File size: 24,273 Bytes
f352a84
 
 
 
 
 
 
 
 
 
 
1b96b67
 
104d1df
1b96b67
225b564
 
 
 
 
 
 
 
 
7c28046
 
1b96b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f352a84
2c8d061
80a2c2a
 
 
 
 
 
 
 
 
 
2c8d061
 
 
80a2c2a
 
 
 
 
2c8d061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76ae371
 
 
 
 
 
 
 
 
2c8d061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8bfe1
 
2c8d061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8bfe1
2c8d061
1f8bfe1
 
2c8d061
 
 
1f8bfe1
2c8d061
 
 
 
 
 
 
 
 
 
 
1f8bfe1
2c8d061
 
 
 
 
 
 
 
 
 
 
 
 
ef43493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3ec6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8716be6
d3ec6bc
 
 
2c8d061
 
76ae371
2c8d061
 
84b058a
 
 
 
 
 
 
 
76ae371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c8d061
 
 
 
 
 
 
 
 
 
 
cb8ee82
8716be6
 
eb1ce6b
4af876e
8716be6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
---
license: cc-by-nc-4.0
task_categories:
- video-classification
language:
- en
tags:
- medical
pretty_name: 'OmniFall: A Unified Benchmark for Staged-to-Wild Fall Detection'
size_categories:
- 10K<n<100K

configs:
  - config_name: labels
    data_files:
      - labels/GMDCSA24.csv
      - labels/OOPS.csv
      - labels/caucafall.csv
      - labels/cmdfall.csv
      - labels/edf.csv
      - labels/le2i.csv
      - labels/mcfd.csv
      - labels/occu.csv
      - labels/up_fall.csv
    default: true
    description: "Labels for all videos, load splits to get train val test paths."

  # Cross-subject (cs) and Cross-validation (cv) base configurations
  - config_name: cv
    data_files:
      - split: train
        path: "splits/cv/*/train.csv"
      - split: validation
        path: "splits/cv/*/val.csv"
      - split: test
        path: "splits/cv/*/test.csv"
    description: "Cross-validation split configuration for all datasets"

  - config_name: cs
    data_files:
      - split: train
        path: "splits/cs/*/train.csv"
      - split: validation
        path: "splits/cs/*/val.csv"
      - split: test
        path: "splits/cs/*/test.csv"
    description: "Cross-subject split configuration for all datasets"

  # New multi-dataset splits for staged/wild settings
  - config_name: cs-staged
    data_files:
      - split: train
        path:
          - "splits/cs/caucafall/train.csv"
          - "splits/cs/cmdfall/train.csv"
          - "splits/cs/edf/train.csv"
          - "splits/cs/gmdcsa24/train.csv"
          - "splits/cs/le2i/train.csv"
          - "splits/cs/mcfd/train.csv"
          - "splits/cs/occu/train.csv"
          - "splits/cs/up_fall/train.csv"
      - split: validation
        path:
          - "splits/cs/caucafall/val.csv"
          - "splits/cs/cmdfall/val.csv"
          - "splits/cs/edf/val.csv"
          - "splits/cs/gmdcsa24/val.csv"
          - "splits/cs/le2i/val.csv"
          - "splits/cs/mcfd/val.csv"
          - "splits/cs/occu/val.csv"
          - "splits/cs/up_fall/val.csv"
      - split: test
        path:
          - "splits/cs/caucafall/test.csv"
          - "splits/cs/cmdfall/test.csv"
          - "splits/cs/edf/test.csv"
          - "splits/cs/gmdcsa24/test.csv"
          - "splits/cs/le2i/test.csv"
          - "splits/cs/mcfd/test.csv"
          - "splits/cs/occu/test.csv"
          - "splits/cs/up_fall/test.csv"
    description: "Cross-subject splits on staged datasets only (excluding OOPS)"

