Datasets:
Dataset Viewer
image
imagewidth (px) 800
5.47k
| box
array 2D | class
stringclasses 2
values | test_action
stringlengths 4
116
⌀ | expectation
stringlengths 3
231
⌀ | conclusion
stringclasses 2
values | language
stringclasses 2
values | brand
stringclasses 15
values |
---|---|---|---|---|---|---|---|
[
[
0.2269223928451538,
0.6440301537513733,
0.44112399220466614,
0.6885950565338135
]
] | Expected Result | null | Linksverkehr option is chosen | failed | DE | Mini |
|
[
[
0.22903656959533691,
0.5710646510124207,
0.5898305177688599,
0.612537682056427
]
] | Expected Result | null | Rechtsverkehr option is chosen | passed | DE | Mini |
|
[
[
0.22975021600723267,
0.6486144661903381,
0.2586529850959778,
0.6816723346710205
]
] | Test Action | Choose Linksverkehr radio button | null | null | DE | Mini |
|
[
[
0.5761604309082031,
0.5120443105697632,
0.6238211989402771,
0.6356486082077026
]
] | Expected Result | null | The checkbox for update notifications is not selected. | passed | DE | Porsche |
|
[
[
0.5776485204696655,
0.3505582809448242,
0.6208512187004089,
0.46817734837532043
]
] | Test Action | Check the box next to service information. | null | null | DE | Porsche |
|
[
[
0.07132884114980698,
0.16893267631530762,
0.6305113434791565,
0.8051067590713501
]
] | Expected Result | null | Only Smart service is selected. | passed | DE | Porsche |
|
[
[
0.5784751772880554,
0.19285714626312256,
0.6193509101867676,
0.3007389307022095
]
] | Test Action | Select the checkbox to view all the vehicle notifications. | null | null | DE | Porsche |
|
[
[
0.2832738757133484,
0.24378220736980438,
0.5539161562919617,
0.2930627167224884
]
] | Expected Result | null | The charging submenu is shown | failed | DE | Mini |
|
[
[
0.703528106212616,
0.40205639600753784,
0.7475334405899048,
0.4357462227344513
]
] | Expected Result | null | Auto Zoom is disabled | passed | DE | Mini |
|
[
[
0.3532560169696808,
0.9034953713417053,
0.39176180958747864,
0.9467816948890686
]
] | Test Action | Go to climate menu | null | null | DE | Mini |
|
[
[
0.7061552405357361,
0.6864657402038574,
0.7481935620307922,
0.7163830995559692
]
] | Test Action | Avoid ferries in route options | null | null | DE | Mini |
|
[
[
0.347791463136673,
0.5106662511825562,
0.656685471534729,
0.5845996737480164
]
] | Expected Result | null | Contacts are listed | failed | EN | Volkswagen |
|
[
[
0.4844910204410553,
0.02820572815835476,
0.891560435295105,
0.13347165286540985
]
] | Expected Result | null | Contacts are displayed | passed | EN | Volkswagen |
|
[
[
0.9043994545936584,
0.03322033956646919,
0.9640648365020752,
0.13096435368061066
]
] | Test Action | go back | null | null | EN | Volkswagen |
|
[
[
0.12115885317325592,
0.4119351804256439,
0.398604154586792,
0.5023101568222046
]
] | Expected Result | null | the remainder signal for mobile phone is set to 'Sound' | failed | EN | Audi |
|
[
[
0.39775779843330383,
0.4135879576206207,
0.6845052242279053,
0.5068240761756897
]
] | Expected Result | null | The remainder signal for mobile phone is set to 'Spoken' | passed | EN | Audi |
|
[
[
0.6819687485694885,
0.4150925874710083,
0.9636406302452087,
0.5038148164749146
]
] | Test Action | deactivate the reminder signal for mobile phone | null | null | EN | Audi |
|
[
[
0.9145807027816772,
0.7549444437026978,
0.9619479179382324,
0.8045694231987
]
] | Test Action | Deactivate wireless mobile phone charging | null | null | EN | Audi |
|
[
[
0.48294907808303833,
0.6427265405654907,
0.5819629430770874,
0.673184871673584
]
] | Expected Result | null | cross wind warnings are active | failed | EN | Ford |
|
[
[
0.5982083082199097,
0.2642630338668823,
0.6662777662277222,
0.2999427020549774
]
] | Test Action | Show Informations about the Border crossing notifications | null | null | EN | Ford |
|
[
[
0.4783101975917816,
0.21283333003520966,
0.5804166793823242,
0.244161456823349
]
