--- dataset_info: features: - name: id dtype: string - name: category dtype: string - name: text dtype: string splits: - name: all num_bytes: 91813 num_examples: 290 - name: easy num_bytes: 9124 num_examples: 50 - name: medium num_bytes: 20234 num_examples: 50 - name: hard num_bytes: 27971 num_examples: 50 - name: scbx num_bytes: 17314 num_examples: 50 - name: name num_bytes: 10118 num_examples: 50 - name: other num_bytes: 7052 num_examples: 40 download_size: 103240 dataset_size: 183626 configs: - config_name: default data_files: - split: all path: data/all-* - split: easy path: data/easy-* - split: medium path: data/medium-* - split: hard path: data/hard-* - split: scbx path: data/scbx-* - split: name path: data/name-* - split: other path: data/other-* --- # Thai-TTS-Intelligibility-Eval **Thai-TTS-Intelligibility-Eval** is a curated evaluation set for measuring **intelligibility** of Thai Text-to-Speech (TTS) systems. All 290 items are short, challenging phrases that commonly trip up phoneme-to-grapheme converters, prosody models, or pronunciation lexicons. It is **not** intended for training; use it purely for benchmarking and regression tests. ## Dataset Summary | Split | #Utterances | Description | |---------|-------------|-------------------------------------------------------------| | `easy` | 50 | Everyday phrases that most TTS systems should read correctly| | `medium`| 50 | More challening than easy | | `hard` | 50 | Hard phrases, e.g., mixed Thai and English and unique names | | `scbx` | 50 | SCBX-specific terminology, products, and names | | `name` | 50 | Synthetic Thai personal names (mixed Thai & foreign roots) | | `other` | 40 | Miscellaneous edge-cases not covered above | | **Total** | **290** | | Each record contains: - **`id`** `string` Unique identifier - **`text`** `string` sentence/phrase - **`category`** `string` One of *easy, medium, hard, scbx, name, other* ## Loading With 🤗 `datasets` ```python from datasets import load_dataset ds = load_dataset( "scb10x/thai-tts-intelligiblity-eval", ) ds_scbx = ds["scbx"] print(ds[0]) # {'id': '53ef39464d9c1e6f', 'text': '...', 'category': 'scbx'} ``` ## Intended Use 1. **Objective evaluation** - *Compute WER/CER* between automatic transcripts of your TTS output and the gold reference text. - Code: https://github.com/scb-10x/thai-tts-eval/tree/main/intelligibility 2. **Subjective evaluation** - Conduct human listening tests (MOS, ABX, etc.)—the dataset is small enough for quick rounds. - Future work 4. **Regression testing** - Track intelligibility across model versions with a fixed set of hard sentences. - Future work ## CER Evaluation Results - CER: lower is better | System | All | Easy | Medium | Hard | SCBX | Name | Other | |-----------------------------------|------|-------|--------|------|------|-------|-------| | Azure Premwadee | 9.39 | 2.87 | 2.92 | 13.80| 10.44| 13.07 | 7.57 | | `facebook-mms-tts-tha` | 28.47| 10.31 | 12.40 | 38.83| 36.04| 26.33 | 30.83 | | `VIZINTZOR-MMS-TTS-THAI-FEMALEV1` | 27.42| 13.30 | 13.13 | 30.92| 34.76| 25.53 | 54.60 |