import pandas as pd from huggingface_hub import hf_hub_url import datasets import os _VERSION = datasets.Version("0.0.2") _DESCRIPTION = "This dataset includes images and conditioning images for XYZ purpose." _HOMEPAGE = "https://www.example.com" _LICENSE = "MIT" _CITATION = """@article{YourDataset2021, title={Your Dataset Title}, author={Your Name}, journal={Your Journal}, year={2021} }""" _FEATURES = datasets.Features({ "image": datasets.Value("string"), # Change from datasets.Image() to Value("string") if using paths directly "conditioning_image": datasets.Value("string"), "text": datasets.Value("string"), }) METADATA_URL = hf_hub_url( "spine-crook/test", filename="train.jsonl", repo_type="dataset", ) IMAGES_URL = hf_hub_url( "spine-crook/test", filename="images.zip", repo_type="dataset", ) CONDITIONING_IMAGES_URL = hf_hub_url( "spine-crook/test", filename="conditioning_images.zip", repo_type="dataset", ) _DEFAULT_CONFIG = datasets.BuilderConfig(name="default", version=_VERSION) class Test(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [_DEFAULT_CONFIG] DEFAULT_CONFIG_NAME = "default" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=_FEATURES, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): metadata_path = dl_manager.download(METADATA_URL) images_dir = dl_manager.download_and_extract(IMAGES_URL) conditioning_images_dir = dl_manager.download_and_extract(CONDITIONING_IMAGES_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "metadata_path": metadata_path, "images_dir": images_dir, "conditioning_images_dir": conditioning_images_dir, }, ), ] def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir): metadata = pd.read_json(metadata_path, lines=True) for _, row in metadata.iterrows(): text = row["text"] image_path = os.path.join(images_dir, row["image"]) conditioning_image_path = os.path.join(conditioning_images_dir, row["conditioning_image"]) yield row["image"], { "text": text, "image": image_path, "conditioning_image": conditioning_image_path, }