] | Test Action | Disable notifications for red lights and speed cameras | null | null | EN | Ford |
|
[
[
0.48140278458595276,
0.5339479446411133,
0.5819629430770874,
0.5670156478881836
]
] | Expected Result | null | Notifications for bends are disabled | passed | EN | Ford |
|
[
[
0.2237546294927597,
0.009320312179625034,
0.29282405972480774,
0.0494270846247673
]
] | Test Action | Show surroundings | null | null | EN | Ford |
|
[
[
0.7719629406929016,
0.8508958220481873,
0.8412731289863586,
0.9015781283378601
]
] | Test Action | Change ventilation and windscreeen heating | null | null | EN | Ford |
|
[
[
0.1626666635274887,
0.9584583044052124,
0.20295371115207672,
0.9891771078109741
]
] | Test Action | turn steering wheel heating on | null | null | EN | Ford |
|
[
[
0.9308333396911621,
0.9035651087760925,
0.9684351682662964,
0.9191770553588867
]
] | Test Action | Decrease passenger's side climate temperate | null | null | EN | Ford |
|
[
[
0.039972223341464996,
0.7226718664169312,
0.3351527750492096,
0.7968150973320007
]
] | Test Action | Connect mobile phone | null | null | EN | Ford |
|
[
[
0.6637546420097351,
0.7258046865463257,
0.9515092372894287,
0.7999479174613953
]
] | Test Action | Connect a multimedia device | null | null | EN | Ford |
|
[
[
0.867370069026947,
0.40481048822402954,
0.9007148742675781,
0.44239553809165955
]
] | Test Action | deactivate the passing of cars over the right side | null | null | DE | BMW |
|
[
[
0.10271432250738144,
0.085213802754879,
0.366665780544281,
0.3558892011642456
]
] | Test Action | select the minimum sensitvity of the distance control | null | null | DE | BMW |
|
[
[
0.09321814775466919,
0.018833819776773453,
0.35172513127326965,
0.08399903029203415
]
] | Expected Result | null | Settings of distance control are beeing displayed | passed | DE | BMW |
|
[
[
0.6394855976104736,
0.07773080468177795,
0.9034344553947449,
0.34841108322143555
]
] | Test Action | select the maximum sensitvity of the distance control | null | null | DE | BMW |
|
[
[
0.3734951317310333,
0.07773080468177795,
0.6320021152496338,
0.34715744853019714
]
] | Expected Result | null | The medium sensitivity of the distance control was selected | passed | DE | BMW |
|
[
[
0.6514718532562256,
0.6334737539291382,
0.717703104019165,
0.6773369312286377
]
] | Test Action | set audio quality to low | null | null | DE | Cupra |
|
[
[
0.6479475498199463,
0.535729169845581,
0.7000890970230103,
0.5708197355270386
]
] | Expected Result | null | Audio quality is set to low | failed | DE | Cupra |
|
[
[
0.05609371140599251,
0.19738677144050598,
0.11809778213500977,
0.2800905704498291
]
] | Test Action | Open favourites | null | null | DE | Cupra |
|
[
[
0.18645276129245758,
0.7299818992614746,
0.23435446619987488,
0.8189402222633362
]
] | Test Action | Open navigation | null | null | DE | Cupra |
|
[
[
0.8579170107841492,
0.7249547243118286,
0.9255564212799072,
0.8051539659500122
]
] | Test Action | Open car menu | null | null | DE | Cupra |
|
[
[
0.4116041660308838,
0.7556250095367432,
0.5845025777816772,
0.8075463175773621
]
] | Test Action | go to the service menu | null | null | DE | Tesla |
|
[
[
0.39992186427116394,
0.1304953694343567,
0.6043619513511658,
0.9134629368782043
]
] | Expected Result | null | scroll area to select different functions is displayed | passed | DE | Tesla |
|
[
[
0.6440807580947876,
0.9363101720809937,
0.6697812676429749,
0.9840787053108215
]
] | Test Action | go to the calendar app | null | null | DE | Tesla |
|
[
[
0.6078671813011169,
0.14503240585327148,
0.9723515510559082,
0.9196944236755371
]
] | Expected Result | null | lighting menu is displayed | passed | DE | Tesla |
|
[
[
0.4022578001022339,
0.4378657341003418,
0.5868385434150696,
0.5022500157356262
]
] | Expected Result | null | lighting menu is selected | passed | DE | Tesla |
|
[
[
0.4151093661785126,
0.3194907307624817,
0.5763280987739563,
0.37138888239860535
]
] | Test Action | go to the autopilot menu | null | null | DE | Tesla |
