Datasets:
Commit
·
0fc0a9f
1
Parent(s):
0df2900
Update parquet files
Browse files- .gitattributes +0 -37
- README.md +0 -82
- default/hashset_distant-test.parquet +3 -0
- hashset_distant.py +0 -57
.gitattributes
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
# Audio files - uncompressed
|
29 |
-
*.pcm filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.sam filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.raw filter=lfs diff=lfs merge=lfs -text
|
32 |
-
# Audio files - compressed
|
33 |
-
*.aac filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.flac filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
36 |
-
*.ogg filter=lfs diff=lfs merge=lfs -text
|
37 |
-
*.wav filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
DELETED
@@ -1,82 +0,0 @@
|
|
1 |
-
---
|
2 |
-
annotations_creators:
|
3 |
-
- machine-generated
|
4 |
-
language_creators:
|
5 |
-
- machine-generated
|
6 |
-
language:
|
7 |
-
- hi
|
8 |
-
- en
|
9 |
-
license:
|
10 |
-
- unknown
|
11 |
-
multilinguality:
|
12 |
-
- multilingual
|
13 |
-
size_categories:
|
14 |
-
- unknown
|
15 |
-
source_datasets:
|
16 |
-
- original
|
17 |
-
task_categories:
|
18 |
-
- structure-prediction
|
19 |
-
task_ids: []
|
20 |
-
pretty_name: HashSet Distant
|
21 |
-
tags:
|
22 |
-
- word-segmentation
|
23 |
-
---
|
24 |
-
|
25 |
-
# Dataset Card for HashSet Distant
|
26 |
-
|
27 |
-
## Dataset Description
|
28 |
-
|
29 |
-
- **Repository:** [prashantkodali/HashSet](https://github.com/prashantkodali/HashSet)
|
30 |
-
- **Paper:** [HashSet -- A Dataset For Hashtag Segmentation](https://arxiv.org/abs/2201.06741)
|
31 |
-
|
32 |
-
### Dataset Summary
|
33 |
-
|
34 |
-
Hashset is a new dataset consisiting on 1.9k manually annotated and 3.3M loosely supervised tweets for testing the
|
35 |
-
efficiency of hashtag segmentation models. We compare State of The Art Hashtag Segmentation models on Hashset and other
|
36 |
-
baseline datasets (STAN and BOUN). We compare and analyse the results across the datasets to argue that HashSet can act
|
37 |
-
as a good benchmark for hashtag segmentation tasks.
|
38 |
-
|
39 |
-
HashSet Distant: 3.3M loosely collected camel cased hashtags containing hashtag and their segmentation.
|
40 |
-
|
41 |
-
### Languages
|
42 |
-
|
43 |
-
Hindi and English.
|
44 |
-
|
45 |
-
## Dataset Structure
|
46 |
-
|
47 |
-
### Data Instances
|
48 |
-
|
49 |
-
```
|
50 |
-
{
|
51 |
-
'index': 282559,
|
52 |
-
'hashtag': 'Youth4Nation',
|
53 |
-
'segmentation': 'Youth 4 Nation'
|
54 |
-
}
|
55 |
-
```
|
56 |
-
|
57 |
-
## Dataset Creation
|
58 |
-
|
59 |
-
- All hashtag segmentation and identifier splitting datasets on this profile have the same basic fields: `hashtag` and `segmentation` or `identifier` and `segmentation`.
|
60 |
-
|
61 |
-
- The only difference between `hashtag` and `segmentation` or between `identifier` and `segmentation` are the whitespace characters. Spell checking, expanding abbreviations or correcting characters to uppercase go into other fields.
|
62 |
-
|
63 |
-
- There is always whitespace between an alphanumeric character and a sequence of any special characters ( such as `_` , `:`, `~` ).
|
64 |
-
|
65 |
-
- If there are any annotations for named entity recognition and other token classification tasks, they are given in a `spans` field.
