File size: 4,562 Bytes
8ba65c7
 
 
 
 
 
248862e
8ba65c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fe8597
 
 
 
8ba65c7
 
 
 
 
 
 
 
 
 
 
1fe8597
 
8ba65c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fe8597
8ba65c7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
task_categories:
- visual-question-answering
- table-question-answering
language:
- ja
license: cc-by-4.0 
tags:
- table-qa
- visual-qa
- japanese
- ntcir
size_categories:
- 10K<n<100K
---

# TableCellQA Dataset

This dataset is for Table Question Answering (Table QA), derived from tables in Japanese annual securities reports used in the NTCIR-18 U4 shared task. 

This dataset was proposed in our paper: [Enhancing Large Vision-Language Models with Layout Modality for Table Question Answering on Japanese Annual Securities Reports](https://arxiv.org/abs/2505.17625).

## Key Differences from Original Dataset

1. **Multimodal Support**: This dataset supports multimodal inputs (image, layout, text) for comprehensive table understanding
2. **Direct Cell Value Extraction**: Unlike the original task, this dataset focuses on direct extraction of cell values, removing the need for arithmetic operations or other transformations

## Dataset Description

- **Language**: Japanese
- **Task**: Table Question Answering
- **Format**: Images with OCR text and question-answer pairs
- **Source**: NTCIR-18 U4 Task

## Dataset Structure

Each example contains:
- `id`: Unique identifier
- `sample_id`: Original sample ID
- `image`: Table image (PNG format)
- `text_w_bbox`: Raw OCR data with bounding box information (JSON format)
- `question`: Question about the table
- `answer`: Answer to the question
- `question_type`: Type of question (table_qa)
- `dataset`: Dataset name (ntcir18-u4)

## Usage

```python
from datasets import load_dataset
import json

dataset = load_dataset("stockmark/u4-table-cell-qa")

# Access OCR data with bounding boxes
sample = dataset["train"][0]
ocr_data = json.loads(sample["text_w_bbox"])

# Each OCR element contains:
# - "box": [x1, y1, x2, y2] - bounding box coordinates
# - "text": extracted text
# - "label": classification label (if available)
# - "words": word-level information (if available)

for ocr_item in ocr_data:
    print(f"Text: {ocr_item['text']}")
    print(f"Box: {ocr_item['box']}")
```

## License

This dataset is licensed under the [Creative Commons Attribution 4.0 International License (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/).

## Citation

### Original Dataset

This dataset is based on the NTCIR-U4 task. We thank the original authors for making their data available.

**Data Source:**
- 本データは金融庁 EDINET で公開されている有価証券報告書を基に編集・加工したものです。
- This data is based on securities reports published on EDINET (Financial Services Agency of Japan), which have been edited and processed.

**Attribution:**
本データセットを利用する際は、本データセットの作者、および元のデータソースの両方に対するクレジット(帰属表示)をお願いします。
When using this dataset, please provide attribution to both the creator of this dataset and the original data source.
- 出典:EDINET(金融庁)/ Source: EDINET (Financial Services Agency of Japan)
- 編集・加工:ストックマーク株式会社(NTCIR-18 U4 タスク関連データ)/ Edited and processed by: Stockmark Inc. (NTCIR-18 U4 Task related data)

**References:**
- Task Overview: https://sites.google.com/view/ntcir18-u4/
- Data and Code (GitHub): https://github.com/nlp-for-japanese-securities-reports/ntcir18-u4

```bibtex
@article{EMTCIR2024,
 title  = {Understanding Tables in Financial Documents: Shared Tasks for Table Retrieval and Table QA on Japanese Annual Security Reports},
 author = {Yasutomo Kimura and Eisaku Sato and Kazuma Kadowaki and Hokuto Ototake},
 journal = {Proceedings of the SIGIR-AP 2024 Workshops EMTCIR 2024},
 month  = {12},
 year  = {2024},
 url   = {https://ceur-ws.org/Vol-3854/}
}
```

### Our Paper

If you use this dataset, please cite our paper:

```bibtex
@article{aida2025enhancinglargevisionlanguagemodels,
      title={Enhancing Large Vision-Language Models with Layout Modality for Table Question Answering on Japanese Annual Securities Reports}, 
      author={Hayato Aida and Kosuke Takahashi and Takahiro Omi},
      year={2025},
      eprint={2505.17625},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.17625}, 
}
```

### This Dataset

If you use this processed dataset, please also cite:

```bibtex
@dataset{table_cell_qa_2025,
  title={TableCellQA Dataset},
  author={Hayato Aida},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/stockmark/u4-table-cell-qa}
}
```