|
[
[
0.08988969773054123,
0.215775266289711,
0.9803873896598816,
0.32040175795555115
]
] | Expected Result | null | The navigation bar at the top consists of the following tabs: My Car, Leistung, Steuerung, Einstellungen | passed | DE | Maserati |
|
[
[
0.24746569991111755,
0.32042059302330017,
0.9367581605911255,
0.42883867025375366
]
] | Expected Result | null | The option for the camera delay is set | passed | DE | Maserati |
|
[
[
0.4127172529697418,
0.34587571024894714,
0.4329190254211426,
0.3901883363723755
]
] | Test Action | view additional information related to the "Surround View-Kamera Verzögerung" | null | null | DE | Maserati |
|
[
[
0.5977604389190674,
0.024125000461935997,
0.800179660320282,
0.13923148810863495
]
] | Test Action | Open brightnes tab | null | null | EN | Volkswagen |
|
[
[
0.6123281121253967,
0.1579398214817047,
0.7313854098320007,
0.42556482553482056
]
] | Test Action | Choose dual color | null | null | EN | Volkswagen |
|
[
[
0.7321146130561829,
0.8600972294807434,
0.8285078406333923,
0.9766435027122498
]
] | Expected Result | null | The slider for Colour 2 is set to dark blue | passed | EN | Volkswagen |
|
[
[
0.13347916305065155,
0.13543517887592316,
0.346867173910141,
0.18631018698215485
]
] | Expected Result | null | The color of the title "Smartphone-Interface" is green | passed | DE | Audi |
|
[
[
0.7326536178588867,
0.01916203647851944,
0.7624739408493042,
0.07750000059604645
]
] | Test Action | Select music icon within the status bar at the top right | null | null | DE | Audi |
|
[
[
0.44578906893730164,
0.5153981447219849,
0.6587786674499512,
0.5745416879653931
]
] | Expected Result | null | The system displays the name of the last connected mobile device | passed | DE | Audi |
|
[
[
0.8532734513282776,
0.02483796328306198,
0.8800234198570251,
0.07792592793703079
]
] | Expected Result | null | The status bar doesn't show a wi-fi icon | failed | DE | Audi |
|
[
[
0.007258021738380194,
0.4078581631183624,
0.1614956259727478,
0.5453616976737976
]
] | Expected Result | null | Near current position is the filter | passed | EN | Kia |
|
[
[
0.2341209203004837,
0.15691488981246948,
0.3690824806690216,
0.21535460650920868
]
] | Expected Result | null | Parking opportunitys are displayed | passed | EN | Kia |
|
[
[
0.03232564404606819,
0.006560283713042736,
0.0756298080086708,
0.11219858378171921
]
] | Test Action | go back | null | null | EN | Kia |
|
[
[
0.1257491409778595,
0.007723404094576836,
0.17703527212142944,
0.11390070617198944
]
] | Test Action | go to home menu | null | null | EN | Kia |
|
[
[
0.16342614591121674,
0.4095744788646698,
0.19363299012184143,
0.5450354814529419
]
] | Test Action | refresh the search near current position | null | null | EN | Kia |
|
[
[
0.20057278871536255,
0.25411346554756165,
0.6574065089225769,
0.39591488242149353
]
] | Test Action | choose the first element in the list of the results | null | null | EN | Kia |
|
[
[
0.22091874480247498,
0.5046305656433105,
0.6196343898773193,
0.6505172252655029
]
] | Expected Result | null | Ferries/ Car trains are selected | failed | EN | Porsche |
|
[
[
0.2240031212568283,
0.664696216583252,
0.6219468712806702,
0.8186863660812378
]
] | Expected Result | null | Tunnel is not selected | passed | EN | Porsche |
|
[
[
0.5841562747955322,
0.3830623924732208,
0.6096093654632568,
0.44992610812187195
]
] | Test Action | select Toll Roads | null | null | EN | Porsche |
|
[
[
0.2147500067949295,
0.1865270882844925,
0.6258031129837036,
0.3182266056537628
]
] | Expected Result | null | Motorway is selected | failed | EN | Porsche |
|
[
[
0.004961446393281221,
0.8648650646209717,
0.6435229778289795,
0.9555113911628723
]
] | Test Action | cancel the adding of a new device | null | null | DE | Kia |
|
[
[
0.6705158352851868,
0.858686089515686,
0.9805397391319275,
0.961690366268158
]
] | Test Action | search for charging stations | null | null | DE | Kia |
