Datasets:
File size: 8,410 Bytes
0d8cd67 3793195 0d8cd67 3793195 ecff4b1 0d8cd67 ecff4b1 0d8cd67 3793195 ca82492 3793195 0d8cd67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- zh
license:
- other
multilinguality:
- monolingual
paperswithcode_id: mmchat-multi-modal-chat-dataset-on-social
pretty_name: "MMChat: Multi-Modal Chat Dataset on Social Media"
size_categories:
- 10M<n<100M
source_datasets:
- original
task_categories:
- conversational
task_ids:
- dialogue-generation
---
# Dataset Card for MMChat
## Table of Contents
- [Dataset Card for MMChat](#dataset-card-for-mmchat)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://www.zhengyinhe.com/datasets/
- **Repository:** https://github.com/silverriver/MMChat
- **Paper:** https://arxiv.org/abs/2108.07154
### Dataset Summary
MMChat is a large-scale dialogue dataset that contains image-grounded dialogues in Chinese. Each dialogue in MMChat is associated with one or more images (maximum 9 images per dialogue). We design various strategies to ensure the quality of the dialogues in MMChat.
MMChat comes with 4 different versions:
- `mmchat`: The MMChat dataset used in our paper.
- `mmchat_hf`: Contains human annotation on 100K sessions of dialogues.
- `mmchat_raw`: Raw dialogues used to construct MMChat.
`mmchat_lccc_filtered`: Raw dialogues filtered using the LCCC dataset.
If you what to use high quality multi-modal dialogues that are closed related to the given images, I suggest you to use the `mmchat_hf` version.
If you only care about the quality of dialogue texts, I suggest you to use the `mmchat_lccc_filtered` version.
### Supported Tasks and Leaderboards
- dialogue-generation: The dataset can be used to train a model for generating dialogue responses.
- response-retrieval: The dataset can be used to train a reranker model that can be used to implement a retrieval-based dialogue model.
### Languages
MMChat is in Chinese
MMChat中的对话是中文的
## Dataset Structure
### Data Instances
Several versions of MMChat are available. For `mmchat`, `mmchat_raw`, `mmchat_lccc_filtered`, the following instance applies:
```json
{
"dialog": ["你只拍出了你十分之一的美", "你的头像竟然换了,奥"],
"weibo_content": "分享图片",
"imgs": ["https://wx4.sinaimg.cn/mw2048/d716a6e2ly1fmug2w2l9qj21o02yox6p.jpg"]
}
```
For `mmchat_hf`, the following instance applies:
```json
{
"dialog": ["白百合", "啊?", "有点像", "还好吧哈哈哈牙像", "有男盆友没呢", "还没", "和你说话呢。没回我"],
"weibo_content": "补一张昨天礼仪的照片",
"imgs": ["https://ww2.sinaimg.cn/mw2048/005Co9wdjw1eyoz7ib9n5j307w0bu3z5.jpg"],
"labels": {
"image_qualified": true,
"dialog_qualified": true,
"dialog_image_related": true
}
}
```
### Data Fields
- `dialog` (list of strings): List of utterances consisting of a dialogue.
- `weibo_content` (string): Weibo content of the dialogue.
- `imgs` (list of strings): List of URLs of images.
- `labels` (dict): Human-annotated labels of the dialogue.
- `image_qualified` (bool): Whether the image is of high quality.
- `dialog_qualified` (bool): Whether the dialogue is of high quality.
- `dialog_image_related` (bool): Whether the dialogue is related to the image.
### Data Splits
For `mmchat`, we provide the following splits:
|train|valid|test|
|---:|---:|---:|
|115,842 | 4,000 | 1,000 |
For other versions, we do not provide the offical split.
More stastics are listed here:
| `mmchat` | Count |
|--------------------------------------|--------:|
| Sessions | 120.84 K |
| Sessions with more than 4 utterances | 17.32 K |
| Utterances | 314.13 K |
| Images | 198.82 K |
| Avg. utterance per session | 2.599 |
| Avg. image per session | 2.791 |
| Avg. character per utterance | 8.521 |
| `mmchat_hf` | Count |
|--------------------------------------|--------:|
| Sessions | 19.90 K |
| Sessions with more than 4 utterances | 8.91 K |
| Totally annotated sessions | 100.01 K |
| Utterances | 81.06 K |
| Images | 52.66K |
| Avg. utterance per session | 4.07 |
| Avg. image per session | 2.70 |
| Avg. character per utterance | 11.93 |
| `mmchat_raw` | Count |
|--------------------------------------|---------:|
| Sessions | 4.257 M |
| Sessions with more than 4 utterances | 2.304 M |
| Utterances | 18.590 M |
| Images | 4.874 M |
| Avg. utterance per session | 4.367 |
| Avg. image per session | 1.670 |
| Avg. character per utterance | 14.104 |
| `mmchat_lccc_filtered` | Count |
|--------------------------------------|--------:|
| Sessions | 492.6 K |
| Sessions with more than 4 utterances | 208.8 K |
| Utterances | 1.986 M |
| Images | 1.066 M |
| Avg. utterance per session | 4.031 |
| Avg. image per session | 2.514 |
| Avg. character per utterance | 11.336 |
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
other-weibo
This dataset is collected from Weibo.
You can refer to the [detailed policy](https://weibo.com/signup/v5/privacy) required to use this dataset.
Please restrict the usage of this dataset to non-commerical purposes.
### Citation Information
```
@inproceedings{zheng2022MMChat,
author = {Zheng, Yinhe and Chen, Guanyi and Liu, Xin and Sun, Jian},
title = {MMChat: Multi-Modal Chat Dataset on Social Media},
booktitle = {Proceedings of The 13th Language Resources and Evaluation Conference},
year = {2022},
publisher = {European Language Resources Association},
}
@inproceedings{wang2020chinese,
title={A Large-Scale Chinese Short-Text Conversation Dataset},
author={Wang, Yida and Ke, Pei and Zheng, Yinhe and Huang, Kaili and Jiang, Yong and Zhu, Xiaoyan and Huang, Minlie},
booktitle={NLPCC},
year={2020},
url={https://arxiv.org/abs/2008.03946}
}
```
### Contributions
Thanks to [Yinhe Zheng](https://github.com/silverriver) for adding this dataset.
|