|
66 |
-
|
67 |
-
## Additional Information
|
68 |
-
|
69 |
-
### Citation Information
|
70 |
-
|
71 |
-
```
|
72 |
-
@article{kodali2022hashset,
|
73 |
-
title={HashSet--A Dataset For Hashtag Segmentation},
|
74 |
-
author={Kodali, Prashant and Bhatnagar, Akshala and Ahuja, Naman and Shrivastava, Manish and Kumaraguru, Ponnurangam},
|
75 |
-
journal={arXiv preprint arXiv:2201.06741},
|
76 |
-
year={2022}
|
77 |
-
}
|
78 |
-
```
|
79 |
-
|
80 |
-
### Contributions
|
81 |
-
|
82 |
-
This dataset was added by [@ruanchaves](https://github.com/ruanchaves) while developing the [hashformers](https://github.com/ruanchaves/hashformers) library.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
default/hashset_distant-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb465aabc7467e83eb4218abefc425f2638e548b24bd37cc95373b6da72c63e8
|
3 |
+
size 13263420
|
hashset_distant.py
DELETED
@@ -1,57 +0,0 @@
|
|
1 |
-
"""HashSet dataset."""
|
2 |
-
|
3 |
-
import datasets
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
_CITATION = """
|
7 |
-
@article{kodali2022hashset,
|
8 |
-
title={HashSet--A Dataset For Hashtag Segmentation},
|
9 |
-
author={Kodali, Prashant and Bhatnagar, Akshala and Ahuja, Naman and Shrivastava, Manish and Kumaraguru, Ponnurangam},
|
10 |
-
journal={arXiv preprint arXiv:2201.06741},
|
11 |
-
year={2022}
|
12 |
-
}
|
13 |
-
"""
|
14 |
-
|
15 |
-
_DESCRIPTION = """
|
16 |
-
Hashset is a new dataset consisiting on 1.9k manually annotated and 3.3M loosely supervised tweets for testing the
|
17 |
-
efficiency of hashtag segmentation models. We compare State of The Art Hashtag Segmentation models on Hashset and other
|
18 |
-
baseline datasets (STAN and BOUN). We compare and analyse the results across the datasets to argue that HashSet can act
|
19 |
-
as a good benchmark for hashtag segmentation tasks.
|
20 |
-
|
21 |
-
HashSet Distant: 3.3M loosely collected camel cased hashtags containing hashtag and their segmentation.
|
22 |
-
"""
|
23 |
-
_URL = "https://raw.githubusercontent.com/prashantkodali/HashSet/master/datasets/hashset/HashSet-Distant.csv"
|
24 |
-
|
25 |
-
class HashSetDistant(datasets.GeneratorBasedBuilder):
|
26 |
-
|
27 |
-
VERSION = datasets.Version("1.0.0")
|
28 |
-
|
29 |
-
def _info(self):
|
30 |
-
return datasets.DatasetInfo(
|
31 |
-
description=_DESCRIPTION,
|
32 |
-
features=datasets.Features(
|
33 |
-
{
|
34 |
-
"index": datasets.Value("int32"),
|
35 |
-
"hashtag": datasets.Value("string"),
|
36 |
-
"segmentation": datasets.Value("string")
|
37 |
-
}
|
38 |
-
),
|
39 |
-
supervised_keys=None,
|
40 |
-
homepage="https://github.com/prashantkodali/HashSet/",
|
41 |
-
citation=_CITATION,
|
42 |
-
)
|
43 |
-
|
44 |
-
def _split_generators(self, dl_manager):
|
45 |
-
downloaded_files = dl_manager.download(_URL)
|
46 |
-
return [
|
47 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files }),
|
48 |
-
]
|
49 |
-
|
50 |
-
def _generate_examples(self, filepath):
|
51 |
-
records = pd.read_csv(filepath).to_dict("records")
|
52 |
-
for idx, row in enumerate(records):
|
53 |
-
yield idx, {
|
54 |
-
"index": row["Unnamed: 0.1"],
|
55 |
-
"hashtag": row["Unsegmented_hashtag"],
|
56 |
-
"segmentation": row["Segmented_hashtag"]
|
57 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|