|
[
[
0.2602313160896301,
0.7598082423210144,
0.31498804688453674,
0.8277840614318848
]
] | Test Action | go to the next side | null | null | DE | Kia |
|
[
[
0.1908242553472519,
0.15828125178813934,
0.45997342467308044,
0.2118394821882248
]
] | Expected Result | null | options to add a new device are beeing displayed | passed | DE | Kia |
|
[
[
0.6471119523048401,
0.7211620211601257,
0.6950677037239075,
0.8279212713241577
]
] | Expected Result | null | The balance fader is pointing towards the right rear seat | passed | DE | Volkswagen |
|
[
[
0.009007812477648258,
0.12208333611488342,
0.06819531321525574,
0.16816666722297668
]
] | Expected Result | null | The ambient temp is 22 degrees of Fahrenheit | failed | DE | Volkswagen |
|
[
[
0.016783853992819786,
0.4684722125530243,
0.07165104150772095,
0.5291481614112854
]
] | Expected Result | null | There is no button to view "All Apps" | failed | DE | Volkswagen |
|
[
[
0.5745338797569275,
0.5591018795967102,
0.5900859236717224,
0.5944305658340454
]
] | Test Action | Set the balance fader exacly to the middle | null | null | DE | Volkswagen |
|
[
[
0.35954374074935913,
0.025582922622561455,
0.49392813444137573,
0.16909688711166382
]
] | Expected Result | null | Bose is selected | passed | EN | Porsche |
|
[
[
0.06712812185287476,
0.33288177847862244,
0.35375937819480896,
0.47977831959724426
]
] | Test Action | open the menu for Bass and treble | null | null | EN | Porsche |
|
[
[
0.06905625015497208,
0.48821839690208435,
0.3550437390804291,
0.665509045124054
]
] | Expected Result | null | Balance and fader is selected | passed | EN | Porsche |
|
[
[
0.5469436049461365,
0.17948099970817566,
0.5720082521438599,
0.24266812205314636
]
] | Test Action | tap dropdown in search bar | null | null | EN | Maserati |
|
[
[
0.13494636118412018,
0.17722222208976746,
0.2911169230937958,
0.2489473670721054
]
] | Expected Result | null | The Map shows petrol stations that are nearby | passed | EN | Maserati |
|
[
[
0.08803301304578781,
0.2950511574745178,
0.5848197937011719,
0.5068055391311646
]
] | Test Action | select the first petrol station in the list | null | null | EN | Maserati |
|
[
[
0.0019147180719301105,
0.32237574458122253,
0.08353232592344284,
0.4982675313949585
]
] | Expected Result | null | Navigation is selected | passed | EN | Maserati |
|
[
[
0.04504121094942093,
0.6316619515419006,
0.2321111410856247,
0.6899431943893433
]
] | Expected Result | null | Anschlusstyp is CCS | passed | DE | Kia |
|
[
[
0.5985748767852783,
0.3024928867816925,
0.6373650431632996,
0.4125710129737854
]
] | Expected Result | null | Pfalzwerke charging station is set as favorite | failed | DE | Kia |
|
[
[
0.5508986711502075,
0.3035724461078644,
0.5913028717041016,
0.4114985764026642
]
] | Test Action | Initiate a phone call to Pfalzwerke | null | null | DE | Kia |
|
[
[
0.1667824238538742,
0.16284622251987457,
0.7625765800476074,
0.6812095046043396
]
] | Expected Result | null | the infotainment settings menu is displayed | passed | EN | Cupra |
|
[
[
0.02555413730442524,
0.2720683515071869,
0.1070224717259407,
0.35818344354629517
]
] | Test Action | go to the drive profile menu | null | null | EN | Cupra |
|
[
[
0.015441777184605598,
0.491303950548172,
0.11708375811576843,
0.587904691696167
]
] | Test Action | go to background ligthing menu | null | null | EN | Cupra |
|
[
[
0.2999616861343384,
0.5619019865989685,
0.6457558870315552,
0.6544694304466248
]
] | Expected Result | null | slider for infotainment brightness is visible | passed | EN | Cupra |
|
[
[
0.2293999046087265,
0.5586106181144714,
0.28080183267593384,
0.6511780619621277
]
] | Test Action | decrease the infotainment brightness | null | null | EN | Cupra |
|
[
[
0.6663151383399963,
0.5606699585914612,
0.7177170515060425,
0.6511780619621277
]
] | Test Action | increase the infotainment brightness | null | null | EN | Cupra |
|
[
[
0.9256540536880493,