  - config_name: cv-staged
    data_files:
      - split: train
        path:
          - "splits/cv/caucafall/train.csv"
          - "splits/cv/cmdfall/train.csv"
          - "splits/cv/edf/train.csv"
          - "splits/cv/gmdcsa24/train.csv"
          - "splits/cv/le2i/train.csv"
          - "splits/cv/mcfd/train.csv"
          - "splits/cv/occu/train.csv"
          - "splits/cv/up_fall/train.csv"
      - split: validation
        path:
          - "splits/cv/caucafall/val.csv"
          - "splits/cv/cmdfall/val.csv"
          - "splits/cv/edf/val.csv"
          - "splits/cv/gmdcsa24/val.csv"
          - "splits/cv/le2i/val.csv"
          - "splits/cv/mcfd/val.csv"
          - "splits/cv/occu/val.csv"
          - "splits/cv/up_fall/val.csv"
      - split: test
        path:
          - "splits/cv/caucafall/test.csv"
          - "splits/cv/cmdfall/test.csv"
          - "splits/cv/edf/test.csv"
          - "splits/cv/gmdcsa24/test.csv"
          - "splits/cv/le2i/test.csv"
          - "splits/cv/mcfd/test.csv"
          - "splits/cv/occu/test.csv"
          - "splits/cv/up_fall/test.csv"
    description: "Cross-validation splits on staged datasets only (excluding OOPS)"

  - config_name: cs-staged-wild
    data_files:
      - split: train
        path:
          - "splits/cs/caucafall/train.csv"
          - "splits/cs/cmdfall/train.csv"
          - "splits/cs/edf/train.csv"
          - "splits/cs/gmdcsa24/train.csv"
          - "splits/cs/le2i/train.csv"
          - "splits/cs/mcfd/train.csv"
          - "splits/cs/occu/train.csv"
          - "splits/cs/up_fall/train.csv"
      - split: validation
        path:
          - "splits/cs/caucafall/val.csv"
          - "splits/cs/cmdfall/val.csv"
          - "splits/cs/edf/val.csv"
          - "splits/cs/gmdcsa24/val.csv"
          - "splits/cs/le2i/val.csv"
          - "splits/cs/mcfd/val.csv"
          - "splits/cs/occu/val.csv"
          - "splits/cs/up_fall/val.csv"
      - split: test
        path: "splits/cs/OOPS/test.csv"
    description: "Train and validate on staged datasets, test on wild (OOPS) dataset with cross-subject splits"

  - config_name: cv-staged-wild
    data_files:
      - split: train
        path:
          - "splits/cv/caucafall/train.csv"
          - "splits/cv/cmdfall/train.csv"
          - "splits/cv/edf/train.csv"
          - "splits/cv/gmdcsa24/train.csv"
          - "splits/cv/le2i/train.csv"
          - "splits/cv/mcfd/train.csv"
          - "splits/cv/occu/train.csv"
          - "splits/cv/up_fall/train.csv"
      - split: validation
        path:
          - "splits/cv/caucafall/val.csv"
          - "splits/cv/cmdfall/val.csv"
          - "splits/cv/edf/val.csv"
          - "splits/cv/gmdcsa24/val.csv"
          - "splits/cv/le2i/val.csv"
          - "splits/cv/mcfd/val.csv"
          - "splits/cv/occu/val.csv"
          - "splits/cv/up_fall/val.csv"
      - split: test
        path: "splits/cv/OOPS/test.csv"
    description: "Train and validate on staged datasets, test on wild (OOPS) dataset with cross-validation splits"

  # Individual dataset configurations
  - config_name: OOPS
    data_files:
      - split: train
        path: "splits/cs/OOPS/train.csv"
      - split: validation
        path: "splits/cs/OOPS/val.csv"
      - split: test
        path: "splits/cs/OOPS/test.csv"
    description: "OOPS dataset with cross-subject splits"
  
  - config_name: caucafall
    data_files:
      - split: train
        path: "splits/cs/caucafall/train.csv"
      - split: validation
        path: "splits/cs/caucafall/val.csv"
      - split: test
        path: "splits/cs/caucafall/test.csv"
    description: "CaucaFall dataset with cross-subject splits"
  
  - config_name: cmdfall
    data_files:
      - split: train
        path: "splits/cs/cmdfall/train.csv"
      - split: validation
        path: "splits/cs/cmdfall/val.csv"
      - split: test
        path: "splits/cs/cmdfall/test.csv"
    description: "CMDFall dataset with cross-subject splits"
  
  - config_name: edf
    data_files:
      - split: train
        path: "splits/cs/edf/train.csv"
      - split: validation
        path: "splits/cs/edf/val.csv"
      - split: test
        path: "splits/cs/edf/test.csv"
    description: "EDF dataset with cross-subject splits"
  
