Datasets:
				
			
			
	
			
			
	
		Tasks:
	
	
	
	
	Depth Estimation
	
	
	Modalities:
	
	
	
		
	
	Image
	
	
	Languages:
	
	
	
		
	
	English
	
	
	Size:
	
	
	
	
	1K - 10K
	
	
	ArXiv:
	
	
	
	
	
	
	
	
Tags:
	
	
	
	
	depth-estimation
	
	
	License:
	
	
	
	
	
	
	
initial commit.
Browse files- nyu_depth_v2.py +134 -0
    	
        nyu_depth_v2.py
    ADDED
    
    | @@ -0,0 +1,134 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            """NYU-Depth V2."""
         | 
| 15 | 
            +
             | 
| 16 | 
            +
             | 
| 17 | 
            +
            import os
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            import datasets
         | 
| 20 | 
            +
            import h5py
         | 
| 21 | 
            +
            import numpy as np
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            _CITATION = """\
         | 
| 24 | 
            +
            @inproceedings{Silberman:ECCV12,
         | 
| 25 | 
            +
              author    = {Nathan Silberman, Derek Hoiem, Pushmeet Kohli and Rob Fergus},
         | 
| 26 | 
            +
              title     = {Indoor Segmentation and Support Inference from RGBD Images},
         | 
| 27 | 
            +
              booktitle = {ECCV},
         | 
| 28 | 
            +
              year      = {2012}
         | 
| 29 | 
            +
            }
         | 
| 30 | 
            +
            @inproceedings{icra_2019_fastdepth,
         | 
| 31 | 
            +
              author    = {Wofk, Diana and Ma, Fangchang and Yang, Tien-Ju and Karaman, Sertac and Sze, Vivienne},
         | 
| 32 | 
            +
              title     = {FastDepth: Fast Monocular Depth Estimation on Embedded Systems},
         | 
| 33 | 
            +
              booktitle = {IEEE International Conference on Robotics and Automation (ICRA)},
         | 
| 34 | 
            +
              year      = {2019}
         | 
| 35 | 
            +
            }
         | 
| 36 | 
            +
            """
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            _DESCRIPTION = """\
         | 
| 39 | 
            +
            The NYU-Depth V2 data set is comprised of video sequences from a variety of indoor scenes as recorded by both the RGB and Depth cameras from the Microsoft Kinect.
         | 
| 40 | 
            +
            """
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            _HOMEPAGE = "https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html"
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            _LICENSE = "Apace 2.0 License"
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            _URLS = {
         | 
| 47 | 
            +
                "depth_estimation": {
         | 
| 48 | 
            +
                    "train/val": "http://datasets.lids.mit.edu/fastdepth/data/nyudepthv2.tar.gz",
         | 
| 49 | 
            +
                }
         | 
| 50 | 
            +
            }
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            _IMG_EXTENSIONS = [".h5"]
         | 
| 53 | 
            +
             | 
| 54 | 
            +
             | 
| 55 | 
            +
            class NYUDepthV2(datasets.GeneratorBasedBuilder):
         | 
| 56 | 
            +
                """NYU-Depth V2 dataset."""
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                VERSION = datasets.Version("1.0.0")
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                BUILDER_CONFIGS = [
         | 
| 61 | 
            +
                    datasets.BuilderConfig(
         | 
| 62 | 
            +
                        name="depth_estimation",
         | 
| 63 | 
            +
                        version=VERSION,
         | 
| 64 | 
            +
                        description="The depth estimation variant.",
         | 
| 65 | 
            +
                    ),
         | 
| 66 | 
            +
                ]
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                DEFAULT_CONFIG_NAME = "depth_estimation"
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                def _info(self):
         | 
| 71 | 
            +
                    features = datasets.Features(
         | 
| 72 | 
            +
                        {"image": datasets.Image(), "depth_map": datasets.Image()}
         | 
| 73 | 
            +
                    )
         | 
| 74 | 
            +
                    return datasets.DatasetInfo(
         | 
| 75 | 
            +
                        description=_DESCRIPTION,
         | 
| 76 | 
            +
                        features=features,
         | 
| 77 | 
            +
                        homepage=_HOMEPAGE,
         | 
| 78 | 
            +
                        license=_LICENSE,
         | 
| 79 | 
            +
                        citation=_CITATION,
         | 
| 80 | 
            +
                    )
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                def _is_image_file(self, filename):
         | 
| 83 | 
            +
                    # Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L21-L23
         | 
| 84 | 
            +
                    return any(filename.endswith(extension) for extension in _IMG_EXTENSIONS)
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                def _get_file_paths(self, dir):
         | 
| 87 | 
            +
                    # Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L31-L44
         | 
| 88 | 
            +
                    file_paths = []
         | 
| 89 | 
            +
                    dir = os.path.expanduser(dir)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    for target in sorted(os.listdir(dir)):
         | 
| 92 | 
            +
                        d = os.path.join(dir, target)
         | 
| 93 | 
            +
                        if not os.path.isdir(d):
         | 
| 94 | 
            +
                            continue
         | 
| 95 | 
            +
                        for root, _, fnames in sorted(os.walk(d)):
         | 
| 96 | 
            +
                            for fname in sorted(fnames):
         | 
| 97 | 
            +
                                if self._is_image_file(fname):
         | 
| 98 | 
            +
                                    path = os.path.join(root, fname)
         | 
| 99 | 
            +
                                    file_paths.append(path)
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                    return file_paths
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                def _h5_loader(self, path):
         | 
| 104 | 
            +
                    # Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L8-L13
         | 
| 105 | 
            +
                    h5f = h5py.File(path, "r")
         | 
| 106 | 
            +
                    rgb = np.array(h5f["rgb"])
         | 
| 107 | 
            +
                    rgb = np.transpose(rgb, (1, 2, 0))
         | 
| 108 | 
            +
                    depth = np.array(h5f["depth"])
         | 
| 109 | 
            +
                    return rgb, depth
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                def _split_generators(self, dl_manager):
         | 
| 112 | 
            +
                    urls = _URLS[self.config.name]
         | 
| 113 | 
            +
                    base_path = dl_manager.download_and_extract(urls)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    train_data_files = self._get_file_paths(
         | 
| 116 | 
            +
                        os.path.join(base_path, "nyudepthv2", "train")
         | 
| 117 | 
            +
                    )
         | 
| 118 | 
            +
                    val_data_files = self._get_file_paths(os.path.join(base_path, "nyudepthv2" "val"))
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                    return [
         | 
| 121 | 
            +
                        datasets.SplitGenerator(
         | 
| 122 | 
            +
                            name=datasets.Split.TRAIN,
         | 
| 123 | 
            +
                            gen_kwargs={"data": train_data_files, "split": "training"},
         | 
| 124 | 
            +
                        ),
         | 
| 125 | 
            +
                        datasets.SplitGenerator(
         | 
| 126 | 
            +
                            name=datasets.Split.VALIDATION,
         | 
| 127 | 
            +
                            gen_kwargs={"data": val_data_files, "split": "validation"},
         | 
| 128 | 
            +
                        ),
         | 
| 129 | 
            +
                    ]
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                def _generate_examples(self, filepaths):
         | 
| 132 | 
            +
                    for idx, filepath in enumerate(filepaths):
         | 
| 133 | 
            +
                        image, depth = self._h5_loader(filepath)
         | 
| 134 | 
            +
                        yield idx, {"image": image, "depth_map": depth}
         | 
