from sklearn.multioutput import MultiOutputClassifier from sklearn.multiclass import OneVsRestClassifier from sklearn.metrics import classification_report, accuracy_score from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC from xgboost import XGBClassifier from sklearn.neural_network import MLPClassifier import numpy as np import pandas as pd # Logistic Regression (use OneVsRest) def multilabel_logistic_regression(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = OneVsRestClassifier(LogisticRegression(solver='lbfgs', max_iter=1000)) model.fit(X_train, y_train) y_pred = model.predict(X_test) return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) # Decision Tree def multilabel_decision_tree(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = MultiOutputClassifier(DecisionTreeClassifier()) model.fit(X_train, y_train) y_pred = model.predict(X_test) return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) # Random Forest def multilabel_random_forest(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = MultiOutputClassifier(RandomForestClassifier(n_estimators=100, random_state=42)) model.fit(X_train, y_train) y_pred = model.predict(X_test) return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) # SVM (with OneVsRest) def multilabel_svm(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = OneVsRestClassifier(SVC(kernel='rbf', probability=True)) model.fit(X_train, y_train) y_pred = model.predict(X_test) return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) # k-NN (KNeighborsClassifier supports multi-label directly) def multilabel_knn(X, y, k=5): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = KNeighborsClassifier(n_neighbors=k) model.fit(X_train, y_train) y_pred = model.predict(X_test) return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) # Naive Bayes (MultinomialNB with OneVsRest) def multilabel_naive_bayes(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = OneVsRestClassifier(MultinomialNB()) model.fit(X_train, y_train) y_pred = model.predict(X_test) return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) # XGBoost (with OneVsRest) def multilabel_xgboost(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = OneVsRestClassifier(XGBClassifier(use_label_encoder=False, eval_metric='logloss')) model.fit(X_train, y_train) y_pred = model.predict(X_test) return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred) # MLP (Neural Net) def multilabel_mlp(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = MultiOutputClassifier(MLPClassifier(hidden_layer_sizes=(100,), max_iter=500)) model.fit(X_train, y_train) y_pred = model.predict(X_test) return classification_report(y_test, y_pred), accuracy_score(y_test, y_pred)