Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
Libraries:
Datasets
pandas
iperbole commited on
Commit
64d9506
·
verified ·
1 Parent(s): 568a20d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -2
README.md CHANGED
@@ -35,7 +35,9 @@ configs:
35
 
36
  # ghigliottinAI MCQA
37
 
38
- Original Papers: https://ghigliottin-ai.github.io/ https://nlp4fun.github.io/
 
 
39
 
40
  Starting from two different EVALITA tasks, nlp4fun (EVALITA 2018) and ghigliottin-AI (EVALITA 2020), we collected cc. 600 different games extracted from TV show and from BOARDGAME of "L'Eredità".
41
 
@@ -96,4 +98,16 @@ Date le parole: {{w1}}, {{w2}}, {{w3}}, {{w4}}, {{w5}}\nDomanda: Quale tra i seg
96
  | ZEFIRO | 40.86 |
97
  | Llama-3-8B | 46.65 |
98
  | Llama-3-8B-IT | 47.38 |
99
- | ANITA | 41.95 |
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  # ghigliottinAI MCQA
37
 
38
+ References:
39
+ - https://ghigliottin-ai.github.io/
40
+ - https://nlp4fun.github.io/
41
 
42
  Starting from two different EVALITA tasks, nlp4fun (EVALITA 2018) and ghigliottin-AI (EVALITA 2020), we collected cc. 600 different games extracted from TV show and from BOARDGAME of "L'Eredità".
43
 
 
98
  | ZEFIRO | 40.86 |
99
  | Llama-3-8B | 46.65 |
100
  | Llama-3-8B-IT | 47.38 |
101
+ | ANITA | 41.95 |
102
+
103
+ ## Acknowledge
104
+
105
+ We want to thanks the authors of this resource to publicly release such interesting benchmark.
106
+
107
+ Further, We want to thanks the student of [MNLP-2024 course](https://naviglinlp.blogspot.com/), where with their first homework tried different interesting prompting strategies.
108
+
109
+ The data can be freely downloaded form the following links: [link_1](https://github.com/ghigliottin-AI/ghigliottin-AI.github.io), [link_2](https://github.com/nlp4fun/nlp4fun.github.io).
110
+
111
+ ## License
112
+
113
+ No license found on original data.