Datasets:
File size: 5,426 Bytes
0665baf 69ad1af 0665baf 69ad1af 0665baf 69ad1af 3042037 0665baf 588099e 0665baf 3042037 0665baf 3042037 0665baf 913d6f9 0665baf 3042037 0665baf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
license: cc-by-4.0
dataset_info:
features:
- name: solar_images
dtype: image
- name: xrs
dtype: float32
configs:
- config_name: default
data_files:
- split: train
path: "**/*"
language:
- en
tags:
- solar-physics
- space-weather
- flare-prediction
- astronomy
- time-series
- computer-vision
- deep-learning
- iccv2025
size_categories:
- 10K<n<100K
task_categories:
- time-series-forecasting
- image-classification
pretty_name: FlareBench
---
# FlareBench: A Comprehensive Benchmark for Solar Flare Prediction π
[](https://iccv.thecvf.com/)
[](https://arxiv.org/abs/2508.07847)
[](https://keio-smilab25.github.io/DeepSWM)
**FlareBench** is a novel benchmark dataset for solar flare prediction that covers the entire 11-year solar activity cycle. This dataset was introduced in our ICCV 2025 paper "Deep Space Weather Model: Long-Range Solar Flare Prediction from Multi-Wavelength Images".
### Why FlareBench?
Most conventional datasets for solar flare prediction do not cover diverse solar activity states. Consequently, models trained on such datasets can exhibit biases towards specific periods of solar activity. Furthermore, many datasets contain only small, low-resolution sunspot patches.
**FlareBench presents unique challenges:**
- Requires modeling long-term, diverse solar states spanning the entire 11-year solar cycle
- Demands computationally efficient architectures for multi-wavelength images capturing multi-layered physical phenomena
- Handles highly imbalanced class distributions that vary significantly across different years
## ποΈ Dataset Structure
```
FlareBench/
βββ solar_images/
β βββ aia/ # Atmospheric Imaging Assembly (9 wavelengths)
β β βββ 2011/ # π Data available (Apr-Dec 2011)
β β βββ 2012/ # π Same structure as 2011, no data files
β β βββ ...
β β βββ 2024/
β βββ hmi/ # Helioseismic and Magnetic Imager
β βββ 2011/ # π Data available (Jan-Dec 2011)
β βββ 2012/ # π Same structure as 2011, no data files
β βββ ...
βββ xrs/ # X-Ray Sensor data from GOES satellites
βββ 2011/ # π Data available (full year)
βββ 2012/ # π Same structure as 2011, no data files
βββ ...
```
## π Dataset Statistics
- **Total Samples**: 95,837 (after quality filtering)
- **Time Period**: June 2011 - November 2022 (full solar cycle)
- **Temporal Resolution**: 1-hour cadence
- **Spatial Resolution**: Full-disk solar observations
- **Class Distribution**:
- X-class: 1,750 samples (1.8%)
- M-class: 13,263 samples (13.8%)
- C-class: 34,978 samples (36.5%)
- No-flare: 47,775 samples (49.9%)
### Data Composition
**Solar Images:**
- **AIA (Atmospheric Imaging Assembly)**: Multi-wavelength extreme ultraviolet observations capturing the multi-layered coronal atmosphere
- **HMI (Helioseismic and Magnetic Imager)**: Line-of-sight and vector magnetic field observations from the photosphere
**X-Ray Sensor Data:**
- **XRS**: Solar X-ray flux measurements from GOES satellites
- **Formats**: Both CSV and NetCDF files
- **Content**: Raw and processed solar X-ray flux data
## π― Prediction Task
FlareBench focuses on predicting the **maximum class of solar flare within the next 24 hours**, following standard approaches in solar flare prediction research. The prediction classes are:
- **X-class**: Major flares (β₯10β»β΄ W/mΒ²)
- **M-class**: Moderate flares (10β»β΅ to 10β»β΄ W/mΒ²)
- **C-class**: Minor flares (10β»βΆ to 10β»β΅ W/mΒ²)
- **No-flare**: Below C-class threshold
## π§ Request Full Dataset
**Need data from other years (2012-2022)?** Please contact us at: ng[email protected]
We will provide access to the complete dataset for research purposes. Please include:
- Your research affiliation
- Brief description of your research project
- Intended use of the dataset
- Preferred data transfer method
## π Citation
If you use FlareBench in your research, please cite our ICCV 2025 paper:
```bibtex
@inproceedings{nagashima2025deepswm,
title={Deep Space Weather Model: Long-Range Solar Flare Prediction from Multi-Wavelength Images},
author={Shunya Nagashima and Komei Sugiura},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
year={2025}
}
```
## π Related Resources
- **Paper**: [arXiv:2508.07847](https://arxiv.org/abs/2508.07847)
- **Project Page**: [https://keio-smilab25.github.io/DeepSWM](https://keio-smilab25.github.io/DeepSWM)
- **Code**: https://github.com/keio-smilab25/DeepSWM
## π License
This dataset is released under the **Creative Commons Attribution 4.0 International License (CC BY 4.0)**.
## π€ Acknowledgments
This dataset is built using observations from:
- **Solar Dynamics Observatory (SDO)**: NASA's flagship solar observation mission
- **GOES Satellites**: NOAA's Geostationary Operational Environmental Satellites
## π Contact
For questions, issues, or collaboration opportunities:
- **Primary Contact**: Shunya Nagashima - ng_[email protected]
- **Institution**: Keio University
|