp |
|
use fb ↑nb |
|
constructor |
|
. rw [hsb₀] |
|
exact Set.mem_range_self nb |
|
. exact congrFun hfr (fb ↑nb) |
|
obtain ⟨x, hx₀, hx₁⟩ := g₁ |
|
have hx₂: br ∈ upperBounds sbr := by |
|
refine (isLUB_le_iff hbr₀).mp ?_ |
|
exact Preorder.le_refl br |
|
exact gt_of_ge_of_gt (hx₂ hx₁) hx₀ |
|
|
|
|
|
lemma aux_11 |
|
(sn : Set ℕ) |
|
(fb fc : ↑sn → NNReal) |
|
(hfc₂ : ∀ (n : ↑sn), fb n < fc n) |
|
(hfb₃ : StrictMono fb) |
|
(hfc₃ : StrictAnti fc) |
|
(sb sc : Set NNReal) |
|
(hsb₀ : sb = Set.range fb) |
|
(hsc₀ : sc = Set.range fc) |
|
(fr : NNReal → ℝ) |
|
(hfr : fr = fun x ↦ ↑x) |
|
(sbr scr : Set ℝ) |
|
(hsbr : sbr = fr '' sb) |
|
(hscr : scr = fr '' sc) |
|
(br cr : ℝ) |
|
(hbr₀ : IsLUB sbr br) |
|
(hcr₀ : IsGLB scr cr) |
|
(hfb₄ : ∀ (n : ↑sn), 0 ≤ fb n) : |
|
br ≤ cr := by |
|
have hfc₄: ∀ nb nc, fb nb < fc nc := by |
|
intros nb nc |
|
cases' (lt_or_le nb nc) with hn₀ hn₀ |
|
. refine lt_trans ?_ (hfc₂ nc) |
|
exact hfb₃ hn₀ |
|
cases' lt_or_eq_of_le hn₀ with hn₁ hn₁ |
|
. refine lt_trans (hfc₂ nb) ?_ |
|
exact hfc₃ hn₁ |
|
. rw [hn₁] |
|
exact hfc₂ nb |
|
by_contra! hc₀ |
|
have hc₁: ∃ x ∈ sbr, cr < x ∧ x ≤ br := by exact IsLUB.exists_between hbr₀ hc₀ |
|
let ⟨x, hx₀, hx₁, _⟩ := hc₁ |
|
have hc₂: ∃ y ∈ scr, cr ≤ y ∧ y < x := by exact IsGLB.exists_between hcr₀ hx₁ |
|
let ⟨y, hy₀, _, hy₂⟩ := hc₂ |
|
have hc₃: x < y := by |
|
have hx₃: x.toNNReal ∈ sb := by |
|
rw [hsbr] at hx₀ |
|
apply (Set.mem_image fr sb x).mp at hx₀ |
|
obtain ⟨z, hz₀, hz₁⟩ := hx₀ |
|
rw [← hz₁, hfr, Real.toNNReal_coe] |
|
exact hz₀ |
|
have hy₃: y.toNNReal ∈ sc := by |
|
rw [hscr] at hy₀ |
|
apply (Set.mem_image fr sc y).mp at hy₀ |
|
obtain ⟨z, hz₀, hz₁⟩ := hy₀ |
|
rw [← hz₁, hfr, Real.toNNReal_coe] |
|
exact hz₀ |
|
rw [hsb₀] at hx₃ |
|
rw [hsc₀] at hy₃ |
|
apply Set.mem_range.mp at hx₃ |
|
apply Set.mem_range.mp at hy₃ |
|
let ⟨nx, hnx₀⟩ := hx₃ |
|
let ⟨ny, hny₀⟩ := hy₃ |
|
have hy₄: 0 < y := by |
|
contrapose! hy₃ |
|
have hy₅: y.toNNReal = 0 := by exact Real.toNNReal_of_nonpos hy₃ |
|
intro z |
|
rw [hy₅] |
|
refine ne_of_gt ?_ |
|
refine lt_of_le_of_lt ?_ (hfc₂ z) |
|
exact hfb₄ z |
|
refine (Real.toNNReal_lt_toNNReal_iff hy₄).mp ?_ |
|
rw [← hnx₀, ← hny₀] |
|
exact hfc₄ nx ny |
|
refine (lt_self_iff_false x).mp ?_ |
|
exact lt_trans hc₃ hy₂ |
|
|
|
|
|
lemma aux_exists |
|
(f : ℕ → NNReal → ℝ) |
|
(h₂ : ∀ (n : ℕ) (x : NNReal), 0 < n ∧ 0 < x → 0 < f n x) |
|
(hmo₀ : ∀ (n : ℕ), 0 < n → StrictMono (f n)) |
|
(f₀ : ℕ → NNReal → NNReal) |
|
(hf₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f n x = ↑(f₀ n x)) |
|
(sn : Set ℕ) |
|
(hsn₀ : sn = Set.Ici 1) |
|
(fb fc : ↑sn → NNReal) |
|
(hfb₁ : ∀ (n : ↑sn), f₀ (↑n) (fb n) = 1 - 1 / ↑↑n) |
|
(hfc₁ : ∀ (n : ↑sn), f₀ (↑n) (fc n) = 1) |
|
(hfb₃ : StrictMono fb) |
|
(hfc₃ : StrictAnti fc) |
|
(sb sc : Set NNReal) |
|
(hsb₀ : sb = Set.range fb) |
|
(hsc₀ : sc = Set.range fc) |
|
(fr : NNReal → ℝ) |
|
(hfr : fr = fun x => ↑x) |
|
(sbr scr : Set ℝ) |
|
(hsbr : sbr = fr '' sb) |
|
(hscr : scr = fr '' sc) |
|
(br cr : ℝ) |
|
(h₈ : ∀ (n : ℕ) (x : NNReal), 0 < n → 0 < x → 1 - 1 / ↑n < f n x → f n x < f (n + 1) x) |
|
(hbr₁ : 0 < br) |
|
(hu₅ : br ≤ cr) |
|
(hbr₃ : ∀ x ∈ sbr, x ≤ br) |
|
(hcr₃ : ∀ x ∈ scr, cr ≤ x) : |
|
∃ x, ∀ (n : ℕ), 0 < n → 0 < f n x ∧ f n x < f (n + 1) x ∧ f (n + 1) x < 1 := by |
|
cases' lt_or_eq_of_le hu₅ with hu₆ hu₆ |
|
. apply exists_between at hu₆ |
|
let ⟨a, ha₀, ha₁⟩ := hu₆ |
|
have ha₂: 0 < a := by exact gt_trans ha₀ hbr₁ |
|
have ha₃: 0 < a.toNNReal := by exact Real.toNNReal_pos.mpr ha₂ |
|
use a.toNNReal |
|
intros n hn₀ |
|
have hn₁: n ∈ sn := by |
|
rw [hsn₀] |
|
exact hn₀ |
|
constructor |
|
. exact h₂ n a.toNNReal ⟨hn₀, ha₃⟩ |
|
constructor |
|
. refine h₈ n a.toNNReal hn₀ ?_ ?_ |
|
. exact Real.toNNReal_pos.mpr ha₂ |