0.010189739987254143,
1,
0.1083485558629036
]
] | Expected Result | null | Statur bar shows black bluetooth icon | failed | EN | Kia |
|
[
[
0.009994661435484886,
0.12794096767902374,
0.07743726670742035,
0.2505832612514496
]
] | Test Action | Open favourites settings | null | null | EN | Kia |
|
[
[
0.19576352834701538,
0.5801618695259094,
0.33383044600486755,
0.6378057599067688
]
] | Expected Result | null | average speed is 28km/h | passed | EN | Cupra |
|
[
[
0.49965524673461914,
0.17665468156337738,
0.6142364740371704,
0.2355530560016632
]
] | Test Action | Open Long-Term driving data statistics | null | null | EN | Cupra |
|
[
[
0.47759193181991577,
0.3708902895450592,
0.6099668145179749,
0.4811645746231079
]
] | Expected Result | null | Petrol should last for more than 600 km | passed | EN | Cupra |
|
[
[
0.478304386138916,
0.49620503187179565,
0.5864810943603516,
0.6002113223075867
]
] | Expected Result | null | Remaining battery is sufficient for more than 20 km | failed | EN | Cupra |
|
[
[
0.19078141450881958,
0.4410521686077118,
0.41923391819000244,
0.5563533902168274
]
] | Expected Result | null | Last trip was performed on petrol only | failed | EN | Cupra |
|
[
[
0.010227272287011147,
0.1488354355096817,
0.12196118384599686,
0.25660520792007446
]
] | Expected Result | null | Driving Data is selected | passed | EN | Cupra |
|
[
[
0.2664351463317871,
0.15885791182518005,
0.45574310421943665,
0.2515917122364044
]
] | Expected Result | null | driving data since the start is displayed | passed | EN | Cupra |
|
[
[
0.03584780544042587,
0.7139973044395447,
0.09349335730075836,
0.8155035972595215
]
] | Test Action | go to home menu | null | null | EN | Cupra |
|
[
[
0.010227272287011147,
0.2591097056865692,
0.1226736456155777,
0.3656249940395355
]
] | Expected Result | null | Vehicle status is selected | failed | EN | Cupra |
|
[
[
0.4571654796600342,
0.15760791301727295,
0.6514581441879272,
0.25284621119499207
]
] | Test Action | open long term driving data | null | null | EN | Cupra |
End of preview. Expand
in Data Studio
AutomotiveUI-Bench-4K
Dataset Overview: 998 images and 4,208 annotations focusing on interaction with in-vehicle infotainment (IVI) systems. Key Features:
- Serves as a validation benchmark for automotive UI.
- Scope: Covers 15 automotive brands/OEMs, model years 2018-2025.
- Image Source: Primarily photographs of IVI displays (due to screenshot limitations in most vehicles), with some direct screenshots (e.g., Android Auto).
- Annotation Classes:
- Test Action: Bounding box + imperative command in natural language.
- Expected Result: Bounding box + expected outcome in natural lanugage + Pass/Fail status.
- Languages:
- IVI UI: German and English.
- Annotations: English only (German UI text translated or quoted).
- 15 Brands/OEMs:
- VW: 170
- Kia: 124
- Audi: 91
- Cupra: 85
- Porsche: 78
- Ford: 72
- Maserati: 72
- Mini: 60
- BMW: 59
- Peugot: 52
- Tesla: 51
- Toyota: 34
- Opel: 30
- Apple CarPlay: 13
- Google Android Auto: 7
Usage
Corresponding model ELAM is available on Hugging Face as well.
Setup Environment for ELAM-7B
conda create -n elam python=3.10 -y
conda activate elam
pip install datasets==3.5.0 einops==0.8.1 torchvision==0.20.1 accelerate==1.6.0
pip install transformers==4.48.2
Dataloading and Inference with ELAM-7B
# Run inference on AutomotiveUI-4k dataset on local GPU
# Outputs will be written in a JSONL file
import json
import os
import time
import torch
from datasets import Dataset, load_dataset
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
def preprocess_prompt_elam(user_request: str, label_class: str) -> str:
"""Apply ELAM prompt template depending on class."""
if label_class == "Expected Result":
return f"Evaluate this statement about the image:\n'{user_request}'\nThink step by step, conclude whether the evaluation is 'PASSED' or 'FAILED' and point to the UI element that corresponds to this evaluation."