  - config_name: gmdcsa24
    data_files:
      - split: train
        path: "splits/cs/gmdcsa24/train.csv"
      - split: validation
        path: "splits/cs/gmdcsa24/val.csv"
      - split: test
        path: "splits/cs/gmdcsa24/test.csv"
    description: "GMDCSA24 dataset with cross-subject splits"
  
  - config_name: le2i
    data_files:
      - split: train
        path: "splits/cs/le2i/train.csv"
      - split: validation
        path: "splits/cs/le2i/val.csv"
      - split: test
        path: "splits/cs/le2i/test.csv"
    description: "LE2I dataset with cross-subject splits"
  
  - config_name: mcfd
    data_files:
      - split: train
        path: "splits/cs/mcfd/train.csv"
      - split: validation
        path: "splits/cs/mcfd/val.csv"
      - split: test
        path: "splits/cs/mcfd/test.csv"
    description: "MCFD dataset with cross-subject splits"
  
  - config_name: occu
    data_files:
      - split: train
        path: "splits/cs/occu/train.csv"
      - split: validation
        path: "splits/cs/occu/val.csv"
      - split: test
        path: "splits/cs/occu/test.csv"
    description: "OCCU dataset with cross-subject splits"
  
  - config_name: up_fall
    data_files:
      - split: train
        path: "splits/cs/up_fall/train.csv"
      - split: validation
        path: "splits/cs/up_fall/val.csv"
      - split: test
        path: "splits/cs/up_fall/test.csv"
    description: "UP-Fall dataset with cross-subject splits"
---
[![License: CC BY-NC-SA 4.0](https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/)
</br>
<a href="https://arxiv.org/abs/2505.19889">
  <img src="https://img.shields.io/badge/arXiv-2505.19889-b31b1b.svg?logo=arXiv" alt="arXiv" style="height:20px;">
</a>
</br>
<a href="https://simplexsigil.github.io/omnifall/">
  <img src="https://img.shields.io/badge/Omnifall-Project_Page-2FA7C9.svg" alt="arXiv" style="height:20px;">
</a>

# OmniFall: A Unified Benchmark for Staged-to-Wild Fall Detection

This repository contains the annotation and split definitions for OmniFall, a comprehensive benchmark that unifies eight public indoor fall datasets under a consistent ten-class annotation scheme, complemented by the OOPS-Fall benchmark of genuine accidents captured in the wild.

[OmniFall: A Unified Staged-to-Wild Benchmark for Human Fall Detection](https://arxiv.org/abs/2505.19889)

Also have a look for additional information on our project page:

[OmniFall Project Page](https://simplexsigil.github.io/omnifall/)

## Overview

Falls are the leading cause of fatal injuries among older adults worldwide. While the mechanical event of falling lasts only a fraction of a second, the critical health risk often comes from the ensuing "fallen" state—when a person remains on the ground, potentially injured and unable to call for help.

OmniFall addresses three critical limitations in current fall detection research:

1. **Unified Taxonomy:** Rather than binary fall/no-fall classification, we provide a consistent ten-class scheme across datasets that distinguishes transient actions (fall, sit down, lie down, stand up) from their static outcomes (fallen, sitting, lying, standing).

2. **Combined Benchmark:** We unify eight public datasets (14+ hours of video, 112 subjects, 31 camera views) into a single benchmark with standardized train/val/test splits.

3. **In-the-Wild Evaluation:** We include OOPS-Fall, curated from genuine accident videos of the OOPS dataset to test generalization to real-world conditions.

## Datasets

This benchmark includes annotations for the following datasets:

1. **[CMDFall](https://www.mica.edu.vn/perso/Tran-Thi-Thanh-Hai/CMDFALL.html)** (7h 25m single view) - 50 subjects, 7 synchronized views
2. **[UP Fall](https://sites.google.com/up.edu.mx/har-up/)** (4h 35m) - 17 subjects, 2 synchronized views
3. **[Le2i](https://search-data.ubfc.fr/imvia/FR-13002091000019-2024-04-09_Fall-Detection-Dataset.html)** (47m) - 9 subjects, 6 different rooms
4. **[GMDCSA24](https://github.com/ekramalam/GMDCSA24-A-Dataset-for-Human-Fall-Detection-in-Videos)** (21m) - 4 subjects, 3 rooms
5. **[CAUCAFall](https://data.mendeley.com/datasets/7w7fccy7ky/4)** (16m) - 10 subjects, 1 room
6. **[EDF](https://doi.org/10.5281/zenodo.15494102)** (13m) - 5 subjects, 2 views synchronized
7. **[OCCU](https://doi.org/10.5281/zenodo.15494102)** (14m) - 5 subjects, 2 views not synchronized
8. **[MCFD](https://www.iro.umontreal.ca/~labimage/Dataset/)** (12m) - 1 subject, 8 views
9. **[OOPS-Fall](https://oops.cs.columbia.edu/data/)** - Curated subset of genuine fall accidents from the OOPS dataset, strong variation in subjects and views.

## Structure

The repository is organized as follows:

- `labels/` - CSV files containing frame-level annotations for each dataset as well as label2id.csv
- `splits/` - Train/validation/test splits for cross-subject (CS) and cross-view (CV) evaluation
  - `splits/cs/` - Cross-subject splits, where training, validation, and test sets contain different subjects
  - `splits/cv/` - Cross-view splits, where training, validation, and test sets contain different camera views

### Label Format

Each label file in the `labels/` directory follows this format:

```
path,label,start,end,subject,cam,dataset
path/to/clip,class_id,start_time,end_time,subject_id,camera_id,dataset_name
```

Where:
- `path`: Relative path to the video, given the respective dataset root.
- `label`: Class ID (0-9) corresponding to one of the ten activity classes:
  - 0: walk
  - 1: fall
  - 2: fallen
  - 3: sit_down
  - 4: sitting
  - 5: lie_down
  - 6: lying
  - 7: stand_up
  - 8: standing
  - 9: other
- `start`: Start time of the segment (in seconds)
- `end`: End time of the segment (in seconds)
- `subject`: Subject ID
- `cam`: Camera view ID
- `dataset`: Name of the dataset

For OOPS-Fall, only fall segments and non-fall segments are labeled; non-falls are labels as "other", independent of the underlying content, as long as it is not a fall. 
Cam and subject ids in OOPS-Fall are -1.

### Split Format

Split files in the `splits/` directory list the video segments included in each partition. You can use the split paths to filter the label data.:

```
path
path/to/clip
```

## Evaluation Protocols

We provide multiple evaluation configurations via the `dataset.yaml` file:

### Basic Configurations
- `default`: Access to all dataset labels (huggingface loads everything into the `train` split by default.)
- `cs`: Cross-subject splits for all datasets
- `cv`: Cross-view splits for all datasets

### Individual Dataset Configurations
- `caucafall`, `cmdfall`, `edf`, `gmdcsa24`, `le2i`, `mcfd`, `occu`, `up_fall`, `OOPS`: 
  Access to individual datasets with their respective cross-subject splits

### Multi-Dataset Evaluation Protocols
- `cs-staged`: Cross-subject splits combined across all staged datasets
- `cv-staged`: Cross-view splits combined across all staged datasets
- `cs-staged-wild`: Train and validate on staged datasets with cross-subject splits, test on OOPS-Fall
- `cv-staged-wild`: Train and validate on staged datasets with cross-view splits, test on OOPS-Fall