|
. let nn : ↑sn := ⟨n, hn₁⟩ |
|
have hn₂: f n (fb nn) = 1 - 1 / n := by |
|
rw [hf₁ n _ hn₀, hfb₁ nn] |
|
refine NNReal.coe_sub ?_ |
|
refine div_le_self ?_ ?_ |
|
. exact zero_le_one' NNReal |
|
. exact Nat.one_le_cast.mpr hn₀ |
|
rw [← hn₂] |
|
refine hmo₀ n hn₀ ?_ |
|
refine Real.lt_toNNReal_iff_coe_lt.mpr ?_ |
|
refine lt_of_le_of_lt ?_ ha₀ |
|
refine hbr₃ _ ?_ |
|
rw [hsbr] |
|
refine (Set.mem_image fr sb _).mpr ?_ |
|
use (fb nn) |
|
rw [hfr, hsb₀] |
|
refine ⟨?_, rfl⟩ |
|
exact Set.mem_range_self nn |
|
. have hn₂: n + 1 ∈ sn := by |
|
rw [hsn₀] |
|
exact Set.mem_Ici.mpr (by linarith) |
|
let nn : ↑sn := ⟨n + 1, hn₂⟩ |
|
have hn₃: f (n + 1) (fc (nn)) = 1 := by |
|
rw [hf₁ (n + 1) _ (by linarith), hfc₁ nn] |
|
exact rfl |
|
rw [← hn₃] |
|
refine hmo₀ (n + 1) (by linarith) ?_ |
|
refine (Real.toNNReal_lt_iff_lt_coe (le_of_lt ha₂)).mpr ?_ |
|
refine lt_of_lt_of_le ha₁ ?_ |
|
refine hcr₃ _ ?_ |
|
rw [hscr] |
|
refine (Set.mem_image fr sc _).mpr ?_ |
|
use (fc nn) |
|
rw [hfr, hsc₀] |
|
refine ⟨?_, rfl⟩ |
|
exact Set.mem_range_self nn |
|
. use br.toNNReal |
|
intros n hn₀ |
|
have hn₁: n ∈ sn := by |
|
rw [hsn₀] |
|
exact hn₀ |
|
constructor |
|
. refine h₂ n br.toNNReal ⟨hn₀, ?_⟩ |
|
exact Real.toNNReal_pos.mpr hbr₁ |
|
constructor |
|
. refine h₈ n br.toNNReal hn₀ ?_ ?_ |
|
. exact Real.toNNReal_pos.mpr hbr₁ |
|
. let nn : ↑sn := ⟨n, hn₁⟩ |
|
have hn₂: fb nn < br := by |
|
by_contra! hc₀ |
|
have hbr₅: (fb nn) = br := by |
|
refine eq_of_le_of_le ?_ hc₀ |
|
refine hbr₃ _ ?_ |
|
rw [hsbr] |
|
refine (Set.mem_image fr sb _).mpr ?_ |
|
use (fb nn) |
|
rw [hfr, hsb₀] |
|
constructor |
|
. exact Set.mem_range_self nn |
|
. exact rfl |
|
have hn₂: n + 1 ∈ sn := by |
|
rw [hsn₀] |
|
refine Set.mem_Ici.mpr ?_ |
|
exact Nat.le_add_right_of_le hn₀ |
|
let ns : ↑sn := ⟨n + 1, hn₂⟩ |
|
have hc₁: fb nn < fb ns := by |
|
refine hfb₃ ?_ |
|
refine Subtype.mk_lt_mk.mpr ?_ |
|
exact lt_add_one n |
|
have hbr₆: fb ns ≤ fb nn := by |
|
refine NNReal.coe_le_coe.mp ?_ |
|
rw [hbr₅] |
|
refine hbr₃ _ ?_ |
|
rw [hsbr] |
|
refine (Set.mem_image fr sb _).mpr ?_ |
|
use (fb ns) |
|
rw [hfr, hsb₀] |
|
refine ⟨?_, rfl⟩ |
|
exact Set.mem_range_self ns |
|
refine (lt_self_iff_false (fb nn)).mp ?_ |
|
exact lt_of_lt_of_le hc₁ hbr₆ |
|
have hn₃: f n (fb nn) = 1 - 1 / n := by |
|
rw [hf₁ n _ hn₀, hfb₁ nn] |
|
refine NNReal.coe_sub ?_ |
|
refine div_le_self ?_ ?_ |
|
. exact zero_le_one' NNReal |
|
. exact Nat.one_le_cast.mpr hn₀ |
|
rw [← hn₃] |
|
refine hmo₀ n hn₀ ?_ |
|
exact Real.lt_toNNReal_iff_coe_lt.mpr hn₂ |
|
. have hn₂: n + 1 ∈ sn := by |
|
rw [hsn₀] |
|
exact Set.mem_Ici.mpr (by linarith) |
|
let nn : ↑sn := ⟨n + 1, hn₂⟩ |
|
have hcr₁: 0 < cr := by exact gt_of_ge_of_gt hu₅ hbr₁ |
|
have hn₃: f (n + 1) (fc (nn)) = 1 := by |
|
rw [hf₁ (n + 1) _ (by linarith), hfc₁ nn] |
|
exact rfl |
|
rw [← hn₃, hu₆] |
|
refine hmo₀ (n + 1) (by linarith) ?_ |
|
refine (Real.toNNReal_lt_iff_lt_coe (le_of_lt hcr₁)).mpr ?_ |
|
by_contra! hc₀ |
|
have hc₁: fc nn = cr := by |
|
refine eq_of_le_of_le hc₀ ?_ |
|
refine hcr₃ _ ?_ |
|
rw [hscr] |
|
refine (Set.mem_image fr sc _).mpr ?_ |
|
use (fc nn) |
|
rw [hfr, hsc₀] |
|
refine ⟨?_, rfl⟩ |
|
exact Set.mem_range_self nn |
|
have hn₄: n + 2 ∈ sn := by |
|
rw [hsn₀] |
|
refine Set.mem_Ici.mpr ?_ |
|
exact Nat.le_add_right_of_le hn₀ |
|
let ns : ↑sn := ⟨n + 2, hn₄⟩ |
|
have hn₅: fc ns < fc nn := by |
|
refine hfc₃ ?_ |
|
refine Subtype.mk_lt_mk.mpr ?_ |
|
exact Nat.lt_add_one (n + 1) |
|
have hc₂: fc nn ≤ fc ns := by |
|
refine NNReal.coe_le_coe.mp ?_ |
|
rw [hc₁] |
|
refine hcr₃ _ ?_ |
|
rw [hscr] |
|
refine (Set.mem_image fr sc _).mpr ?_ |
|
use (fc ns) |
|
rw [hfr, hsc₀] |
|
refine ⟨?_, rfl⟩ |
|
exact Set.mem_range_self ns |
|
