--- license: - cc-by-4.0 language: - en tags: - remote-sensing - planet - change-detection - spatiotemporal - deep-learning - video-compression pretty_name: DynamicEarthNet-video viewer: false ---
![Dataset Image](assets/taco.png)

This dataset follows the TACO specification.


# DynamicEarthNet-video: Daily PlanetFusion Image Cubes Compressed as Videos ## Description ### 📦 Dataset DynamicEarthNet-video is a storage-efficient re-packaging of the original **DynamicEarthNet** collection. The archive covers seventy-five 1024 × 1024 px regions (≈ 3 m GSD) across the globe, sampled daily from **1 January 2018 to 31 December 2019**. Each day is delivered as four-band PlanetFusion surface-reflectance images (B04 Red, B03 Green, B02 Blue, B8A Narrow-NIR). Monthly pixel-wise labels annotate seven land-cover classes: impervious, agriculture, forest, wetlands, bare soil, water and snow/ice. All original GeoTIFF stacks (≈ 525 GB) are transcoded with **[xarrayvideo](https://github.com/IPL-UV/xarrayvideo)** to 12-bit H.265/HEVC, yielding dramatic size savings while preserving scientific fidelity: | Version | Size | PSNR | Ratio | | --------------------------- | ---------: | ------: | ----: | | Raw GeoTIFF | 525 GB | — | 1 × | | **DynamicEarthNet-video** | **8.5 GB** | 60.1 dB | 62 × | | Extra-compressed (optional) | 2.1 GB | 54 dB | 249 × | Extensive tests show that semantic change-segmentation scores obtained with U-TAE, U-ConvLSTM and 3D-UNet remain statistically unchanged (Δ mIoU ≤ 0.02 pp) when the compressed cubes replace the raw imagery. The compact video format therefore removes I/O bottlenecks and enables: * end-to-end training of sequence models directly from disk, * rapid experimentation on 4-band daily time-series, * efficient sharing of benchmarks for change detection and forecasting. ### 🛰️ Sensors | Instrument | Platform | Bands | Native GSD | Role | | ---------------- | --------------------------- | --------- | ---------- | -------------------- | | **PlanetFusion** | PlanetScope / SkySat fusion | RGB + NIR | 3 m | Daily image sequence | ## 👤 Creators | Name | Affiliation | | ---------------------- | ------------------------------------ | | Achraf Toker | Technical University of Munich (TUM) | | Lisa Kondmann | TUM | | Manuel Weber | TUM | | Martin Eisenberger | TUM | | Alfonso Camero | TUM | | Jing Hu | TUM | | André Pregel Höderlein | TUM | | Çagatay Şenaras | Planet Labs PBC | | Tyler Davis | Planet Labs PBC | | Daniel Cremers | TUM | | Guido Marchisio | Planet Labs PBC | | Xiao Xiang Zhu | German Aerospace Center (DLR) / TUM | | Laura Leal-Taixé | TUM | ## 📂 Original dataset **Download (TUM Mediatum)**: [https://mediatum.ub.tum.de/1650201](https://mediatum.ub.tum.de/1650201) ## 🌮 Taco dataset ## ⚡ Reproducible Example Open In Colab ```python import tacoreader import xarrayvideo as xav import xarray as xr import matplotlib.pyplot as plt # Load tacos table = tacoreader.load("tacofoundation:dynamicearthnet-video") # Read a sample row idx = 0 row = dataset.read(idx) row_id = dataset.iloc[idx]["tortilla:id"] ```
## 🛰️ Sensor Information Sensors: **planet** ## 🎯 Task * **Semantic change detection** and **land-cover mapping** on daily 4-band sequences. * Benchmarks include U-TAE, U-ConvLSTM, 3D-UNet (official splits A/B/C) . * DynamicEarthNet-video can also serve for next-frame prediction and self-supervised representation learning on high-frequency optical data. ## 📚 References ### Publication 01 * **DOI**: [10.48550/arXiv.2203.12560](https://doi.org/10.48550/arXiv.2203.12560) * **Summary**: Toker *et al.* introduce **DynamicEarthNet**, a benchmark of 75 daily 4-band PlanetFusion image cubes (3 m, 2018-2019) with monthly 7-class land-cover masks for semantic‐change segmentation. The paper establishes U-TAE, U-ConvLSTM and 3D-UNet baselines and proposes spatially blocked cross-validation to limit autocorrelation. ([arXiv][1]) * **BibTeX Citation** ```bibtex @inproceedings{toker2022dynamicearthnet, title = {DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation}, author = {Toker, Aykut and Kondmann, Leonie and Weber, Markus and Eisenberger, Marvin and Camero, Alejandro and others}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, year = {2022}, doi = {10.48550/arXiv.2203.12560} } ``` ## 💬 Discussion Chat with the maintainers: [https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions](https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions) ## 🤝 Data Providers | Name | Role | URL | | --------------- | ---------------- | ------------------------------------------------ | | Planet Labs PBC | Imagery provider | [https://www.planet.com](https://www.planet.com) | ## 👥 Curators | Name | Organization | URL | | ------------------------ | ------------------------- | ---------------------------------------------------------------------------------------------- | | Oscar J. Pellicer-Valero | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.com/citations?user=CCFJshwAAAAJ&hl=en) | | Cesar Aybar | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.es/citations?user=rfF51ocAAAAJ&hl=es) | | Julio Contreras | Image Signal Processing (ISP) | [GitHub](https://github.com/JulioContrerasH) |