--- license: cc-by-sa-4.0 task_categories: - question-answering - multiple-choice language: - ja configs: - config_name: v1.0 data_files: - split: test path: v1.0/test-* dataset_info: config_name: v1.0 features: - name: qid dtype: string - name: category dtype: string - name: question dtype: string - name: choice0 dtype: string - name: choice1 dtype: string - name: choice2 dtype: string - name: choice3 dtype: string - name: answer_index dtype: int64 splits: - name: test num_bytes: 495590 num_examples: 2341 download_size: 291218 dataset_size: 495590 --- # Dataset Card for JamC-QA ## Dataset Summary This benchmark test evaluates cultural knowledge related to Japan-specific topics, such as culture and customs, using multiple-choice questions. This test includes questions across eight categories: Japanese culture, custom, climate, geography, history, government, law and healthcare. To achieve high accuracy on this test, the model must possess extensive knowledge about Japanese culture. ## Supported Tasks and Leaderboards | Model | Authors | Micro-average | culture | custom | climate | geography | history | government | law | healthcare | | [sarashina2-8x70b](https://huggingface.co/sbintuitions/sarashina2-8x70b) | SB Intuitions Inc., 2024 | 0.7364 | 0.722 | 0.8088 | 0.7855 | 0.6522 | 0.7839 | 0.7719 | 0.6436 | 0.8462 | | [sarashina2-70b](https://huggingface.co/sbintuitions/sarashina2-70b) | SB Intuitions Inc., 2024 | 0.7245 | 0.6988 | 0.7892 | 0.7556 | 0.6558 | 0.7781 | 0.7544 | 0.6733 | 0.7885 | | [Llama-3.3-Swallow-70B-v0.4](https://huggingface.co/tokyotech-llm/Llama-3.3-Swallow-70B-v0.4) | Fujii et al., 2024 | 0.695 | 0.6894 | 0.7353 | 0.6185 | 0.5688 | 0.7781 | 0.7719 0.7459 | 0.8462 | | [RakutenAI-2.0-8x7B](https://huggingface.co/Rakuten/RakutenAI-2.0-8x7B) | Rakuten Group, Inc., 2025 | 0.616 | 0.6056 | 0.6814 | 0.6160 | 0.4855 | 0.6888 | 0.6754 | 0.5941 | 0.6923 | | [Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) | Mistral AI, 2023 | 0.2772 | 0.2671 | 0.2892 | 0.2618 | 0.2355 | 0.2767 | 0.3509 | 0.3102 | 0.3462 | | [plamo-100b](https://huggingface.co/pfnet/plamo-100b) | | 0.5908 | 0.6102 | 0.6422 | 0.6384 | 0.4565 | 0.6398 | 0.5526 | 0.5182 | 0.6731 | | [llm-jp-3.1-8x13b](https://huggingface.co/llm-jp/llm-jp-3-8x13b) | | 0.5737 | 0.5839 | 0.6275 | 0.606 | 0.4674 | 0.6110 | 0.6404 | 0.4884 | 0.6538 | | [Meta-Llama-3.1-405B](https://huggingface.co/meta-llama/Llama-3.1-405B) | | 0.5724 | 0.5699 | 0.5245 | 0.4688 | 0.5435 | 0.6571 | 0.6579 | 0.6403 | 0.5962 | | [Nemotron-4-340B-Base](https://huggingface.co/mgoin/Nemotron-4-340B-Base-hf) | | 0.5600 | 0.5761 | 0.6176 | 0.5062 | 0.4601 | 0.5821 | 0.6491 | 0.5776 | 0.6346 | | [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | | 0.5421 | 0.5419 | 0.6324 | 0.4763 | 0.4746 | 0.5677 | 0.6053 | 0.5644 | 0.6154 | ## Languages Japanese ## Dataset Structure ### Data Instances An example from culture subtask looks as follows: ## Data Fields - `qid (str)`: 質問を一意識別するための ID - `category (str)`: 質問カテゴリ(全 8種) - 文化、風習、風土、地理、日本史、行政、法律、医療 - `question (str)`: 質問文 - 半角カナを除き、全角→半角統一済み - 内部に改行 `\n` を含まない - 文字列前後の空白は除去済み - `choice{0..3} (str)`: 選択肢(choice0〜choice3 の 4つ) - 半角カナを除き、全角→半角統一済み - 内部に改行 `\n` を含まない - 文字列前後の空白は除去済み - `answer_index (int)`: choice{0..3} に対応した正解選択肢のインデックス(0-3) # Licensing Information - [CC-BY-SA-4.0](https://creativecommons.org/licenses/by-sa/4.0/) # Citation Information ``` 岡 照晃, 柴田 知秀, 吉田 奈央. JamC-QA: 日本固有の知識を問う多肢選択式質問応答ベンチマークの構築. 言語処理学会第31回年次大会 (NLP2025) 発表論文集, Q2-18, pp.839-844. 2025年3月11日. https://www.anlp.jp/proceedings/annual_meeting/2025/pdf_dir/Q2-18.pdf ```