refine (lt_self_iff_false (fc ns)).mp ?_ |
|
exact lt_of_lt_of_le hn₅ hc₂ |
|
|
|
|
|
|
|
|
|
lemma aux_unique_top_ind |
|
(f : ℕ → NNReal → ℝ) |
|
(sd : Set ℕ) |
|
(hsd : sd = Set.Ici 2) |
|
(fd : NNReal → NNReal → ↑sd → ℝ) |
|
(hfd₁ : ∀ (y₁ y₂ : NNReal) (n : ↑sd), fd y₁ y₂ n = f (↑n) y₂ - f (↑n) y₁) |
|
(hd₁ : ∀ (n : ↑sd) (a b : NNReal), a < b → 0 < fd a b n) |
|
(a b : NNReal) |
|
(ha₀ : a < b) |
|
(hd₃: ∀ (nd : ↑sd), nd.1 + (1:ℕ) ∈ sd) |
|
(hd₂ : ∀ (nd : ↑sd), fd a b nd * (2 - 1 / ↑↑nd) ≤ fd a b ⟨nd.1 + 1, hd₃ nd⟩) |
|
(hi₀ : 2 ∈ sd) |
|
(i : ↑sd) |
|
(hi₁ : i = ⟨2, hi₀⟩) : |
|
∀ (nd : ↑sd), fd a b i * (3 / 2) ^ (nd.1 - 2) ≤ fd a b nd := by |
|
intro nd |
|
rw [hfd₁ a b nd] |
|
have hnd₀: 2 ≤ nd.1 := by |
|
refine Set.mem_Ici.mp ?_ |
|
rw [← hsd] |
|
exact nd.2 |
|
refine Nat.le_induction ?_ ?_ nd.1 hnd₀ |
|
. have hi₂: i.val = (2:ℕ) := by |
|
simp_all only [Subtype.forall] |
|
rw [hfd₁ a b i, hi₂] |
|
simp |
|
. simp |
|
intros n hn₀ hn₁ |
|
have hn₂: n - 1 = n - 2 + 1 := by |
|
simp |
|
exact (Nat.sub_eq_iff_eq_add hn₀).mp rfl |
|
have hn₃: n ∈ sd := by |
|
rw [hsd] |
|
exact hn₀ |
|
let nn : ↑sd := ⟨n, hn₃⟩ |
|
have hnn: nn.1 = n := by exact rfl |
|
have hn₄: nn.1 + 1 ∈ sd := by |
|
rw [hnn, hsd] |
|
refine Set.mem_Ici.mpr ?_ |
|
exact Nat.le_add_right_of_le hn₀ |
|
have hn₅: fd a b nn * (2 - 1 / ↑n) ≤ fd a b ⟨nn.1 + 1, hn₄⟩ := by exact hd₂ nn |
|
rw [hfd₁ a b ⟨nn.1 + 1, hn₄⟩] at hn₅ |
|
have hn₆: f (↑nn + 1) b - f (↑nn + 1) a = f (n + 1) b - f (n + 1) a := by exact rfl |
|
rw [hn₆] at hn₅ |
|
refine le_trans ?_ hn₅ |
|
rw [hn₂, pow_succ (3/2) (n - 2), ← mul_assoc (fd a b i)] |
|
refine mul_le_mul ?_ ?_ (by linarith) ?_ |
|
. refine le_of_le_of_eq hn₁ ?_ |
|
rw [hfd₁] |
|
. refine (div_le_iff₀ (two_pos)).mpr ?_ |
|
rw [sub_mul, one_div_mul_eq_div _ 2] |
|
refine le_sub_iff_add_le.mpr ?_ |
|
refine le_sub_iff_add_le'.mp ?_ |
|
refine (div_le_iff₀ ?_).mpr ?_ |
|
. refine Nat.cast_pos.mpr ?_ |
|
exact lt_of_lt_of_le (two_pos) hn₀ |
|
. ring_nf |
|
exact Nat.ofNat_le_cast.mpr hn₀ |
|
. exact le_of_lt (hd₁ nn a b ha₀) |
|
|
|
|
|
|
|
lemma aux_unique_top |
|
(f : ℕ → NNReal → ℝ) |
|
(h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) |
|
(h₇ : ∀ (n : ℕ) (x : NNReal), 0 < n → f n x < f (n + 1) x → 1 - 1 / ↑n < f n x) |
|
(sd : Set ℕ) |
|
(hsd : sd = Set.Ici 2) |
|
(fd : NNReal → NNReal → ↑sd → ℝ) |
|
(hfd₁ : ∀ (y₁ y₂ : NNReal) (n : ↑sd), fd y₁ y₂ n = f (↑n) y₂ - f (↑n) y₁) |
|
(hd₁ : ∀ (n : ↑sd) (a b : NNReal), a < b → 0 < fd a b n) : |
|
∀ (a b : NNReal), |
|
a < b → |
|
(∀ (n : ↑sd), f (↑n) a < f (↑n + 1) a ∧ f (↑n) b < f (↑n + 1) b) |
|
→ Filter.Tendsto (fd a b) Filter.atTop Filter.atTop := by |
|
intros a b ha₀ ha₁ |
|
have hd₀: ∀ (nd:↑sd), (nd.1 + 1) ∈ sd := by |
|
intro nd |
|
let t : ℕ := nd.1 |
|
have ht: t = nd.1 := by rfl |
|
rw [← ht, hsd] |
|
refine Set.mem_Ici.mpr ?_ |
|
refine Nat.le_add_right_of_le ?_ |
|
refine Set.mem_Ici.mp ?_ |
|
rw [ht, ← hsd] |
|
exact nd.2 |
|
have hd₂: ∀ nd, fd a b nd * (2 - 1 / nd.1) ≤ fd a b ⟨nd.1 + 1, hd₀ nd⟩ := by |
|
intro nd |
|
have hnd₀: 0 < nd.1 := by |
|
have g₀: 2 ≤ nd.1 := by |
|
refine Set.mem_Ici.mp ?_ |
|
rw [← hsd] |
|
exact nd.2 |
|
exact Nat.zero_lt_of_lt g₀ |
|
rw [hfd₁, hfd₁, h₁ nd.1 _ hnd₀, h₁ nd.1 _ hnd₀] |
|
have hnd₁: f (↑nd) b * (f (↑nd) b + 1 / ↑↑nd) - f (↑nd) a * (f (↑nd) a + 1 / ↑↑nd) = |
|
(f (↑nd) b - f (↑nd) a) * (f (↑nd) b + f (↑nd) a + 1 / nd.1) := by |
|
ring_nf |
|
rw [hnd₁] |
|
refine (mul_le_mul_left ?_).mpr ?_ |
|
. rw [← hfd₁] |
|
exact hd₁ nd a b ha₀ |
|
. refine le_sub_iff_add_le.mp ?_ |
|
rw [sub_neg_eq_add] |
|
have hnd₂: 1 - 1 / nd.1 < f (↑nd) b := by |
|
exact h₇ nd.1 b hnd₀ (ha₁ nd).2 |
|
have hnd₃: 1 - 1 / nd.1 < f (↑nd) a := by |
|
exact h₇ nd.1 a hnd₀ (ha₁ nd).1 |
|
linarith |
|
have hi: 2 ∈ sd := by |