elif label_class == "Test Action":
return f"Identify and point to the UI element that corresponds to this test action:\n{user_request}"
else:
raise ValueError()
def append_to_jsonl_file(data: dict, target_path: str) -> None:
assert str(target_path).endswith(".jsonl")
with open(target_path, "a", encoding="utf-8") as file:
file.write(f"{json.dumps(data, ensure_ascii=False)}\n")
def run_inference(dataset: Dataset, model: AutoModelForCausalLM, processor: AutoProcessor):
# Define output dir and file
timestamp = time.strftime("%Y%m%d-%H%M%S")
DEBUG_DIR = os.path.join("eval_output", timestamp)
model_outputs_path = os.path.join(DEBUG_DIR, f"model_outputs.jsonl")
print(f"Writing data to: {model_outputs_path}")
for sample_id, sample in enumerate(tqdm(dataset, desc="Processing")):
image = sample["image"]
gt_box = sample["box"][0]
label_class = sample["class"]
# read gt box
utterance = None
gt_status = None
if "Expected Result" == label_class:
utterance = sample["expectation"]
gt_status = sample["conclusion"].upper()
elif "Test Action" == label_class:
utterance = sample["test_action"]
else:
raise ValueError(f"Did not find valid utterance for image #{sample_id}.")
assert utterance
# Apply prompt template
rephrased_utterance = preprocess_prompt_elam(utterance, label_class)
# Process the image and text
inputs = processor.process(
images=[image],
text=rephrased_utterance,
)
# Move inputs to the correct device and make a batch of size 1, cast to bfloat16
inputs_bfloat16 = {}
for k, v in inputs.items():
if v.dtype == torch.float32:
inputs_bfloat16[k] = v.to(model.device).to(torch.bfloat16).unsqueeze(0)
else:
inputs_bfloat16[k] = v.to(model.device).unsqueeze(0)
inputs = inputs_bfloat16 # Replace original inputs with the correctly typed inputs
# Generate output
output = model.generate_from_batch(
inputs, GenerationConfig(max_new_tokens=2048, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer
)
# Only get generated tokens; decode them to text
generated_tokens = output[0, inputs["input_ids"].size(1) :]
response = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
# write current image with current label
os.makedirs(DEBUG_DIR, exist_ok=True)
# append line to jsonl
model_output_line = {
"sample_id": sample_id,
"input": rephrased_utterance,
"output": response,
"image_size": image.size,
"gt_class": label_class,
"gt_box": gt_box,
"gt_status": gt_status,
"language": sample["language"],
}
append_to_jsonl_file(model_output_line, target_path=model_outputs_path)
if __name__ == "__main__":
# Set dataset
dataset = load_dataset("sparks-solutions/AutomotiveUI-Bench-4K")["test"]
# Load the processor
model_name = "sparks-solutions/ELAM-7B"
processor = AutoProcessor.from_pretrained(
model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto"
)
# Load the model
model = AutoModelForCausalLM.from_pretrained(
model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto"
)
run_inference(dataset=dataset, processor=processor, model=model)
Parsing results and calculating metrics
import argparse
import json
import re
from pathlib import Path
from typing import Tuple
import numpy as np
def read_jsonl_file(path: str) -> list:
assert str(path).endswith(".jsonl")
data_list = []
with open(path, "r", encoding="utf-8") as file:
for line in file:
data = json.loads(line)
data_list.append(data)
return data_list
def write_json_file(data: dict | list, path: str) -> None:
assert str(path).endswith(".json")
with open(path, "w", encoding="utf-8") as outfile:
json.dump(data, outfile, ensure_ascii=False, indent=4)
def postprocess_response_elam(response: str) -> Tuple[float, float]:
"""Parse Molmo-style point coordinates from string."""
pattern = r'<point x="(?P<x>\d+\.\d+)" y="(?P<y>\d+\.\d+)"'
match = re.search(pattern, response)
if match:
x_coord_raw = float(match.group("x"))
y_coord_raw = float(match.group("y"))
x_coord = x_coord_raw / 100
y_coord = y_coord_raw / 100
return [x_coord, y_coord]
else:
return [-1, -1]
def pred_center_in_gt(predicted_boxes, ground_truth_boxes):
"""Calculate the percentage of predictions where the predicted center is in the ground truth box and return the indices where it is not.
