|
"""Script to generate splits for benchmarking text embedding clustering. |
|
Based on data from GermEval 2019 Shared Task on Hierarchical Tesk Classification (https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/germeval-2019-hmc.html).""" |
|
|
|
import os |
|
import random |
|
import sys |
|
from collections import Counter |
|
|
|
import jsonlines |
|
import numpy as np |
|
import pandas as pd |
|
from bs4 import BeautifulSoup |
|
|
|
random.seed(42) |
|
|
|
|
|
DATA_PATH = sys.argv[1] |
|
|
|
INCLUDE_BODY = ( |
|
True |
|
) |
|
|
|
NUM_SPLITS = 10 |
|
SPLIT_RANGE = np.array([0.1, 1.0]) |
|
|
|
|
|
def get_samples(soup, include_body=INCLUDE_BODY): |
|
d1_counter = Counter([d1.string for d1 in soup.find_all("topic", {"d": 1})]) |
|
|
|
samples = [] |
|
for book in soup.find_all("book"): |
|
if book.title.string is None or book.body.string is None: |
|
continue |
|
|
|
d0_topics = list(set([d.string for d in book.find_all("topic", {"d": 0})])) |
|
d1_topics = list(set([d.string for d in book.find_all("topic", {"d": 1})])) |
|
|
|
if len(d0_topics) != 1: |
|
continue |
|
if len(d1_topics) < 1 or len(d1_topics) > 2: |
|
continue |
|
|
|
d0_label = d0_topics[0] |
|
d1_label = sorted(d1_topics, key=lambda x: d1_counter[x])[0] |
|
|
|
text = book.title.string |
|
if include_body: |
|
text += "\n" + book.body.string |
|
|
|
samples.append([text, d0_label, d1_label]) |
|
|
|
return pd.DataFrame(samples, columns=["sentences", "d0_label", "d1_label"]) |
|
|
|
|
|
def get_split(frame, label="d0_label", split_range=SPLIT_RANGE): |
|
samples = random.randint(*(split_range * len(frame)).astype(int)) |
|
return ( |
|
frame.sample(samples)[["sentences", label]] |
|
.rename(columns={label: "labels"})[["sentences", "labels"]] |
|
.to_dict("list") |
|
) |
|
|
|
|
|
def write_sets(name, sets): |
|
with jsonlines.open(name, "w") as f_out: |
|
f_out.write_all(sets) |
|
|
|
|
|
train = open(os.path.join(DATA_PATH, "blurbs_train.txt"), encoding="utf-8").read() |
|
dev = open(os.path.join(DATA_PATH, "blurbs_dev.txt"), encoding="utf-8").read() |
|
test = open(os.path.join(DATA_PATH, "blurbs_test.txt"), encoding="utf-8").read() |
|
|
|
soup = BeautifulSoup(train + "\n\n" + dev + "\n\n" + test, "html.parser") |
|
|
|
samples = get_samples(soup) |
|
|
|
sets = [] |
|
|
|
for _ in range(NUM_SPLITS): |
|
sets.append(get_split(samples)) |
|
|
|
|
|
for d0 in samples["d0_label"].unique(): |
|
sets.append( |
|
(samples[samples.d0_label == d0]) |
|
.rename(columns={"d1_label": "labels"})[["sentences", "labels"]] |
|
.to_dict("list") |
|
) |
|
|
|
|
|
for _ in range(NUM_SPLITS): |
|
sets.append(get_split(samples, label="d1_label")) |
|
|
|
write_sets("test.jsonl", sets) |
|
|