|
rw [hsd] |
|
decide |
|
let i : ↑sd := ⟨(2:ℕ), hi⟩ |
|
have hd₃: ∀ nd, fd a b i * (3 / 2) ^ (nd.1 - 2) ≤ fd a b nd := by |
|
intro nd |
|
exact aux_unique_top_ind f sd hsd fd hfd₁ hd₁ a b ha₀ hd₀ hd₂ hi i rfl nd |
|
have hsd₁: Nonempty ↑sd := by |
|
refine Set.Nonempty.to_subtype ?_ |
|
exact Set.nonempty_of_mem (hd₀ i) |
|
refine Filter.tendsto_atTop_atTop.mpr ?_ |
|
intro z |
|
by_cases hz₀: z ≤ fd a b i |
|
. use i |
|
intros j _ |
|
refine le_trans hz₀ ?_ |
|
refine le_trans ?_ (hd₃ j) |
|
refine le_mul_of_one_le_right ?_ ?_ |
|
. refine le_of_lt ?_ |
|
exact hd₁ i a b ha₀ |
|
. refine one_le_pow₀ ?_ |
|
linarith |
|
. push_neg at hz₀ |
|
have hz₁: 0 < fd a b i := by exact hd₁ i a b ha₀ |
|
have hz₂: 0 < Real.log (z / fd a b i) := by |
|
refine Real.log_pos ?_ |
|
exact (one_lt_div hz₁).mpr hz₀ |
|
let j : ℕ := Nat.ceil (2 + Real.log (z / fd a b i) / Real.log (3 / 2)) |
|
have hj₀: 2 < j := by |
|
refine Nat.lt_ceil.mpr ?_ |
|
norm_cast |
|
refine lt_add_of_pos_right 2 ?_ |
|
refine div_pos ?_ ?_ |
|
. exact hz₂ |
|
. refine Real.log_pos ?_ |
|
linarith |
|
have hj₁: j ∈ sd := by |
|
rw [hsd] |
|
exact Set.mem_Ici_of_Ioi hj₀ |
|
use ⟨j, hj₁⟩ |
|
intro k hk₀ |
|
have hk₁: fd a b i * (3 / 2) ^ (k.1 - 2) ≤ fd a b k := by |
|
exact hd₃ k |
|
have hk₂: i < k := by |
|
refine lt_of_lt_of_le ?_ hk₀ |
|
refine Subtype.mk_lt_mk.mpr ?_ |
|
refine Nat.lt_ceil.mpr ?_ |
|
norm_cast |
|
refine lt_add_of_pos_right 2 ?_ |
|
refine div_pos ?_ ?_ |
|
. exact hz₂ |
|
. refine Real.log_pos ?_ |
|
linarith |
|
refine le_trans ?_ hk₁ |
|
refine (div_le_iff₀' ?_).mp ?_ |
|
. exact hz₁ |
|
. refine Real.le_pow_of_log_le (by linarith) ?_ |
|
refine (div_le_iff₀ ?_).mp ?_ |
|
. refine Real.log_pos ?_ |
|
linarith |
|
. rw [Nat.cast_sub ?_] |
|
. rw [Nat.cast_two] |
|
refine le_sub_iff_add_le'.mpr ?_ |
|
exact Nat.le_of_ceil_le hk₀ |
|
. exact Nat.le_of_succ_le hk₂ |
|
|
|
|
|
|
|
lemma aux_unique_nhds |
|
(f : ℕ → NNReal → ℝ) |
|
(sd : Set ℕ) |
|
(hsd : sd = Set.Ici 2) |
|
(fd : NNReal → NNReal → ↑sd → ℝ) |
|
(hfd₁ : ∀ (y₁ y₂ : NNReal) (n : ↑sd), fd y₁ y₂ n = f (↑n) y₂ - f (↑n) y₁) |
|
(hd₁ : ∀ (n : ↑sd) (a b : NNReal), a < b → 0 < fd a b n) : |
|
∀ (a b : NNReal), |
|
a < b → |
|
(∀ (n : ↑sd), (1 - 1 / ↑↑n < f (↑n) a ∧ 1 - 1 / ↑↑n < f (↑n) b) ∧ f (↑n) a < 1 ∧ f (↑n) b < 1) → |
|
Filter.Tendsto (fd a b) Filter.atTop (nhds 0) := by |
|
intros a b ha₀ ha₁ |
|
have hsd₁: Nonempty ↑sd := by |
|
rw [hsd] |
|
refine Set.Nonempty.to_subtype ?_ |
|
exact Set.nonempty_Ici |
|
refine tendsto_atTop_nhds.mpr ?_ |
|
intros U hU₀ hU₁ |
|
have hU₂: U ∈ nhds 0 := by exact IsOpen.mem_nhds hU₁ hU₀ |
|
apply mem_nhds_iff_exists_Ioo_subset.mp at hU₂ |
|
obtain ⟨l, u, hl₀, hl₁⟩ := hU₂ |
|
have hl₂: 0 < u := by exact (Set.mem_Ioo.mpr hl₀).2 |
|
let nd := 2 + Nat.ceil (1/u) |
|
have hnd₀: nd ∈ sd := by |
|
rw [hsd] |
|
refine Set.mem_Ici.mpr ?_ |
|
exact Nat.le_add_right 2 ⌈1 / u⌉₊ |
|
use ⟨nd, hnd₀⟩ |
|
intros n hn₀ |
|
refine (IsOpen.mem_nhds_iff hU₁).mp ?_ |
|
refine mem_nhds_iff.mpr ?_ |
|
use Set.Ioo l u |
|
constructor |
|
. exact hl₁ |
|
constructor |
|
. exact isOpen_Ioo |
|
. refine Set.mem_Ioo.mpr ?_ |
|
constructor |
|
. refine lt_trans ?_ (hd₁ n a b ha₀) |
|
exact (Set.mem_Ioo.mp hl₀).1 |
|
. have hn₁: fd a b n < 1 / n := by |
|
rw [hfd₁] |
|
have ha₂: 1 - 1 / n < f n a := by exact (ha₁ n).1.1 |
|
have hb₁: f n b < 1 := by exact (ha₁ n).2.2 |
|
refine sub_lt_iff_lt_add.mpr ?_ |
|
refine lt_trans hb₁ ?_ |
|
exact sub_lt_iff_lt_add'.mp ha₂ |
|
have hn₂: (1:ℝ) / n ≤ 1 / nd := by |
|
refine one_div_le_one_div_of_le ?_ ?_ |
|
. refine Nat.cast_pos.mpr ?_ |
|
rw [hsd] at hnd₀ |
|
exact lt_of_lt_of_le (Nat.zero_lt_two) hnd₀ |
|
. exact Nat.cast_le.mpr hn₀ |
|
refine lt_of_lt_of_le hn₁ ?_ |
|