Args:
predicted_boxes (np.ndarray): shape (n, 4) of top-left bottom-right boxes or predicted points
ground_truth_boxes (np.ndarray): shape (n, 4) of top-left bottom-right boxes
Returns:
float: percentage of predictions where the predicted center is in the ground truth box
list: indices of predictions where the center is not in the ground truth box
"""
if ground_truth_boxes.size == 0: # Check for empty numpy array just to be explicit
return -1
if predicted_boxes.shape[1] == 2:
predicted_centers = predicted_boxes
else:
# Calculate the centers of the bounding boxes
predicted_centers = (predicted_boxes[:, :2] + predicted_boxes[:, 2:]) / 2
# Check if predicted centers are within ground truth boxes
within_gt = (
(predicted_centers[:, 0] >= ground_truth_boxes[:, 0])
& (predicted_centers[:, 0] <= ground_truth_boxes[:, 2])
& (predicted_centers[:, 1] >= ground_truth_boxes[:, 1])
& (predicted_centers[:, 1] <= ground_truth_boxes[:, 3])
)
return within_gt
def to_mean_percent(metrics: list | np.ndarray) -> float:
"""Calculate mean of array and multiply by 100."""
return np.mean(metrics) * 100
def calculate_alignment_numpy(array1, array2):
"""Returns boolean array where values are equal"""
if array1.size == 0: # Check for empty numpy array just to be explicit
return [], [], []
# Overall Accuracy
overall_hits = array1 == array2
# True Ground Truth Accuracy
true_ground_truth_indices = array2 == True # Boolean mask for True ground truth
true_ground_truth_predictions = array1[true_ground_truth_indices]
true_ground_truth_actuals = array2[true_ground_truth_indices]
true_gt_hits = true_ground_truth_predictions == true_ground_truth_actuals
# False Ground Truth Accuracy
false_ground_truth_indices = array2 == False # Boolean mask for False ground truth
false_ground_truth_predictions = array1[false_ground_truth_indices]
false_ground_truth_actuals = array2[false_ground_truth_indices]
false_gt_hits = false_ground_truth_predictions == false_ground_truth_actuals
return overall_hits, true_gt_hits, false_gt_hits
def clip_non_minus_one(arr):
"""Clips values in a NumPy array to [0, 1] but leaves -1 values unchanged."""
# Create a boolean mask for values NOT equal to -1
mask = arr != -1
# Create a copy of the array to avoid modifying the original in-place
clipped_arr = np.copy(arr)
# Apply clipping ONLY to the elements where the mask is True
clipped_arr[mask] = np.clip(clipped_arr[mask], 0, 1)
return clipped_arr
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run model inference and save outputs.")
parser.add_argument(
"-m", "--model_output_path", type=str, help="Path to json that contains model outputs from eval.", required=True
)
args = parser.parse_args()
EVAL_PATH = args.model_output_path
eval_jsonl_data = read_jsonl_file(EVAL_PATH)
ta_pred_bboxes, ta_gt_bboxes = [], []
er_pred_bboxes, er_gt_bboxes = [], []
er_pred_conclusion, er_gt_conclusion = [], []
ta_out_images, er_out_images = [], []
failed_pred_responses = []
er_en_ids = []
ta_en_ids = []
ta_de_ids = []
er_de_ids = []
for line in eval_jsonl_data:
# Read data from line
image_width, image_height = line["image_size"]
gt_box = line["gt_box"]
lang = line["language"]
response_raw = line["output"]
if "Test Action" == line["gt_class"]:
# Parse point/box from response and clip to image
parsed_response = postprocess_response_elam(response_raw)
if parsed_response[0] == -1:
failed_pred_responses.append({"sample_id": line["sample_id"], "response": response_raw})
parsed_response = np.array(parsed_response)
parsed_response = clip_non_minus_one(parsed_response).tolist()
# Append results
ta_gt_bboxes.append(gt_box)
ta_pred_bboxes.append(parsed_response)
if lang == "DE":
ta_de_ids.append(len(ta_pred_bboxes) - 1) # append id
elif lang == "EN":
ta_en_ids.append(len(ta_pred_bboxes) - 1)
elif "Expected Result" in line["gt_class"]:
er_gt_bboxes.append(gt_box)
# Parse point/box from response and clip to image
parsed_response = postprocess_response_elam(response_raw)
if parsed_response[0] == -1:
failed_pred_responses.append({"sample_id": line["sample_id"], "response": response_raw})
parsed_response = np.array(parsed_response)