## Examples

```python
from datasets import load_dataset
import pandas as pd

# Load the datasets
print("Loading datasets...")

# Note: We separate segment labels and split definitions, but hugginface datasets always expects a split.
# Thats why all labels are in the train split when loaded, but we create the actual splits afterwards.
labels = load_dataset("simplexsigil2/omnifall", "labels")["train"]

cv_split = load_dataset("simplexsigil2/omnifall", "cv")
cs_split = load_dataset("simplexsigil2/omnifall", "cs")

# There are many more splits, relevant for the paper:
# - cv-staged -> Only lab datasets
# - cs-staged -> Only lab datasets
# - cv-staged-wild -> Lab datasets for train and val, only OOPS-Fall in test set
# - cs-staged-wild -> Lab datasets for train and val, only OOPS-Fall in test set

# Convert to pandas DataFrames
labels_df = pd.DataFrame(labels)
print(f"Labels dataframe shape: {labels_df.shape}")

# Process each split type (CV and CS)
for split_name, split_data in [("CV", cv_split), ("CS", cs_split)]:
    print(f"\n{split_name} Split Processing:")

    # Process each split (train, validation, test)
    for subset_name, subset in split_data.items():
        # Convert to DataFrame
        subset_df = pd.DataFrame(subset)

        # Join with labels on 'path'
        merged_df = pd.merge(subset_df, labels_df, on="path", how="left")

        # Print statistics
        print(f"  {subset_name} split: {len(subset_df)} videos, {merged_df.dropna().shape[0]} labelled segments")

        # Print examples
        if not merged_df.empty:
            print(f"\n  {subset_name.upper()} EXAMPLES:")
            random_samples = merged_df.sample(min(3, len(merged_df)))
            for i, (_, row) in enumerate(random_samples.iterrows()):
                print(f"  Example {i+1}:")
                print(f"    Path: {row['path']}")
                print(f"    Start: {row['start']}")
                print(f"    End: {row['end']}")
                print(f"    Label: {row['label']}")
                print(f"    Subject: {row['subject']}")
                print(f"    Dataset: {row['dataset']}")
                print(f"    Camera: {row['cam']}")
                print()

```

## Label definitions

In this section we provide additional information about the labelling process to provide as much transparency as possible.

There are 10 labels:

- **`0|walk`** - Move around, including jogging and running and "drunk walking", but only if it is not part of some special exercise like pulling your knees up. Not when pushing a large object like a chair, but included carrying something small like an apple.
- **`1|fall`** - The act of falling (from any previous state). Includes falling on a bed, if the process is not a controlled lying down with arms as support.
- **`2|fallen`** - Being on the ground or a mattress after a fall.
- **`3|sit_down`** - Sitting down on bed or chair or ground.
- **`4|sitting`** - Sitting on bed or chair or ground.
- **`5|lie_down`** - Lying down intentionally (in contrast to a fall) on ground or bed.
- **`6|lying`** - Being in a lying position (in bed or on the ground) after intentionally getting into that position.
- **`7|stand_up`** - Standing up from a fallen state, from lying or sitting. Includes getting from lying position into sitting position.
- **`8|standing`** - Standing around without walking.
- **`9|other`** - Any other activity, including e.g. walking while pushing an object like a chair.

## Motion Types

There are two types of motions, **dynamic** ones like `walk` or `stand_up` and **static** ones like `fallen`, `sitting`, `lying`.

**Generally we annotate dynamic motions as soon as the first frame appears which belongs to that action**.

Let's say we see a person `walk`, then `fall`. The first frame which indicates a motion which does seem to be different to `walk` is the start of `fall`. Sometimes it is necessary to have a look at a person walking to learn when the motion begins to change to something else.

**For static motions the label begins with the first frame where the person comes to a resting state.** For `sit_down`, the label ends when the person reaches a state where it is no longer adjusting its body position but comes to a rest. `fall` ends when the person is no longer moving caused by the inertia of the fall. The following `fallen` might contain movement on the ground, but no movement which belongs to `fall` or `stand_up`.

## Label Sequences

There are some natural sequences of labels like `fall`, `fallen` and `stand_up`. However, it is not always the case that these appear together. Sometimes the person might directly stand up again without any time at rest on the ground, in this case there is no `fallen` segment. Likewise sometimes there is no sitting segment.

Lying down can be on a bed or on the ground, it is intentional in contrast to `fall`. There are falls which follow `sit_down` or `lie_down` if it is from a chair or from a bed.

When a person is lying in a bed and getting up to sit in the bed we label this as `stand_up`, even if the person is still sitting in the bed. A sequence could then be `lying`, `stand_up`, `sitting`, `stand_up` to describe a person which first lies down, then gets into a sitting position, waits a little, then gets fully up.

Sometimes it is not perfectly clear if it is `sit_down` followed by `lie_down` or simply `lie_down`. This depends on there being a moment of rest or not. If the person spends a short amount of time in the sitting position it is the former, if the person directly goes from `sit_down` to `lie_down` without rest it is only labeled `lie_down`. Similar thoughts apply to `stand_up`.

In the video at the bottom of this page we show how we leveraged VGG VIA to perform the annotations. Note, that we pre-load the original dataset labels as visual aid, but relabel the whole video with our label definitions. In the video below, CMDFall is shown, which already provides relatively detailed labels, the original labels of other datasets are more sparse. Additionally, even CMDFall does not label all frames, but only specific segments, while our labels cover mostly every frame.