refine le_trans hn₂ ?_ |
|
refine div_le_of_le_mul₀ ?_ ?_ ?_ |
|
. exact Nat.cast_nonneg' nd |
|
. exact le_of_lt hl₂ |
|
. have hl₃: u * (2 + 1 / u) ≤ u * ↑((2:ℕ) + ⌈(1:ℝ) / u⌉₊) := by |
|
refine (mul_le_mul_left hl₂).mpr ?_ |
|
rw [Nat.cast_add 2 _, Nat.cast_two] |
|
refine add_le_add_left ?_ 2 |
|
exact Nat.le_ceil (1 / u) |
|
refine le_trans ?_ hl₃ |
|
rw [mul_add, mul_one_div u u, div_self (ne_of_gt hl₂)] |
|
refine le_of_lt ?_ |
|
refine sub_lt_iff_lt_add.mp ?_ |
|
rw [sub_self 1] |
|
exact mul_pos hl₂ (two_pos) |
|
|
|
|
|
|
|
|
|
lemma aux_unique |
|
(f : ℕ → NNReal → ℝ) |
|
(h₁ : ∀ (n : ℕ) (x : NNReal), 0 < n → f (n + 1) x = f n x * (f n x + 1 / ↑n)) |
|
(hmo₀ : ∀ (n : ℕ), 0 < n → StrictMono (f n)) |
|
(h₇ : ∀ (n : ℕ) (x : NNReal), 0 < n → f n x < f (n + 1) x → 1 - 1 / ↑n < f n x) : |
|
∀ (y₁ y₂ : NNReal), |
|
(∀ (n : ℕ), 0 < n → 0 < f n y₁ ∧ f n y₁ < f (n + 1) y₁ ∧ f (n + 1) y₁ < 1) → |
|
(∀ (n : ℕ), 0 < n → 0 < f n y₂ ∧ f n y₂ < f (n + 1) y₂ ∧ f (n + 1) y₂ < 1) → y₁ = y₂ := by |
|
intros x y hx₀ hy₀ |
|
let sd : Set ℕ := Set.Ici 2 |
|
let fd : NNReal → NNReal → ↑sd → ℝ := fun y₁ y₂ n => (f n.1 y₂ - f n.1 y₁) |
|
have hfd₁: ∀ y₁ y₂ n, fd y₁ y₂ n = f n.1 y₂ - f n.1 y₁ := by exact fun y₁ y₂ n => rfl |
|
have hd₁: ∀ n a b, a < b → 0 < fd a b n := by |
|
intros nd a b hnd₀ |
|
rw [hfd₁] |
|
refine sub_pos.mpr ?_ |
|
refine hmo₀ nd.1 ?_ hnd₀ |
|
exact lt_of_lt_of_le (Nat.zero_lt_two) nd.2 |
|
have hfd₂: ∀ a b, a < b → (∀ n:↑sd, f n.1 a < f (n.1 + 1) a ∧ f n.1 b < f (n.1 + 1) b) |
|
→ Filter.Tendsto (fd a b) Filter.atTop Filter.atTop := by |
|
intros a b ha₀ ha₁ |
|
exact aux_unique_top f h₁ h₇ sd rfl fd hfd₁ hd₁ a b ha₀ ha₁ |
|
have hfd₃: ∀ a b, a < b → (∀ (n:↑sd), (1 - 1 / n.1 < f n.1 a ∧ 1 - 1 / n.1 < f n.1 b) ∧ (f n.1 a < 1 ∧ f n.1 b < 1)) |
|
→ Filter.Tendsto (fd a b) Filter.atTop (nhds 0) := by |
|
intros a b ha₀ ha₁ |
|
exact aux_unique_nhds f sd rfl fd hfd₁ hd₁ a b ha₀ ha₁ |
|
by_contra! hc₀ |
|
by_cases hy₁: x < y |
|
. have hy₂: Filter.Tendsto (fd x y) Filter.atTop Filter.atTop := by |
|
refine hfd₂ x y hy₁ ?_ |
|
intro nd |
|
have hnd₀: 0 < nd.1 := by exact lt_of_lt_of_le (two_pos) nd.2 |
|
constructor |
|
. exact (hx₀ nd.1 hnd₀).2.1 |
|
. exact (hy₀ nd.1 hnd₀).2.1 |
|
have hy₃: Filter.Tendsto (fd x y) Filter.atTop (nhds 0) := by |
|
refine hfd₃ x y hy₁ ?_ |
|
intro nd |
|
have hnd₀: 0 < nd.1 := by |
|
refine lt_of_lt_of_le ?_ nd.2 |
|
exact Nat.zero_lt_two |
|
have hnd₁: nd.1 - 1 + 1 = nd.1 := by exact Nat.sub_add_cancel hnd₀ |
|
have hnd₂: 0 < nd.1 - 1 := by |
|
refine Nat.sub_pos_of_lt ?_ |
|
refine lt_of_lt_of_le ?_ nd.2 |
|
exact Nat.one_lt_two |
|
constructor |
|
. constructor |
|
. refine h₇ nd.1 x hnd₀ ?_ |
|
exact (hx₀ (nd.1) hnd₀).2.1 |
|
. refine h₇ nd.1 y hnd₀ ?_ |
|
exact (hy₀ (nd.1) hnd₀).2.1 |
|
. constructor |
|
. rw [← hnd₁] |
|
exact (hx₀ (nd.1 - 1) hnd₂).2.2 |
|
. rw [← hnd₁] |
|
exact (hy₀ (nd.1 - 1) hnd₂).2.2 |
|
apply Filter.tendsto_atTop_atTop.mp at hy₂ |
|
apply tendsto_atTop_nhds.mp at hy₃ |
|
contrapose! hy₃ |
|
clear hy₃ |
|
let sx : Set ℝ := Set.Ioo (-1) 1 |
|
use sx |
|
constructor |
|
. refine Set.mem_Ioo.mpr ?_ |
|
simp |
|
constructor |
|
. exact isOpen_Ioo |
|
. intro N |
|
have hy₅: ∃ i, ∀ (a : ↑sd), i ≤ a → N + 3 ≤ fd x y a := by exact hy₂ (N + 3) |
|
obtain ⟨i, hi₀⟩ := hy₅ |
|
have hi₁: (N.1 + i.1) ∈ sd := by |
|
refine Set.mem_Ici.mpr ?_ |
|
rw [← add_zero 2] |
|
refine Nat.add_le_add ?_ ?_ |
|
. exact N.2 |
|
. refine le_trans ?_ i.2 |
|
exact Nat.zero_le 2 |
|
let a : ↑sd := ⟨N + i, hi₁⟩ |
|
use a |
|
constructor |
|
. refine Subtype.mk_le_mk.mpr ?_ |
|
exact Nat.le_add_right ↑N ↑i |
|
. refine Set.not_mem_Ioo_of_ge ?_ |
|
have hi₂: ↑↑N + 3 ≤ fd x y a := by |
|
refine hi₀ a ?_ |
|
refine Subtype.mk_le_mk.mpr ?_ |
|
