|
|
|
"""Speech Segment dataset. |
|
""" |
|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
import torchaudio |
|
|
|
|
|
class SpeechSegmentConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Speech Segment. |
|
For long audio files, segment them into smaller segments of fixed length. |
|
For short audio files, return the whole audio file. |
|
""" |
|
|
|
def __init__(self, segment_length, **kwargs): |
|
super(SpeechSegmentConfig, self).__init__(**kwargs) |
|
self.segment_length = segment_length |
|
|
|
|
|
class SpeechSegment(datasets.GeneratorBasedBuilder): |
|
"""Speech Segment dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SpeechSegmentConfig(name="all", segment_length=60.0,), |
|
] |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return ( |
|
"Specify the data_dir as the path to the folder, will recursively search for .flac and .wav files. " |
|
"`datasets.load_dataset('subatomicseer/speech_segment', data_dir='path/to/folder/folder_name')`" |
|
) |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"file": datasets.Value("string"), |
|
'sample_rate': datasets.Value('int64'), |
|
'offset': datasets.Value('int64'), |
|
'num_frames': datasets.Value('int64'), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
base_data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
if not os.path.exists(base_data_dir): |
|
raise FileNotFoundError( |
|
f"{base_data_dir} does not exist. Manual download instructions: {self.manual_download_instructions}" |
|
) |
|
|
|
data_dirs = [str(p) for p in Path(base_data_dir).rglob('*') if p.suffix in ['.flac', '.wav']] |
|
print(f"Found {len(data_dirs)} audio files in {base_data_dir}") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_dirs": data_dirs}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dirs): |
|
for key, path in enumerate(data_dirs): |
|
path_split = path.split("/") |
|
id_ = '/'.join(path_split[-4:]).replace(".flac", "") |
|
|
|
audio_metadata = torchaudio.info(path) |
|
segment_length = int(self.config.segment_length * audio_metadata.sample_rate) |
|
total_length = audio_metadata.num_frames |
|
|
|
if total_length <= segment_length: |
|
yield id_, { |
|
"id": id_, |
|
"file": path, |
|
'sample_rate': audio_metadata.sample_rate, |
|
'offset': 0, |
|
'num_frames': total_length, |
|
} |
|
else: |
|
|
|
offsets = list(range(0, total_length, segment_length)) |
|
if total_length - offsets[-1] < 1 * audio_metadata.sample_rate: |
|
|
|
offsets.pop() |
|
|
|
for segment_id, start in enumerate(offsets): |
|
end = start + segment_length - 1 |
|
if end > total_length: |
|
end = total_length |
|
yield f'{id_}_{segment_id}', { |
|
"id": f'{id_}_{segment_id}', |
|
"file": path, |
|
'sample_rate': audio_metadata.sample_rate, |
|
'offset': start, |
|
'num_frames': end-start+1, |
|
} |
|
|