File size: 5,740 Bytes
e043789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee69c5
e043789
 
 
5913fcf
e043789
 
 
8214d03
e043789
 
 
 
 
 
 
 
 
bd502ec
e043789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee69c5
e043789
 
 
 
 
 
 
 
 
 
 
e718065
 
 
 
cee69c5
e718065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee69c5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

import json
import os

from PIL import Image

import datasets

def load_image(image_path):
    image = Image.open(image_path).convert("RGB")
    w, h = image.size
    return image, (w, h)

def normalize_bbox(bbox, size):
    return [
        int(1000 * bbox[0] / size[0]),
        int(1000 * bbox[1] / size[1]),
        int(1000 * bbox[2] / size[0]),
        int(1000 * bbox[3] / size[1]),
    ]

logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@article{Jaume2019FUNSDAD,
  title={FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents},
  author={Guillaume Jaume and H. K. Ekenel and J. Thiran},
  journal={2019 International Conference on Document Analysis and Recognition Workshops (ICDARW)},
  year={2019},
  volume={2},
  pages={1-6}
}
"""

_DESCRIPTION = """\
https://guillaumejaume.github.io/FUNSD/
"""


class FunsdConfig(datasets.BuilderConfig):
    """BuilderConfig for FUNSD"""

    def __init__(self, **kwargs):
        """BuilderConfig for FUNSD.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(FunsdConfig, self).__init__(**kwargs)


class Funsd(datasets.GeneratorBasedBuilder):
    """Conll2003 dataset."""

    BUILDER_CONFIGS = [
        FunsdConfig(name="funsd", version=datasets.Version("1.0.0"), description="FUNSD dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    #"words": datasets.Sequence(datasets.Value("string")),
                    "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=["DATEISSUED","LOANTERM","PURPOSE","PRODUCT","PROPERTY","LOANAMOUNT","INTERESTRATE","MONTHLYPR","PREPENALTY","BALLOONPAYMENT","ESTMONTHLY","ESTAXES"]
                        )
                    ),
                    "image": datasets.features.Image(),
                    "image_path" : datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage="https://guillaumejaume.github.io/FUNSD/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        downloaded_file = dl_manager.download_and_extract("/content/SLR1.zip") #"/content/SLR.zip"
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepath": f"{downloaded_file}/dataset/training_data/"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"filepath": f"{downloaded_file}/dataset/testing_data/"}
            ),
        ]

    def get_line_bbox(self, bboxs):
        x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)]
        y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)]

        x0, y0, x1, y1 = min(x), min(y), max(x), max(y)

        assert x1 >= x0 and y1 >= y0
        bbox = [[x0, y0, x1, y1] for _ in range(len(bboxs))]
        return bbox

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        ann_dir = os.path.join(filepath, "annotations")
        img_dir = os.path.join(filepath, "images")
        for guid, file in enumerate(sorted(os.listdir(ann_dir))):
            tokens = []
            #words = []
            bboxes = []
            ner_tags = []

            file_path = os.path.join(ann_dir, file)
            with open(file_path, "r", encoding="utf8") as f:
                data = json.load(f)
            image_path = os.path.join(img_dir, file)
            image_path = image_path.replace("json", "png")
            image, size = load_image(image_path)
            for state in data: 
                for item in state["form"]:
                        labels=item['label']
                        word=item['text']
                        ner_tags.append(labels)
                        tokens.append(word)
                        #words.append(word)
                        bboxes.append(normalize_bbox(item['box'],size))
                
                    #cur_line_bboxes = []
                    #words, label = item["words"], item["label"]
                    #words = [w for w in words if w["text"].strip() != ""]
                    #if len(words) == 0:
                        #continue
                    #if label == "other":
                        #for w in words:
                           # tokens.append(w["text"])
                           # ner_tags.append("O")
                            #cur_line_bboxes.append(normalize_bbox(w["box"], size))
                   # else:
                        #tokens.append(words[0]["text"])
                        #ner_tags.append("B-" + label.upper())
                        #cur_line_bboxes.append(normalize_bbox(words[0]["box"], size))
                        #for w in words[1:]:
                            #tokens.append(w["text"])
                           # ner_tags.append("I-" + label.upper())
                            #cur_line_bboxes.append(normalize_bbox(w["box"], size))
                    #cur_line_bboxes = self.get_line_bbox(cur_line_bboxes)
                    #bboxes.extend(cur_line_bboxes)
            yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "ner_tags": ner_tags,
                         "image": image, "image_path":image_path}#"words":words,