exact Nat.le_add_left ↑i ↑N |
|
refine le_trans ?_ hi₂ |
|
norm_cast |
|
exact Nat.le_add_left 1 (↑N + 2) |
|
. have hy₂: y < x := by |
|
push_neg at hy₁ |
|
exact lt_of_le_of_ne hy₁ hc₀.symm |
|
have hy₃: Filter.Tendsto (fd y x) Filter.atTop Filter.atTop := by |
|
refine hfd₂ y x hy₂ ?_ |
|
intro nd |
|
have hnd₀: 0 < nd.1 := by exact lt_of_lt_of_le (two_pos) nd.2 |
|
constructor |
|
. exact (hy₀ nd.1 hnd₀).2.1 |
|
. exact (hx₀ nd.1 hnd₀).2.1 |
|
have hy₄: Filter.Tendsto (fd y x) Filter.atTop (nhds 0) := by |
|
refine hfd₃ y x hy₂ ?_ |
|
intro nd |
|
have hnd₀: 0 < nd.1 := by exact lt_of_lt_of_le (Nat.zero_lt_two) nd.2 |
|
have hnd₁: nd.1 - 1 + 1 = nd.1 := by exact Nat.sub_add_cancel hnd₀ |
|
have hnd₂: 0 < nd.1 - 1 := by |
|
refine Nat.sub_pos_of_lt ?_ |
|
exact lt_of_lt_of_le (Nat.one_lt_two) nd.2 |
|
constructor |
|
. constructor |
|
. refine h₇ nd.1 y hnd₀ ?_ |
|
exact (hy₀ (nd.1) hnd₀).2.1 |
|
. refine h₇ nd.1 x hnd₀ ?_ |
|
exact (hx₀ (nd.1) hnd₀).2.1 |
|
. constructor |
|
. rw [← hnd₁] |
|
exact (hy₀ (nd.1 - 1) hnd₂).2.2 |
|
. rw [← hnd₁] |
|
exact (hx₀ (nd.1 - 1) hnd₂).2.2 |
|
apply Filter.tendsto_atTop_atTop.mp at hy₃ |
|
apply tendsto_atTop_nhds.mp at hy₄ |
|
contrapose! hy₄ |
|
clear hy₄ |
|
let sx : Set ℝ := Set.Ioo (-1) 1 |
|
use sx |
|
constructor |
|
. refine Set.mem_Ioo.mpr ?_ |
|
simp |
|
constructor |
|
. exact isOpen_Ioo |
|
. intro N |
|
have hy₅: ∃ i, ∀ (a : ↑sd), i ≤ a → N + 3 ≤ fd y x a := by exact hy₃ (N + 3) |
|
obtain ⟨i, hi₀⟩ := hy₅ |
|
have hi₁: (N.1 + i.1) ∈ sd := by |
|
refine Set.mem_Ici.mpr ?_ |
|
rw [← add_zero 2] |
|
refine Nat.add_le_add ?_ ?_ |
|
. exact N.2 |
|
. refine le_trans ?_ i.2 |
|
exact Nat.zero_le 2 |
|
let a : ↑sd := ⟨N + i, hi₁⟩ |
|
use a |
|
constructor |
|
. refine Subtype.mk_le_mk.mpr ?_ |
|
exact Nat.le_add_right ↑N ↑i |
|
. refine Set.not_mem_Ioo_of_ge ?_ |
|
have hi₂: ↑↑N + 3 ≤ fd y x a := by |
|
refine hi₀ a ?_ |
|
refine Subtype.mk_le_mk.mpr ?_ |
|
exact Nat.le_add_left ↑i ↑N |
|
refine le_trans ?_ hi₂ |
|
norm_cast |
|
exact Nat.le_add_left 1 (↑N + 2) |
|
|
|
|
|
|
|
|
|
lemma imo_1985_p6_nnreal |
|
(f : ℕ → NNReal → ℝ) |
|
(h₀ : ∀ x, f 1 x = x) |
|
(h₁ : ∀ n x, 0 < n → f (n + 1) x = f n x * (f n x + 1 / n)) : |
|
∃! a, ∀ n, 0 < n → 0 < f n a ∧ f n a < f (n + 1) a ∧ f (n + 1) a < 1 := by |
|
have h₂: ∀ n x, 0 < n ∧ 0 < x → 0 < f n x := by |
|
exact fun n x a => aux_1 f h₀ h₁ n x a |
|
have h₃: ∀ n x, 0 < n → 0 ≤ f n x := by |
|
intros n x hn |
|
refine Nat.le_induction ?_ ?_ n hn |
|
. rw [h₀ x] |
|
exact NNReal.zero_le_coe |
|
. intros d hd₀ hd₁ |
|
rw [h₁ d x hd₀] |
|
refine mul_nonneg hd₁ ?_ |
|
refine add_nonneg hd₁ ?_ |
|
refine div_nonneg (by linarith) ?_ |
|
exact Nat.cast_nonneg' d |
|
have hmo₀: ∀ n, 0 < n → StrictMono (f n) := by |
|
intros n hn₀ |
|
refine Monotone.strictMono_of_injective ?h₁ ?h₂ |
|
. refine monotone_iff_forall_lt.mpr ?h₁.a |
|
intros a b hab |
|
refine le_of_lt ?_ |
|
exact aux_2 f h₀ h₁ h₂ h₃ n a b hn₀ hab |
|
. intros p q hpq |
|
contrapose! hpq |
|
apply lt_or_gt_of_ne at hpq |
|
cases' hpq with hpq hpq |
|
. refine ne_of_lt ?_ |
|
exact aux_2 f h₀ h₁ h₂ h₃ n p q hn₀ hpq |
|
. symm |
|
refine ne_of_lt ?_ |
|
exact aux_2 f h₀ h₁ h₂ h₃ n q p hn₀ hpq |
|
have hmo₁: ∀ n, 0 < n → Function.Injective (f n) := by exact fun n a => StrictMono.injective (hmo₀ n a) |
|
let f₀: ℕ → NNReal → NNReal := fun n x => (f n x).toNNReal |
|
have hf₀: f₀ = fun n x => (f n x).toNNReal := by rfl |
|
have hf₁: ∀ n x, 0 < n → f n x = f₀ n x := by |
|
intros n x hn₀ |
|
rw [hf₀] |
|
simp |
|
exact h₃ n x hn₀ |
|
have hf₂: ∀ n x, 0 < n → f₀ n x = (f n x).toNNReal := by |
|
intros n x _ |
|
rw [hf₀] |
|
have hmo₂: ∀ n, 0 < n → StrictMono (f₀ n) := by |
|
intros n hn₀ |
|
refine aux_4 f h₃ ?_ f₀ hf₀ n hn₀ |
