import json import os from PIL import Image import datasets def load_image(image_path): image = Image.open(image_path).convert("RGB") w, h = image.size return image, (w, h) def normalize_bbox(bbox, size): return [ int(1000 * bbox[0] / size[0]), int(1000 * bbox[1] / size[1]), int(1000 * bbox[2] / size[0]), int(1000 * bbox[3] / size[1]), ] logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{Jaume2019FUNSDAD, title={FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents}, author={Guillaume Jaume and H. K. Ekenel and J. Thiran}, journal={2019 International Conference on Document Analysis and Recognition Workshops (ICDARW)}, year={2019}, volume={2}, pages={1-6} } """ _DESCRIPTION = """\ https://guillaumejaume.github.io/FUNSD/ """ class FunsdConfig(datasets.BuilderConfig): """BuilderConfig for FUNSD""" def __init__(self, **kwargs): """BuilderConfig for FUNSD. Args: **kwargs: keyword arguments forwarded to super. """ super(FunsdConfig, self).__init__(**kwargs) class Funsd(datasets.GeneratorBasedBuilder): """Conll2003 dataset.""" BUILDER_CONFIGS = [ FunsdConfig(name="funsd", version=datasets.Version("1.0.0"), description="FUNSD dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), #"words": datasets.Sequence(datasets.Value("string")), "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=["DATEISSUED","LOANTERM","PURPOSE","PRODUCT","PROPERTY","LOANAMOUNT","INTERESTRATE","MONTHLYPR","PREPENALTY","BALLOONPAYMENT","ESTMONTHLY","ESTAXES"] ) ), "image": datasets.features.Image(), "image_path" : datasets.Value("string"), } ), supervised_keys=None, homepage="https://guillaumejaume.github.io/FUNSD/", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" downloaded_file = dl_manager.download_and_extract("/content/SLR1.zip") #"/content/SLR.zip" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": f"{downloaded_file}/dataset/training_data/"} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": f"{downloaded_file}/dataset/testing_data/"} ), ] def get_line_bbox(self, bboxs): x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)] y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)] x0, y0, x1, y1 = min(x), min(y), max(x), max(y) assert x1 >= x0 and y1 >= y0 bbox = [[x0, y0, x1, y1] for _ in range(len(bboxs))] return bbox def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) ann_dir = os.path.join(filepath, "annotations") img_dir = os.path.join(filepath, "images") for guid, file in enumerate(sorted(os.listdir(ann_dir))): tokens = [] #words = [] bboxes = [] ner_tags = [] file_path = os.path.join(ann_dir, file) with open(file_path, "r", encoding="utf8") as f: data = json.load(f) image_path = os.path.join(img_dir, file) image_path = image_path.replace("json", "png") image, size = load_image(image_path) for state in data: for item in state["form"]: labels=item['label'] word=item['text'] ner_tags.append(labels) tokens.append(word) #words.append(word) bboxes.append(normalize_bbox(item['box'],size)) #cur_line_bboxes = [] #words, label = item["words"], item["label"] #words = [w for w in words if w["text"].strip() != ""] #if len(words) == 0: #continue #if label == "other": #for w in words: # tokens.append(w["text"]) # ner_tags.append("O") #cur_line_bboxes.append(normalize_bbox(w["box"], size)) # else: #tokens.append(words[0]["text"]) #ner_tags.append("B-" + label.upper()) #cur_line_bboxes.append(normalize_bbox(words[0]["box"], size)) #for w in words[1:]: #tokens.append(w["text"]) # ner_tags.append("I-" + label.upper()) #cur_line_bboxes.append(normalize_bbox(w["box"], size)) #cur_line_bboxes = self.get_line_bbox(cur_line_bboxes) #bboxes.extend(cur_line_bboxes) yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "ner_tags": ner_tags, "image": image, "image_path":image_path}#"words":words,