|
from sklearn.multioutput import MultiOutputClassifier |
|
from sklearn.multiclass import OneVsRestClassifier |
|
from sklearn.metrics import classification_report, accuracy_score |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.tree import DecisionTreeClassifier |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.neighbors import KNeighborsClassifier |
|
from sklearn.naive_bayes import MultinomialNB |
|
from sklearn.svm import SVC |
|
from xgboost import XGBClassifier |
|
from sklearn.neural_network import MLPClassifier |
|
import numpy as np |
|
import pandas as pd |
|
|
|
|
|
def multilabel_logistic_regression(X, y): |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
model = OneVsRestClassifier(LogisticRegression(solver='lbfgs', max_iter=1000)) |
|
model.fit(X_train, y_train) |
|
|
|
y_pred = model.predict(X_test) |
|
return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) |
|
|
|
|
|
def multilabel_decision_tree(X, y): |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
model = MultiOutputClassifier(DecisionTreeClassifier()) |
|
model.fit(X_train, y_train) |
|
|
|
y_pred = model.predict(X_test) |
|
return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) |
|
|
|
|
|
def multilabel_random_forest(X, y): |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
model = MultiOutputClassifier(RandomForestClassifier(n_estimators=100, random_state=42)) |
|
model.fit(X_train, y_train) |
|
|
|
y_pred = model.predict(X_test) |
|
return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) |
|
|
|
|
|
def multilabel_svm(X, y): |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
model = OneVsRestClassifier(SVC(kernel='rbf', probability=True)) |
|
model.fit(X_train, y_train) |
|
|
|
y_pred = model.predict(X_test) |
|
return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) |
|
|
|
|
|
def multilabel_knn(X, y, k=5): |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
model = KNeighborsClassifier(n_neighbors=k) |
|
model.fit(X_train, y_train) |
|
|
|
y_pred = model.predict(X_test) |
|
return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) |
|
|
|
|
|
def multilabel_naive_bayes(X, y): |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
model = OneVsRestClassifier(MultinomialNB()) |
|
model.fit(X_train, y_train) |
|
|
|
y_pred = model.predict(X_test) |
|
return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) |
|
|
|
|
|
def multilabel_xgboost(X, y): |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
model = OneVsRestClassifier(XGBClassifier(use_label_encoder=False, eval_metric='logloss')) |
|
model.fit(X_train, y_train) |
|
|
|
y_pred = model.predict(X_test) |
|
return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) |
|
|
|
|
|
def multilabel_mlp(X, y): |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
model = MultiOutputClassifier(MLPClassifier(hidden_layer_sizes=(100,), max_iter=500)) |
|
model.fit(X_train, y_train) |
|
|
|
y_pred = model.predict(X_test) |
|
return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) |
|
|