|
exact fun n x y a a_1 => hmo₀ n a a_1 |
|
let fi : ℕ → NNReal → NNReal := fun n => Function.invFun (f₀ n) |
|
have hmo₇: ∀ n, 0 < n → Function.RightInverse (fi n) (f₀ n) := by |
|
intros n hn₀ |
|
refine Function.rightInverse_invFun ?_ |
|
have h₄: ∀ n x y, 0 < n → x < y → f n x < f n y := by |
|
exact fun n x y a a_1 => aux_2 f h₀ h₁ h₂ h₃ n x y a a_1 |
|
refine aux_7 f h₀ h₁ h₃ ?_ f₀ hf₂ hmo₂ ?_ n hn₀ |
|
. exact fun n x a => aux_3 f h₀ h₁ h₄ n x a |
|
. intros m hm₀ |
|
exact aux_6 f h₀ h₁ f₀ hf₀ m hm₀ |
|
have hf₇: ∀ n x y, 0 < n → (f₀ n x = y ↔ fi n y = x) := by |
|
intros n x y hn₀ |
|
constructor |
|
. intro hn₁ |
|
rw [← hn₁, hf₀] |
|
have hn₂: (Function.invFun (f n)) ∘ (f n) = id := by exact Function.invFun_comp (hmo₁ n hn₀) |
|
rw [Function.comp_def (Function.invFun (f n)) (f n)] at hn₂ |
|
exact aux_5 f hmo₁ f₀ hmo₂ fi rfl n x ((fun n x => (f n x).toNNReal) n x) hn₀ (hf₂ n x hn₀) |
|
. intro hn₁ |
|
rw [← hn₁] |
|
exact hmo₁ n hn₀ (congrArg (f n) (hmo₇ n hn₀ y)) |
|
let sn : Set ℕ := Set.Ici 1 |
|
let fb : ↑sn → NNReal := sn.restrict (fun (n:ℕ) => fi n (1 - 1 / (n:NNReal))) |
|
let fc : ↑sn → NNReal := sn.restrict (fun (n:ℕ) => fi n 1) |
|
have hsn₁: ∀ n:↑sn, ↑n ∈ sn ∧ 0 < (↑n:ℕ) := by |
|
intro n |
|
have hn₀: ↑n ∈ sn := by exact Subtype.coe_prop n |
|
constructor |
|
. exact Subtype.coe_prop n |
|
. exact hn₀ |
|
have hfb₀: fb = fun (n:↑sn) => fi n (1 - 1 / (n:NNReal)) := by rfl |
|
have hfc₀: fc = fun (n:↑sn) => fi n 1 := by rfl |
|
have hfb₁: ∀ n:↑sn, f₀ n (fb n) = 1 - 1 / (n:NNReal) := by |
|
intros n |
|
have hn₀: 0 < (n:ℕ) := by exact (hsn₁ n).2 |
|
rw [hfb₀] |
|
exact hmo₁ n hn₀ (congrArg (f n) (hmo₇ n hn₀ (1 - 1 / (n:NNReal)))) |
|
have hfc₁: ∀ n:↑sn, f₀ n (fc n) = 1 := by |
|
intros n |
|
have hn₀: 0 < (n:ℕ) := by exact (hsn₁ n).2 |
|
rw [hfc₀] |
|
exact hmo₁ n hn₀ (congrArg (f n) (hmo₇ n hn₀ 1)) |
|
have hu₁: ∀ n:↑sn, fb n < 1 := by |
|
exact aux_8 f h₀ h₁ hmo₀ hmo₁ f₀ hf₂ sn fb hsn₁ hfb₁ |
|
have hfc₂: ∀ n:↑sn, fb n < fc n := by |
|
intros n |
|
have hn₀: 0 < (n:ℕ) := by exact (hsn₁ n).2 |
|
have g₀: f₀ n (fb n) < f₀ n (fc n) := by |
|
rw [hfb₁ n, hfc₁ n] |
|
simp |
|
exact (hsn₁ n).2 |
|
exact (StrictMono.lt_iff_lt (hmo₂ n hn₀)).mp g₀ |
|
have hfb₃: StrictMono fb := by |
|
refine StrictMonoOn.restrict ?_ |
|
refine aux_9 f h₀ h₁ f₀ hf₁ hf₂ hmo₂ fi ?_ hmo₇ hf₇ _ (by rfl) sn (by rfl) |
|
intro x |
|
refine (hf₇ 1 x x (by linarith)).mp ?_ |
|
rw [hf₂ 1 x (by linarith), h₀] |
|
exact Real.toNNReal_coe |
|
have hfc₃: StrictAnti fc := by |
|
have g₀: StrictAntiOn (fun n => fi n 1) sn := by |
|
refine strictAntiOn_Ici_of_lt_pred ?_ |
|
intros m hm₀ |
|
have hm₁: 0 < m - 1 := by exact Nat.zero_lt_sub_of_lt hm₀ |
|
have hm₂: m = m - 1 + 1 := by rw [Nat.sub_add_cancel (le_of_lt hm₀)] |
|
have hm₃: 0 < m := by exact Nat.zero_lt_of_lt hm₀ |
|
simp |
|
let x := fi m 1 |
|
let y := fi (m - 1) 1 |
|
have hx₀: x = fi m 1 := by rfl |
|
have hy₀: y = fi (m - 1) 1 := by rfl |
|
have hx₁: f₀ m x = 1 := by exact (hf₇ m x 1 (by linarith)).mpr hx₀.symm |
|
have hy₁: f₀ (m - 1) y = 1 := by |
|
exact (hf₇ (m - 1) y 1 hm₁).mpr hy₀.symm |
|
have hy₂: f (m - 1) y = 1 := by |
|
rw [hf₁ (m - 1) y hm₁, hy₁] |
|
exact rfl |
|
have hf: StrictMono (f m) := by exact hmo₀ m hm₃ |
|
refine (StrictMono.lt_iff_lt hf).mp ?_ |
|
rw [← hx₀, ← hy₀] |
|
rw [hf₁ m x hm₃, hf₁ m y hm₃] |
|
refine NNReal.coe_lt_coe.mpr ?_ |
|
rw [hx₁, hf₂ m y hm₃, hm₂, h₁ (m - 1) y hm₁, hy₂] |
|
simp |
|
exact hm₀ |
|
intros m n hmn |
|
rw [hfc₀] |
|
simp |
|
let mn : ℕ := ↑m |
|
let nn : ℕ := ↑n |
|
have hm₀: mn ∈ sn := by exact Subtype.coe_prop m |
|
have hn₀: nn ∈ sn := by exact Subtype.coe_prop n |
|
exact g₀ hm₀ hn₀ hmn |
|
let sb := Set.range fb |
|
let sc := Set.range fc |
|
have hsb₀: sb = Set.range fb := by rfl |
