13Aluminium commited on
Commit
26a33a4
·
verified ·
1 Parent(s): f7b54f2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -3
README.md CHANGED
@@ -1,3 +1,83 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - feature-extraction
5
+ - text-classification
6
+ - token-classification
7
+ - translation
8
+ - text-generation
9
+ - summarization
10
+ - text2text-generation
11
+ language:
12
+ - sa
13
+ tags:
14
+ - code
15
+ pretty_name: Śihva Mahāpurāṇa
16
+ size_categories:
17
+ - 10K<n<100K
18
+ ---
19
+ # Dataset Card for Shiv_Mahapuran
20
+
21
+ ## Dataset Details
22
+
23
+ ### Dataset Description
24
+
25
+ This dataset contains a complete, structured representation of the Śiva Mahāpurāṇa (often called Śivapurāṇa) in CSV format. It is broken down into Saṃhitās (seven surviving Saṃhitās), Khaṇḍas, Adhyāyas, and individual ślokas, enabling fine-grained NLP work on classical Sanskrit scripture.
26
+ - **Curated by:** [Aluminium](https://huggingface.co/13Aluminium)
27
+ - **Organization:** [Snskrt](https://huggingface.co/snskrt)
28
+ - **Shared by:** [Snskrt](https://huggingface.co/snskrt)
29
+ - **Language(s):** Sanskrit (ISO code: sa)
30
+ - **License:** Apache-2.0
31
+ - **Size:** ~24,489 ślokas
32
+
33
+ ### Dataset Sources
34
+
35
+ - **Repository:** [huggingface.co/datasets/snskrt/Shiv_Mahapuran](https://huggingface.co/datasets/snskrt/Shiv_Mahapuran)
36
+
37
+ ## Uses
38
+
39
+ ### Direct Use
40
+
41
+ - Training and evaluating Sanskrit language models on classical hymn/text generation
42
+ - Building Sanskrit question-answering systems over Purāṇic content
43
+ - Machine translation between Sanskrit and modern languages
44
+ - Summarization and feature extraction of mythological scripture
45
+
46
+ ### Out-of-Scope Use
47
+
48
+ - Modern colloquial or conversational Sanskrit tasks
49
+
50
+ ## Dataset Structure
51
+
52
+ Each record in the CSV/JSON has these fields:
53
+
54
+ - `samhita` (string): Name of the Saṃhitā, e.g. `"Rudrasaṃhitā"`
55
+ - `khanda` (string): Khanda name, e.g. `"Parvati kand"`
56
+ - `khanda_number` (string): Khanda name, e.g. `"1"`
57
+ - `adhyay` (string): Adhyāya title or number, e.g. `"1.1"`
58
+ - `shloka_number` (int): Position of the śloka within the Adhyāya
59
+ - `shloka_text` (string): Full Sanskrit text of the śloka
60
+
61
+ ## Dataset Creation
62
+
63
+ ### Curation Rationale
64
+
65
+ To supply researchers and developers with a fully parsed, program-friendly version of the Śiva Mahāpurāṇa, facilitating a range of NLP tasks on one of Hinduism’s major Purāṇas.
66
+ ### Source Data
67
+
68
+ #### Data Collection and Processing
69
+
70
+ - Raw Sanskrit text sourced from critical editions of the Śiva Mahāpurāṇa
71
+ - Divided into JSON Saṃhitā → Khanda → Adhyāya → śloka hierarchy
72
+ - Converted to CSV via Python scripts, preserving khanda-level structure and normalizing field names
73
+
74
+ #### Who are the source data producers?
75
+
76
+ Original verses are attributed to Vyāsa; digital encoding and structuring by Snskrt.
77
+
78
+ ## Bias, Risks, and Limitations
79
+
80
+ - Classical text only—no modern translations or commentary included.
81
+ - Possible editorial or typographical errors from digitization.
82
+
83
+ ---