Datasets:

Languages:
English
ArXiv:
License:
tommasobonomo commited on
Commit
04779e4
·
verified ·
1 Parent(s): c0c4bc8

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +6 -8
README.md CHANGED
@@ -32,7 +32,7 @@ dataset_info:
32
  num_examples: 3
33
  download_size: 317560335
34
  dataset_size: 127269024
35
- - config_name: splitted
36
  features:
37
  - name: doc_key
38
  dtype: string
@@ -79,10 +79,10 @@ license: cc-by-sa-4.0
79
  <img src="assets/bookcoref.png" width="700">
80
  </div>
81
  <!-- Aggiungi nome degli autori, ACL 2025, link -->
82
- This data repository contains the <span style="font-variant: small-caps;">BookCoref</span> dataset, introduced in the paper "<span style="font-variant: small-caps;">BookCoref</span>: Coreference Resolution at Book Scale" by <a href="https://arxiv.org/abs/2507.12075"> Martinelli et al. (2025)</a>, presented at the <a href="https://2025.aclweb.org/">ACL 2025</a> conference.
83
 
84
  We release both the manually-annotated `test` split (<span style="font-variant: small-caps;">BookCoref</span><sub>gold</sub>) and the pipeline-generated `train` and `validation` splits (<span style="font-variant: small-caps;">BookCoref</span><sub>silver</sub>).
85
- In order to enable the replication of our results, we also release the splitted version of each split as a separate configuration.
86
  <!-- As specified in the paper, this version is obtained through chunking the text into contiguous windows of 1500 tokens, retaining the coreference clusters of each window. -->
87
 
88
  ## ⚠️ Project Gutenberg license disclaimer
@@ -98,7 +98,7 @@ Users are responsible for checking the copyright status of each book in their co
98
  To use the <span style="font-variant: small-caps;">BookCoref</span> dataset, you need to install the following Python packages in your environment:
99
 
100
  ```bash
101
- pip install "datasets<=3.6.0" "deepdiff==8.5.0" "spacy==3.8.7" "nltk==3.9.1"
102
  ```
103
 
104
  You can then load each configuration through Huggingface's `datasets` library:
@@ -107,7 +107,7 @@ You can then load each configuration through Huggingface's `datasets` library:
107
  from datasets import load_dataset
108
 
109
  bookcoref = load_dataset("sapienzanlp/bookcoref")
110
- bookcoref_splitted = load_dataset("sapienzanlp/bookcoref", name="splitted")
111
  ```
112
 
113
  These commands will download and preprocess the books, add the coreference annotations, and return a `DatasetDict` according to the requested configuration.
@@ -127,7 +127,7 @@ DatasetDict({
127
  num_rows: 3
128
  })
129
  })
130
- >>> bookcoref_splitted
131
  DatasetDict({
132
  train: Dataset({
133
  features: ['doc_key', 'gutenberg_key', 'sentences', 'clusters', 'characters'],
@@ -144,8 +144,6 @@ DatasetDict({
144
  })
145
  ```
146
 
147
- ### Local Download
148
- To locally download the dataset as a jsonlines file, follow the procedure on our [official GitHub repo](http://github.com/sapienzanlp/bookcoref).
149
 
150
  ## ℹ️ Data format
151
 
 
32
  num_examples: 3
33
  download_size: 317560335
34
  dataset_size: 127269024
35
+ - config_name: split
36
  features:
37
  - name: doc_key
38
  dtype: string
 
79
  <img src="assets/bookcoref.png" width="700">
80
  </div>
81
  <!-- Aggiungi nome degli autori, ACL 2025, link -->
82
+ This data repository contains the <span style="font-variant: small-caps;">BookCoref</span> dataset, introduced in the paper "<span style="font-variant: small-caps;">BookCoref</span>: Coreference Resolution at Book Scale" by <a href="https://arxiv.org/"> Martinelli et al. (2025)</a>, presented at the <a href="https://2025.aclweb.org/">ACL 2025</a> conference.
83
 
84
  We release both the manually-annotated `test` split (<span style="font-variant: small-caps;">BookCoref</span><sub>gold</sub>) and the pipeline-generated `train` and `validation` splits (<span style="font-variant: small-caps;">BookCoref</span><sub>silver</sub>).
85
+ In order to enable the replication of our results, we also release the split version of each split as a separate configuration.
86
  <!-- As specified in the paper, this version is obtained through chunking the text into contiguous windows of 1500 tokens, retaining the coreference clusters of each window. -->
87
 
88
  ## ⚠️ Project Gutenberg license disclaimer
 
98
  To use the <span style="font-variant: small-caps;">BookCoref</span> dataset, you need to install the following Python packages in your environment:
99
 
100
  ```bash
101
+ pip install "datasets<=3.6.0" deepdiff spacy nltk
102
  ```
103
 
104
  You can then load each configuration through Huggingface's `datasets` library:
 
107
  from datasets import load_dataset
108
 
109
  bookcoref = load_dataset("sapienzanlp/bookcoref")
110
+ bookcoref_split = load_dataset("sapienzanlp/bookcoref", name="split")
111
  ```
112
 
113
  These commands will download and preprocess the books, add the coreference annotations, and return a `DatasetDict` according to the requested configuration.
 
127
  num_rows: 3
128
  })
129
  })
130
+ >>> bookcoref_split
131
  DatasetDict({
132
  train: Dataset({
133
  features: ['doc_key', 'gutenberg_key', 'sentences', 'clusters', 'characters'],
 
144
  })
145
  ```
146
 
 
 
147
 
148
  ## ℹ️ Data format
149