Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
VarunKodathala commited on
Commit
97c211f
·
verified ·
1 Parent(s): 690cf30

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -25
README.md CHANGED
@@ -1,25 +1,65 @@
1
- ---
2
- license: fair-noncommercial-research-license
3
- configs:
4
- - config_name: default
5
- data_files:
6
- - split: train
7
- path: data/train-*
8
- - split: validation
9
- path: data/validation-*
10
- dataset_info:
11
- features:
12
- - name: video_path
13
- dtype: string
14
- - name: intent
15
- dtype: string
16
- splits:
17
- - name: train
18
- num_bytes: 56698
19
- num_examples: 1051
20
- - name: validation
21
- num_bytes: 14792
22
- num_examples: 265
23
- download_size: 23167
24
- dataset_size: 71490
25
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: fair-noncommercial-research-license
3
+ configs:
4
+ - config_name: default
5
+ data_files:
6
+ - split: train
7
+ path: data/train-*
8
+ - split: validation
9
+ path: data/validation-*
10
+ dataset_info:
11
+ features:
12
+ - name: video_path
13
+ dtype: string
14
+ - name: intent
15
+ dtype: string
16
+ splits:
17
+ - name: train
18
+ num_bytes: 56698
19
+ num_examples: 1051
20
+ - name: validation
21
+ num_bytes: 14792
22
+ num_examples: 265
23
+ download_size: 23167
24
+ dataset_size: 71490
25
+ ---
26
+ # Basketball Video-Text Dataset
27
+
28
+ ## Overview
29
+
30
+ A curated subset of the NSVA dataset designed to establish benchmarks for sports video-text models. This dataset addresses the gap in sports-specific evaluation metrics for video understanding models.
31
+
32
+ ## Dataset Structure
33
+
34
+ - **Train**: 1,051 video-text pairs
35
+ - **Validation**: 265 video-text pairs
36
+ - **Format**: Files with `video_path` and `intent` columns
37
+ - **Domain**: Basketball action descriptions
38
+
39
+ ## Why This Dataset?
40
+
41
+ Existing video-text datasets focus on abstract-level information but lack sports-specific details. For example, we don't need models to predict generic descriptions like "basketball players are playing basketball" - we need them to understand specific actions like "Three-point 26' jump-shot missed and rebound."
42
+
43
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/669feaf2243a0a91c4bc4251/tTwlouSFlW76UKhziwwly.png)
44
+
45
+ As shown in the NSVA paper, their approach provides compact, actionable information for statistics counting and game analysis, unlike existing datasets that offer vague descriptions. With the rise of video understanding models, we need standardized benchmarks for sports video analysis. This subset enables practitioners to train and validate their models with consistent evaluation metrics.
46
+
47
+ ## Usage
48
+
49
+ This dataset contains video filenames and corresponding action descriptions. To access the actual video files, follow the instructions and use the tools provided in the original NSVA repository: https://github.com/jackwu502/NSVA
50
+
51
+ ## Acknowledgement
52
+
53
+ ```bibtex
54
+ @inproceedings{dew2022sports,
55
+ title={Sports Video Analysis on Large-Scale Data},
56
+ author={Wu, Dekun and Zhao, He and Bao, Xingce and Wildes, Richard P.},
57
+ booktitle={ECCV},
58
+ month = {Oct.},
59
+ year={2022}
60
+ }
61
+ ```
62
+
63
+ ## License
64
+
65
+ By using this dataset, you must ensure your use falls under fair use as defined by the original authors. All credits go to the original NSVA dataset creators.