|
have hsc₀: sc = Set.range fc := by rfl |
|
let fr : NNReal → ℝ := fun x => x.toReal |
|
let sbr := Set.image fr sb |
|
let scr := Set.image fr sc |
|
have hu₃: ∃ br, IsLUB sbr br := by |
|
refine Real.exists_isLUB ?_ ?_ |
|
. exact Set.Nonempty.of_subtype |
|
. refine NNReal.bddAbove_coe.mpr ?_ |
|
refine (bddAbove_iff_exists_ge 1).mpr ?_ |
|
use 1 |
|
constructor |
|
. exact Preorder.le_refl 1 |
|
. intros y hy₀ |
|
apply Set.mem_range.mp at hy₀ |
|
obtain ⟨na, hna₀⟩ := hy₀ |
|
refine le_of_lt ?_ |
|
rw [← hna₀] |
|
exact hu₁ na |
|
have hu₄: ∃ cr, IsGLB scr cr := by |
|
refine Real.exists_isGLB ?_ ?_ |
|
. refine Set.Nonempty.image fr ?_ |
|
exact Set.range_nonempty fc |
|
. exact NNReal.bddBelow_coe sc |
|
obtain ⟨br, hbr₀⟩ := hu₃ |
|
obtain ⟨cr, hcr₀⟩ := hu₄ |
|
have h₇: ∀ n x, 0 < n → (f n x < f (n + 1) x → 1 - 1 / n < f n x) := by |
|
intros n x hn₀ hn₁ |
|
rw [h₁ n x hn₀] at hn₁ |
|
nth_rw 1 [← mul_one (f n x)] at hn₁ |
|
suffices g₀: 1 < f n x + 1 / ↑n |
|
. exact sub_right_lt_of_lt_add g₀ |
|
. refine lt_of_mul_lt_mul_left hn₁ ?_ |
|
exact h₃ n x hn₀ |
|
have h₈: ∀ n x, 0 < n → 0 < x → 1 - 1 / n < f n x → f n x < f (n + 1) x := by |
|
intros n x hn₀ hx₀ hn₁ |
|
rw [h₁ n x hn₀] |
|
suffices g₀: 1 < f n x + 1 / ↑n |
|
. nth_rw 1 [← mul_one (f n x)] |
|
refine mul_lt_mul' ?_ g₀ ?_ ?_ |
|
. exact Preorder.le_refl (f n x) |
|
. exact zero_le_one' ℝ |
|
. exact gt_of_gt_of_ge (hmo₀ n hn₀ hx₀) (h₃ n 0 hn₀) |
|
. exact lt_add_of_tsub_lt_right hn₁ |
|
have hbr₁: 0 < br := by |
|
exact aux_10 f h₀ h₁ f₀ hf₂ fi hmo₇ sn sb fb (by rfl) hfb₀ hsb₀ fr (by rfl) sbr (by rfl) br hbr₀ |
|
have hfb₄: ∀ n, 0 ≤ fb n := by |
|
intro n |
|
have hfb₂: fb = fun (n:↑sn) => Function.invFun (f₀ n) (1 - 1 / ↑n) := by exact hfb₀ |
|
rw [hfb₂] |
|
simp |
|
have hu₅: br ≤ cr := by |
|
exact aux_11 sn fb fc hfc₂ hfb₃ hfc₃ sb sc hsb₀ hsc₀ fr (by rfl) sbr scr (by rfl) (by rfl) br cr hbr₀ hcr₀ hfb₄ |
|
have hbr₃: ∀ x ∈ sbr, x ≤ br := by |
|
refine mem_upperBounds.mp ?_ |
|
refine (isLUB_le_iff hbr₀).mp ?_ |
|
exact Preorder.le_refl br |
|
have hcr₃: ∀ x ∈ scr, cr ≤ x := by |
|
refine mem_lowerBounds.mp ?_ |
|
refine (le_isGLB_iff hcr₀).mp ?_ |
|
exact Preorder.le_refl cr |
|
refine existsUnique_of_exists_of_unique ?_ ?_ |
|
. exact aux_exists f h₂ hmo₀ f₀ hf₁ sn (by rfl) fb fc hfb₁ hfc₁ hfb₃ hfc₃ sb sc hsb₀ hsc₀ fr (by rfl) sbr scr (by rfl) (by rfl) br cr h₈ hbr₁ hu₅ hbr₃ hcr₃ |
|
. intros x y hx₀ hy₀ |
|
exact aux_unique f h₁ hmo₀ h₇ x y hx₀ hy₀ |
|
|
|
|
|
|
|
theorem imo_1985_p6 |
|
(f : ℕ → ℝ → ℝ) |
|
(h₀ : ∀ x, f 1 x = x) |
|
(h₁ : ∀ n x, 0 < n → f (n + 1) x = f n x * (f n x + 1 / n)) : |
|
∃! a, ∀ n, 0 < n → 0 < f n a ∧ f n a < f (n + 1) a ∧ f (n + 1) a < 1 := by |
|
let fn : ℕ → NNReal → ℝ := fun n x => f n x |
|
have hfn₁: ∀ n x, 0 < n → 0 ≤ x → fn n x = f n x := by |
|
exact fun n x _ _ ↦ rfl |
|
have h₂: ∃! a, ∀ (n : ℕ), 0 < n → 0 < fn n a ∧ fn n a < fn (n + 1) a ∧ fn (n + 1) a < 1 := by |
|
exact imo_1985_p6_nnreal fn (fun x ↦ h₀ ↑x) fun n x ↦ h₁ n ↑x |
|
obtain ⟨a, ha₀, ha₁⟩ := h₂ |
|
use a |
|
constructor |
|
. intro n hn₀ |
|
exact ha₀ n hn₀ |
|
. intro y hy₀ |
|
have hy₁: 0 ≤ y.toNNReal := by exact zero_le y.toNNReal |
|
by_cases hy₂: 0 ≤ y |
|
. refine (Real.toNNReal_eq_toNNReal_iff hy₂ ?_).mp ?_ |
|
. exact NNReal.zero_le_coe |
|
. rw [@Real.toNNReal_coe] |
|
refine ha₁ (y.toNNReal) ?_ |
|
intro n hn₀ |
|
rw [hfn₁ n _ hn₀ hy₁, hfn₁ (n + 1) _ (by linarith) hy₁] |
|
rw [Real.coe_toNNReal y hy₂] |
|
exact hy₀ n hn₀ |
|
. exfalso |
|
push_neg at hy₂ |
|
have hy₃: f 1 y < 0 := by |
|
rw [h₀] |
|
exact hy₂ |
|
have hy₄: 0 < f 1 y := by |
|
exact (hy₀ 1 (by decide)).1 |
|
have hy₅: (0:ℝ) < 0 := by exact lt_trans hy₄ hy₃ |
|
exact (lt_self_iff_false 0).mp hy₅ |
|
|