File size: 5,426 Bytes
0665baf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69ad1af
0665baf
 
 
 
69ad1af
0665baf
 
 
69ad1af
3042037
0665baf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
588099e
0665baf
 
 
3042037
0665baf
 
 
 
 
3042037
0665baf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
913d6f9
0665baf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3042037
 
0665baf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
license: cc-by-4.0
dataset_info:
  features:
  - name: solar_images
    dtype: image
  - name: xrs
    dtype: float32
  configs:
  - config_name: default
    data_files:
    - split: train
      path: "**/*"
language:
- en
tags:
- solar-physics
- space-weather
- flare-prediction
- astronomy
- time-series
- computer-vision
- deep-learning
- iccv2025
size_categories:
- 10K<n<100K
task_categories:
- time-series-forecasting
- image-classification
pretty_name: FlareBench
---

# FlareBench: A Comprehensive Benchmark for Solar Flare Prediction 🌞

[![ICCV 2025](https://img.shields.io/badge/ICCV-2025-b31b1b.svg)](https://iccv.thecvf.com/)
[![arXiv](https://img.shields.io/badge/arXiv-2508.07847-b31b1b.svg)](https://arxiv.org/abs/2508.07847)
[![Project Page](https://img.shields.io/badge/Project-Page-brightgreen.svg)](https://keio-smilab25.github.io/DeepSWM)

**FlareBench** is a novel benchmark dataset for solar flare prediction that covers the entire 11-year solar activity cycle. This dataset was introduced in our ICCV 2025 paper "Deep Space Weather Model: Long-Range Solar Flare Prediction from Multi-Wavelength Images".

### Why FlareBench?

Most conventional datasets for solar flare prediction do not cover diverse solar activity states. Consequently, models trained on such datasets can exhibit biases towards specific periods of solar activity. Furthermore, many datasets contain only small, low-resolution sunspot patches.

**FlareBench presents unique challenges:**
- Requires modeling long-term, diverse solar states spanning the entire 11-year solar cycle
- Demands computationally efficient architectures for multi-wavelength images capturing multi-layered physical phenomena
- Handles highly imbalanced class distributions that vary significantly across different years

## πŸ—‚οΈ Dataset Structure

```
FlareBench/
β”œβ”€β”€ solar_images/
β”‚   β”œβ”€β”€ aia/          # Atmospheric Imaging Assembly (9 wavelengths)
β”‚   β”‚   β”œβ”€β”€ 2011/     # πŸ“Š Data available (Apr-Dec 2011)
β”‚   β”‚   β”œβ”€β”€ 2012/     # πŸ“‚ Same structure as 2011, no data files
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   └── 2024/
β”‚   └── hmi/          # Helioseismic and Magnetic Imager
β”‚       β”œβ”€β”€ 2011/     # πŸ“Š Data available (Jan-Dec 2011)  
β”‚       β”œβ”€β”€ 2012/     # πŸ“‚ Same structure as 2011, no data files
β”‚       └── ...
└── xrs/              # X-Ray Sensor data from GOES satellites
    β”œβ”€β”€ 2011/         # πŸ“Š Data available (full year)
    β”œβ”€β”€ 2012/         # πŸ“‚ Same structure as 2011, no data files
    └── ...
```

## πŸ“ˆ Dataset Statistics

- **Total Samples**: 95,837 (after quality filtering)
- **Time Period**: June 2011 - November 2022 (full solar cycle)
- **Temporal Resolution**: 1-hour cadence
- **Spatial Resolution**: Full-disk solar observations
- **Class Distribution**:
  - X-class: 1,750 samples (1.8%)
  - M-class: 13,263 samples (13.8%) 
  - C-class: 34,978 samples (36.5%)
  - No-flare: 47,775 samples (49.9%)

### Data Composition

**Solar Images:**
- **AIA (Atmospheric Imaging Assembly)**: Multi-wavelength extreme ultraviolet observations capturing the multi-layered coronal atmosphere
- **HMI (Helioseismic and Magnetic Imager)**: Line-of-sight and vector magnetic field observations from the photosphere

**X-Ray Sensor Data:**
- **XRS**: Solar X-ray flux measurements from GOES satellites
- **Formats**: Both CSV and NetCDF files
- **Content**: Raw and processed solar X-ray flux data

## 🎯 Prediction Task

FlareBench focuses on predicting the **maximum class of solar flare within the next 24 hours**, following standard approaches in solar flare prediction research. The prediction classes are:

- **X-class**: Major flares (β‰₯10⁻⁴ W/mΒ²)
- **M-class**: Moderate flares (10⁻⁡ to 10⁻⁴ W/m²)  
- **C-class**: Minor flares (10⁻⁢ to 10⁻⁡ W/m²)
- **No-flare**: Below C-class threshold

## πŸ“§ Request Full Dataset

**Need data from other years (2012-2022)?** Please contact us at: ng[email protected]

We will provide access to the complete dataset for research purposes. Please include:
- Your research affiliation
- Brief description of your research project
- Intended use of the dataset
- Preferred data transfer method

## πŸ“š Citation

If you use FlareBench in your research, please cite our ICCV 2025 paper:

```bibtex
@inproceedings{nagashima2025deepswm,
  title={Deep Space Weather Model: Long-Range Solar Flare Prediction from Multi-Wavelength Images},
  author={Shunya Nagashima and Komei Sugiura},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2025}
}
```

## πŸ”— Related Resources

- **Paper**: [arXiv:2508.07847](https://arxiv.org/abs/2508.07847)
- **Project Page**: [https://keio-smilab25.github.io/DeepSWM](https://keio-smilab25.github.io/DeepSWM)
- **Code**: https://github.com/keio-smilab25/DeepSWM

## πŸ“„ License

This dataset is released under the **Creative Commons Attribution 4.0 International License (CC BY 4.0)**.

## 🀝 Acknowledgments

This dataset is built using observations from:
- **Solar Dynamics Observatory (SDO)**: NASA's flagship solar observation mission
- **GOES Satellites**: NOAA's Geostationary Operational Environmental Satellites

## πŸ“ž Contact

For questions, issues, or collaboration opportunities:

- **Primary Contact**: Shunya Nagashima - ng_[email protected]
- **Institution**: Keio University