The blurred out regions were added by us in post-processing to protect the subjects privacy on this page, they are not part of the original videos.

## Citation

If you use OmniFall in your research, please cite our paper (will be updated soon) as well as all sub-dataset papers:

```bibtex
@misc{omnifall,
      title={OmniFall: A Unified Staged-to-Wild Benchmark for Human Fall Detection}, 
      author={David Schneider and Zdravko Marinov and Rafael Baur and Zeyun Zhong and Rodi Düger and Rainer Stiefelhagen},
      year={2025},
      eprint={2505.19889},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2505.19889}, 
},

@inproceedings{omnifall_cmdfall,
  title={A multi-modal multi-view dataset for human fall analysis and preliminary investigation on modality},
  author={Tran, Thanh-Hai and Le, Thi-Lan and Pham, Dinh-Tan and Hoang, Van-Nam and Khong, Van-Minh and Tran, Quoc-Toan and Nguyen, Thai-Son and Pham, Cuong},
  booktitle={2018 24th International Conference on Pattern Recognition (ICPR)},
  pages={1947--1952},
  year={2018},
  organization={IEEE}
},

@article{omnifall_up-fall,
  title={UP-fall detection dataset: A multimodal approach},
  author={Mart{\'\i}nez-Villase{\~n}or, Lourdes and Ponce, Hiram and Brieva, Jorge and Moya-Albor, Ernesto and N{\'u}{\~n}ez-Mart{\'\i}nez, Jos{\'e} and Pe{\~n}afort-Asturiano, Carlos},
  journal={Sensors},
  volume={19},
  number={9},
  pages={1988},
  year={2019},
  publisher={MDPI}
},

@article{omnifall_le2i,
  title={Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification},
  author={Charfi, Imen and Miteran, Johel and Dubois, Julien and Atri, Mohamed and Tourki, Rached},
  journal={Journal of Electronic Imaging},
  volume={22},
  number={4},
  pages={041106--041106},
  year={2013},
  publisher={Society of Photo-Optical Instrumentation Engineers}
},

@article{omnifall_gmdcsa,
  title={GMDCSA-24: A dataset for human fall detection in videos},
  author={Alam, Ekram and Sufian, Abu and Dutta, Paramartha and Leo, Marco and Hameed, Ibrahim A},
  journal={Data in Brief},
  volume={57},
  pages={110892},
  year={2024},
  publisher={Elsevier}
},

@article{omnifall_cauca,
  title={Dataset CAUCAFall},
  author={Eraso, Jose Camilo and Mu{\~n}oz, Elena and Mu{\~n}oz, Mariela and Pinto, Jesus},
  journal={Mendeley Data},
  volume={4},
  year={2022}
},

@inproceedings{omnifall_edf_occu,
  title={Evaluating depth-based computer vision methods for fall detection under occlusions},
  author={Zhang, Zhong and Conly, Christopher and Athitsos, Vassilis},
  booktitle={International symposium on visual computing},
  pages={196--207},
  year={2014},
  organization={Springer}
},

@article{omnifall_mcfd,
  title={Multiple cameras fall dataset},
  author={Auvinet, Edouard and Rougier, Caroline and Meunier, Jean and St-Arnaud, Alain and Rousseau, Jacqueline},
  journal={DIRO-Universit{\'e} de Montr{\'e}al, Tech. Rep},
  volume={1350},
  pages={24},
  year={2010}
},

@inproceedings{omnifall_oops,
  title={Oops! predicting unintentional action in video},
  author={Epstein, Dave and Chen, Boyuan and Vondrick, Carl},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  pages={919--929},
  year={2020}
}
```

## License

The annotations and split definitions in this repository are released under [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/).

The original video data belongs to their respective owners and should be obtained from the original sources.

## Contact

For questions about the dataset, please contact [[email protected]].


## How we used VGG VIA to densely annotate videos for Omnifall
We provide this video to shortly demonstrate how the annotation process was conducted, increasing transparency. Note, that the CMDFall dataset already provides realtively detailed labels, this is not the case for many of the other datasets.

<video src="https://huggingface.co/datasets/simplexsigil2/omnifall/resolve/main/annotation_remarks.webm" controls />