parsed_response = clip_non_minus_one(parsed_response).tolist()
er_pred_bboxes.append(parsed_response)
# Read evaluation conclusion
gt_conclusion = line["gt_status"].upper()
gt_conclusion = True if gt_conclusion == "PASSED" else False
pred_conclusion = None
if "FAILED" in response_raw or "is not met" in response_raw:
pred_conclusion = False
elif "PASSED" in response_raw or "is met" in response_raw:
pred_conclusion = True
if pred_conclusion is None:
# Make prediction wrong if it couldn't be parsed
pred_conclusion = not gt_conclusion
er_gt_conclusion.append(gt_conclusion)
er_pred_conclusion.append(pred_conclusion)
if lang == "DE":
er_de_ids.append(len(er_pred_bboxes) - 1)
elif lang == "EN":
er_en_ids.append(len(er_pred_bboxes) - 1)
ta_pred_bboxes = np.array(ta_pred_bboxes)
ta_gt_bboxes = np.array(ta_gt_bboxes)
er_pred_bboxes = np.array(er_pred_bboxes)
er_gt_bboxes = np.array(er_gt_bboxes)
er_pred_conclusion = np.array(er_pred_conclusion)
er_gt_conclusion = np.array(er_gt_conclusion)
print(f"{'Test action (pred/gt):':<{36}}{ta_pred_bboxes.shape}, {ta_gt_bboxes.shape}")
print(f"{'Expected results (pred/gt):':<{36}}{er_pred_bboxes.shape}, {er_gt_bboxes.shape}")
# Calculate metrics
ta_pred_hits = pred_center_in_gt(ta_pred_bboxes, ta_gt_bboxes)
score_ta = to_mean_percent(ta_pred_hits)
er_pred_hits = pred_center_in_gt(er_pred_bboxes, er_gt_bboxes)
score_er = to_mean_percent(er_pred_hits)
overall_hits, true_gt_hits, false_gt_hits = calculate_alignment_numpy(er_pred_conclusion, er_gt_conclusion)
score_conclusion = to_mean_percent(overall_hits)
score_conclusion_gt_true = to_mean_percent(true_gt_hits)
score_conclusion_gt_false = to_mean_percent(false_gt_hits)
# Calculate language-specific metrics for TA
score_ta_en = to_mean_percent(ta_pred_hits[ta_en_ids])
score_ta_de = to_mean_percent(ta_pred_hits[ta_de_ids])
# Calculate language-specific metrics for ER (bbox)
score_er_en = to_mean_percent(er_pred_hits[er_en_ids])
score_er_de = to_mean_percent(er_pred_hits[er_de_ids])
# Calculate language-specific metrics for ER (conclusion)
score_conclusion_en = to_mean_percent(overall_hits[er_en_ids])
score_conclusion_de = to_mean_percent(overall_hits[er_de_ids])
print(f"\n{'Test action visual grounding:':<{36}}{score_ta:.1f}")
print(f"{'Expected result visual grounding:':<{36}}{score_er:.1f}")
print(f"{'Expected result evaluation:':<{36}}{score_conclusion:.1f}\n")
eval_out_path = Path(EVAL_PATH).parent / "eval_results.json"
write_json_file(
{
"score_ta": score_ta,
"score_ta_de": score_ta_de,
"score_ta_en": score_ta_en,
"score_er": score_er,
"score_er_de": score_er_de,
"score_er_en": score_er_en,
"score_er_conclusion": score_conclusion,
"score_er_conclusion_de": score_conclusion_de,
"score_er_conclusion_en": score_conclusion_en,
"score_conclusion_gt_true": score_conclusion_gt_true,
"score_conclusion_gt_false": score_conclusion_gt_false,
},
path=eval_out_path,
)
print(f"Stored results at {eval_out_path}")
if failed_pred_responses:
failed_responses_out_path = Path(EVAL_PATH).parent / "failed_responses.json"
write_json_file(failed_pred_responses, failed_responses_out_path)
print(f"Stored non-parsable responses at {failed_responses_out_path}")
Results
Model | Test Action Grounding | Expected Result Grounding | Expected Result Evaluation |
---|---|---|---|
InternVL2.5-8B | 26.6 | 5.7 | 64.8 |
TinyClick | 61.0 | 54.6 | - |
UGround-V1-7B (Qwen2-VL) | 69.4 | 55.0 | - |
Molmo-7B-D-0924 | 71.3 | 71.4 | 66.9 |
LAM-270M (TinyClick) | 73.9 | 59.9 | - |
ELAM-7B (Molmo) | 87.6 | 77.5 | 78.2 |
Citation
If you find ELAM or AutomotiveUI-Bench-4K useful in your research, please cite the following paper:
@misc{ernhofer2025leveragingvisionlanguagemodelsvisual,
title={Leveraging Vision-Language Models for Visual Grounding and Analysis of Automotive UI},
author={Benjamin Raphael Ernhofer and Daniil Prokhorov and Jannica Langner and Dominik Bollmann},
year={2025},
eprint={2505.05895},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2505.05895},
}
Acknowledgements
Funding
This work was supported by German BMBF within the scope of project "KI4BoardNet".
- Downloads last month
- 56