File size: 6,766 Bytes
4930c82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
---
# YAML Metadata Block
language:
- en
tags:
- vulnerability-detection
- cve
- code-changes
- software-security
- stratified-split
license: mit
dataset_info:
features: # Features in the *final split files*
- name: idx
dtype: int64
- name: func_before
dtype: string
- name: Vulnerability Classification
dtype: string
- name: vul
dtype: int64
- name: func_after
dtype: string
- name: patch
dtype: string
- name: CWE ID
dtype: string
- name: lines_before
dtype: string
- name: lines_after
dtype: string
splits:
- name: train
num_examples: 150909
- name: validation
num_examples: 18864
- name: test
num_examples: 18863
dataset_original_file_size: 10GB uuncompressed
---
# MSR Data Cleaned - C/C++ Code Vulnerability Dataset
[](LICENSE)
## π Dataset Description
A curated collection of C/C++ code vulnerabilities paired with:
- CVE details (scores, classifications, exploit status)
- Code changes (commit messages, added/deleted lines)
- File-level and function-level diffs
## π Sample Data Structure from original file
```python
+---------------+-----------------+----------------------+---------------------------+
| CVE ID | Attack Origin | Publish Date | Summary |
+===============+=================+======================+===========================+
| CVE-2015-8467 | Remote | 2015-12-29 | "The samldb_check_user..."|
+---------------+-----------------+----------------------+---------------------------+
| CVE-2016-1234 | Local | 2016-01-15 | "Buffer overflow in..." |
+---------------+-----------------+----------------------+---------------------------+
```
Note: This is a simplified preview; the full dataset includes additional fields like commit_id, func_before, etc.
### 1. Accessing in Colab
```python
!pip install huggingface_hub -q
from huggingface_hub import snapshot_download
repo_id = "starsofchance/MSR_data_cleaned"
dataset_path = snapshot_download(repo_id=repo_id, repo_type="dataset")
```
### 2. Extracting the Dataset
```python
!apt-get install unzip -qq
!unzip "/root/.cache/huggingface/.../MSR_data_cleaned.zip" -d "/content/extracted_data"
```
**Note: Extracted size is 10GB (1.5GB compressed). Ensure sufficient disk space.
### 3. Creating Splits (Colab Pro Recommended)
We used this memory-efficient approach:
```python
from datasets import load_dataset
dataset = load_dataset("csv", data_files="MSR_data_cleaned.csv", streaming=True)
# Randomly distribute rows (80-10-10)
for row in dataset:
rand = random.random()
if rand < 0.8: write_to(train.csv)
elif rand < 0.9: write_to(validation.csv)
else: write_to(test.csv)
```
**Hardware Requirements:**
- Minimum 25GB RAM
- Strong CPU (Colab Pro T4 GPU recommended)
##π Dataset Statistics
- Number of Rows: 188,636
- Vulnerability Distribution:
- Vulnerable (1): 18,863 (~10%)
- Non-Vulnerable (0): 169,773 (~90%)
##π Data Fields Description
- CVE_ID: Unique identifier for the vulnerability (Common Vulnerabilities and Exposures).
- CWE_ID: Weakness category identifier (Common Weakness Enumeration).
- Score: CVSS score indicating severity (float, 0-10).
- Summary: Brief description of the vulnerability.
- commit_id: Git commit hash linked to the code change.
- codeLink: URL to the code repository or commit.
- file_name: Name of the file containing the vulnerability.
- func_after: Function code after the change.
- lines_after: Code lines after the change.
- Access_Gained: Type of access gained by exploiting the vulnerability.
- Attack_Origin: Source of the attack (e.g., Remote, Local).
- Authentication_Required: Whether authentication is needed to exploit.
- Availability: Impact on system availability.
- CVE_Page: URL to the CVE details page.
- Complexity: Complexity of exploiting the vulnerability.
- Confidentiality: Impact on data confidentiality.
- Integrity: Impact on data integrity.
- Known_Exploits: Details of known exploits, if any.
- Publish_Date: Date the vulnerability was published.
- Update_Date: Date of the last update to the vulnerability data.
- Vulnerability_Classification: Type or category of the vulnerability.
- add_lines: Lines added in the commit.
- del_lines: Lines deleted in the commit.
- commit_message: Description of the commit.
- files_changed: List of files modified in the commit.
- func_before: Function code before the change.
- lang: Programming language (e.g., C, C++).
- lines_before: Code lines before the change.
## splits file for UltiVul project:
## π Sample Data Structure (from train.csv)
```python
{
'idx': 0, # Unique ID within the train split
'func_before': '...', # String containing function code before change
'Vulnerability Classification': '...', # Original vulnerability type classification
'vul': 0, # Integer: 0 for non-vulnerable, 1 for vulnerable (target label)
'func_after': '...', # String containing function code after change
'patch': '...', # String containing diff patch
'CWE ID': '...', # String CWE ID, e.g., "CWE-119"
'lines_before': '...', # String lines before change context
'lines_after': '...' # String lines after change context
}
```
**Note: This shows the structure of the final split files (train.csv, validation.csv, test.csv). The original MSR_data_cleaned.csv contains many more metadata fields.
##π¦ Dataset New Files
The dataset is available as three CSV files (specially created for the UltiVul project) hosted on Hugging Face, uploaded via huggingface_hub:
- train.csv
Size: 667 MB
Description: Training split with 150,909 samples, approximately 80% of the data.
- validation.csv
Size: 86 MB
Description: Validation split with 18,864 samples, approximately 10% of the data.
- test.csv
Size: 84.8 MB
Description: Test split with 18,863 samples, approximately 10% of the data.
π Acknowledgements
Original dataset provided by Fan et al., 2020
Thanks to the Hugging Face team for dataset hosting tools.
## π Citation
```bibtex
@inproceedings{fan2020ccode,
title={A C/C++ Code Vulnerability Dataset with Code Changes and CVE Summaries},
author={Fan, Jiahao and Li, Yi and Wang, Shaohua and Nguyen, Tien N},
booktitle={MSR '20: 17th International Conference on Mining Software Repositories},
pages={1--5},
year={2020},
doi={10.1145/3379597.3387501}
}
```
## π Dataset Creation
- **Source**: Original data from [MSR 2020 Paper](https://doi.org/10.1145/3379597.3387501)
- **Processing**:
- Cleaned and standardized CSV format
- Stream-based splitting to handle large size
- Preserved all original metadata
|