Datasets:
Commit
·
cc2acf9
1
Parent(s):
36cd788
Update README.md
Browse files
README.md
CHANGED
|
@@ -11,17 +11,17 @@ multilinguality:
|
|
| 11 |
size_categories:
|
| 12 |
- 1M<n<10M
|
| 13 |
source_datasets:
|
| 14 |
-
- https://
|
| 15 |
task_categories:
|
| 16 |
- text-classification
|
| 17 |
task_ids:
|
| 18 |
- natural-language-inference
|
| 19 |
- semantic-similarity-scoring
|
| 20 |
- text-scoring
|
| 21 |
-
paperswithcode_id:
|
| 22 |
-
pretty_name:
|
| 23 |
---
|
| 24 |
-
# Dataset Card for
|
| 25 |
|
| 26 |
## Dataset Description
|
| 27 |
- **Repository:** [Chinese NLI dataset](https://github.com/shibing624/text2vec)
|
|
@@ -35,9 +35,6 @@ pretty_name: Stanford Natural Language Inference
|
|
| 35 |
整合了文本推理,相似,摘要,问答,指令微调等任务的820万高质量数据,并转化为匹配格式数据集。
|
| 36 |
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
### Supported Tasks and Leaderboards
|
| 42 |
|
| 43 |
Supported Tasks: 支持中文文本匹配任务,文本相似度计算等相关任务。
|
|
@@ -70,7 +67,6 @@ The data fields are the same among all splits.
|
|
| 70 |
|
| 71 |
after remove None and len(text) < 1 data:
|
| 72 |
```shell
|
| 73 |
-
|
| 74 |
$ wc -l nli-zh-all/*
|
| 75 |
48818 nli-zh-all/alpaca_gpt4-train.jsonl
|
| 76 |
5000 nli-zh-all/amazon_reviews-train.jsonl
|
|
@@ -91,13 +87,14 @@ $ wc -l nli-zh-all/*
|
|
| 91 |
93404 nli-zh-all/xlsum-train.jsonl
|
| 92 |
1006218 nli-zh-all/zhihu_kol-train.jsonl
|
| 93 |
8234680 total
|
| 94 |
-
|
| 95 |
```
|
| 96 |
|
| 97 |
### Data Length
|
| 98 |
|
| 99 |

|
| 100 |
|
|
|
|
|
|
|
| 101 |
## Dataset Creation
|
| 102 |
### Curation Rationale
|
| 103 |
受[m3e-base](https://huggingface.co/moka-ai/m3e-base#M3E%E6%95%B0%E6%8D%AE%E9%9B%86)启发,合并了中文高质量NLI(natural langauge inference)数据集,
|
|
@@ -132,7 +129,8 @@ $ wc -l nli-zh-all/*
|
|
| 132 |
#### Who are the source language producers?
|
| 133 |
数据集的版权归原作者所有,使用各数据集时请尊重原数据集的版权。
|
| 134 |
|
| 135 |
-
|
|
|
|
| 136 |
@inproceedings{snli:emnlp2015,
|
| 137 |
Author = {Bowman, Samuel R. and Angeli, Gabor and Potts, Christopher, and Manning, Christopher D.},
|
| 138 |
Booktitle = {Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
|
|
|
|
| 11 |
size_categories:
|
| 12 |
- 1M<n<10M
|
| 13 |
source_datasets:
|
| 14 |
+
- https://github.com/shibing624/text2vec
|
| 15 |
task_categories:
|
| 16 |
- text-classification
|
| 17 |
task_ids:
|
| 18 |
- natural-language-inference
|
| 19 |
- semantic-similarity-scoring
|
| 20 |
- text-scoring
|
| 21 |
+
paperswithcode_id: nli
|
| 22 |
+
pretty_name: Chinese Natural Language Inference
|
| 23 |
---
|
| 24 |
+
# Dataset Card for nli-zh-all
|
| 25 |
|
| 26 |
## Dataset Description
|
| 27 |
- **Repository:** [Chinese NLI dataset](https://github.com/shibing624/text2vec)
|
|
|
|
| 35 |
整合了文本推理,相似,摘要,问答,指令微调等任务的820万高质量数据,并转化为匹配格式数据集。
|
| 36 |
|
| 37 |
|
|
|
|
|
|
|
|
|
|
| 38 |
### Supported Tasks and Leaderboards
|
| 39 |
|
| 40 |
Supported Tasks: 支持中文文本匹配任务,文本相似度计算等相关任务。
|
|
|
|
| 67 |
|
| 68 |
after remove None and len(text) < 1 data:
|
| 69 |
```shell
|
|
|
|
| 70 |
$ wc -l nli-zh-all/*
|
| 71 |
48818 nli-zh-all/alpaca_gpt4-train.jsonl
|
| 72 |
5000 nli-zh-all/amazon_reviews-train.jsonl
|
|
|
|
| 87 |
93404 nli-zh-all/xlsum-train.jsonl
|
| 88 |
1006218 nli-zh-all/zhihu_kol-train.jsonl
|
| 89 |
8234680 total
|
|
|
|
| 90 |
```
|
| 91 |
|
| 92 |
### Data Length
|
| 93 |
|
| 94 |

|
| 95 |
|
| 96 |
+
count text length script: https://github.com/shibing624/text2vec/blob/master/examples/data/count_text_length.py
|
| 97 |
+
|
| 98 |
## Dataset Creation
|
| 99 |
### Curation Rationale
|
| 100 |
受[m3e-base](https://huggingface.co/moka-ai/m3e-base#M3E%E6%95%B0%E6%8D%AE%E9%9B%86)启发,合并了中文高质量NLI(natural langauge inference)数据集,
|
|
|
|
| 129 |
#### Who are the source language producers?
|
| 130 |
数据集的版权归原作者所有,使用各数据集时请尊重原数据集的版权。
|
| 131 |
|
| 132 |
+
SNLI:
|
| 133 |
+
|
| 134 |
@inproceedings{snli:emnlp2015,
|
| 135 |
Author = {Bowman, Samuel R. and Angeli, Gabor and Potts, Christopher, and Manning, Christopher D.},
|
| 136 |
Booktitle = {Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
|