|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
|
|
import datasets |
|
from datasets.tasks import TextClassification |
|
|
|
_TRAIN_DOWNLOAD_URL = "transformed_train.csv" |
|
_TEST_DOWNLOAD_URL = "transformed_test.csv" |
|
|
|
|
|
class AGNews(datasets.GeneratorBasedBuilder): |
|
"""AG News topic classification dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=["name", "description", "authors"]), |
|
} |
|
) |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_path = _TRAIN_DOWNLOAD_URL |
|
test_path = _TEST_DOWNLOAD_URL |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True |
|
) |
|
for id_, row in enumerate(csv_reader): |
|
text, label = row |
|
yield id_, {"text": text, "label": label} |