saeed11b95 commited on
Commit
dcaf155
·
verified ·
1 Parent(s): d2e8d3d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ tags:
6
+ - table-structure-recognition
7
+ - table-detection
8
+ - ocr
9
+ - document-ai
10
+ - icdar
11
+ ---
12
+
13
+ # ICDAR-2013-Logical: A Line-Level Logical Conversion of the ICDAR 2013 Table Dataset
14
+
15
+ ## Dataset Description
16
+
17
+ This dataset is a converted and enhanced version of the **ICDAR 2013 Table Competition dataset**, specifically reformatted for modern **Table Structure Recognition (TSR)** and **OCR** tasks. 📜
18
+
19
+ The primary contribution of this version is the creation of a direct link between low-level OCR output and the table's logical structure. For each table, the dataset provides:
20
+ 1. A high-resolution **cropped PNG image** of the table region (rendered at 144 DPI).
21
+ 2. A detailed **JSON file** that maps each detected text line's physical bounding box to its logical grid coordinates (`[row_start, row_end, col_start, col_end]`).
22
+
23
+ This format is ideal for training and evaluating Document AI models that perform OCR and table understanding concurrently.
24
+
25
+ ---
26
+
27
+ ## How to Use
28
+
29
+ You can load an example by pairing the images from the `cropped_images` directory with the JSON annotations in `logical_gt`.
30
+
31
+ ```python
32
+ import json
33
+ from PIL import Image
34
+ from pathlib import Path
35
+
36
+ # Assume dataset is loaded or cloned locally
37
+ base_path = Path("./") # Path to the dataset directory
38
+
39
+ # Get a list of all examples
40
+ gt_files = list((base_path / "logical_gt").glob("*.json"))
41
+ example_file = gt_files[0]
42
+
43
+ # Load the annotation data
44
+ with open(example_file, 'r') as f:
45
+ annotations = json.load(f)
46
+
47
+ # Load the corresponding image
48
+ image_path = base_path / "cropped_images" / (example_file.stem + ".png")
49
+ image = Image.open(image_path)
50
+
51
+ # Display the first annotation for the first line of text
52
+ first_line = annotations[0]
53
+ print(f"Text: {first_line['text']}")
54
+ print(f"Bounding Box: {first_line['box']}")
55
+ print(f"Logical Coordinates: {first_line['logical_coords']}")
56
+
57
+ # image.show()