---
license:
- cc-by-4.0
language:
- en
tags:
- remote-sensing
- planet
- change-detection
- spatiotemporal
- deep-learning
- video-compression
pretty_name: DynamicEarthNet-video
viewer: false
---

This dataset follows the TACO specification.
# DynamicEarthNet-video: Daily PlanetFusion Image Cubes Compressed as Videos
## Description
### 📦 Dataset
DynamicEarthNet-video is a storage-efficient re-packaging of the original **DynamicEarthNet** collection.
The archive covers seventy-five 1024 × 1024 px regions (≈ 3 m GSD) across the globe, sampled daily from **1 January 2018 to 31 December 2019**. Each day is delivered as four-band PlanetFusion surface-reflectance images (B04 Red, B03 Green, B02 Blue, B8A Narrow-NIR). Monthly pixel-wise labels annotate seven land-cover classes: impervious, agriculture, forest, wetlands, bare soil, water and snow/ice.
All original GeoTIFF stacks (≈ 525 GB) are transcoded with **[xarrayvideo](https://github.com/IPL-UV/xarrayvideo)** to 12-bit H.265/HEVC, yielding dramatic size savings while preserving scientific fidelity:
| Version | Size | PSNR | Ratio |
| --------------------------- | ---------: | ------: | ----: |
| Raw GeoTIFF | 525 GB | — | 1 × |
| **DynamicEarthNet-video** | **8.5 GB** | 60.1 dB | 62 × |
| Extra-compressed (optional) | 2.1 GB | 54 dB | 249 × |
Extensive tests show that semantic change-segmentation scores obtained with U-TAE, U-ConvLSTM and 3D-UNet remain statistically unchanged (Δ mIoU ≤ 0.02 pp) when the compressed cubes replace the raw imagery.
The compact video format therefore removes I/O bottlenecks and enables:
* end-to-end training of sequence models directly from disk,
* rapid experimentation on 4-band daily time-series,
* efficient sharing of benchmarks for change detection and forecasting.
### 🛰️ Sensors
| Instrument | Platform | Bands | Native GSD | Role |
| ---------------- | --------------------------- | --------- | ---------- | -------------------- |
| **PlanetFusion** | PlanetScope / SkySat fusion | RGB + NIR | 3 m | Daily image sequence |
## 👤 Creators
| Name | Affiliation |
| ---------------------- | ------------------------------------ |
| Achraf Toker | Technical University of Munich (TUM) |
| Lisa Kondmann | TUM |
| Manuel Weber | TUM |
| Martin Eisenberger | TUM |
| Alfonso Camero | TUM |
| Jing Hu | TUM |
| André Pregel Höderlein | TUM |
| Çagatay Şenaras | Planet Labs PBC |
| Tyler Davis | Planet Labs PBC |
| Daniel Cremers | TUM |
| Guido Marchisio | Planet Labs PBC |
| Xiao Xiang Zhu | German Aerospace Center (DLR) / TUM |
| Laura Leal-Taixé | TUM |
## 📂 Original dataset
**Download (TUM Mediatum)**: [https://mediatum.ub.tum.de/1650201](https://mediatum.ub.tum.de/1650201)
## 🌮 Taco dataset
## ⚡ Reproducible Example
```python
import tacoreader
import xarrayvideo as xav
import xarray as xr
import matplotlib.pyplot as plt
# Load tacos
table = tacoreader.load("tacofoundation:dynamicearthnet-video")
# Read a sample row
idx = 0
row = dataset.read(idx)
row_id = dataset.iloc[idx]["tortilla:id"]
```
## 🛰️ Sensor Information
Sensors: **planet**
## 🎯 Task
* **Semantic change detection** and **land-cover mapping** on daily 4-band sequences.
* Benchmarks include U-TAE, U-ConvLSTM, 3D-UNet (official splits A/B/C) .
* DynamicEarthNet-video can also serve for next-frame prediction and self-supervised representation learning on high-frequency optical data.
## 📚 References
### Publication 01
* **DOI**: [10.48550/arXiv.2203.12560](https://doi.org/10.48550/arXiv.2203.12560)
* **Summary**: Toker *et al.* introduce **DynamicEarthNet**, a benchmark of 75 daily 4-band PlanetFusion image cubes (3 m, 2018-2019) with monthly 7-class land-cover masks for semantic‐change segmentation. The paper establishes U-TAE, U-ConvLSTM and 3D-UNet baselines and proposes spatially blocked cross-validation to limit autocorrelation. ([arXiv][1])
* **BibTeX Citation**
```bibtex
@inproceedings{toker2022dynamicearthnet,
title = {DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation},
author = {Toker, Aykut and Kondmann, Leonie and Weber, Markus and Eisenberger, Marvin and Camero, Alejandro and others},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year = {2022},
doi = {10.48550/arXiv.2203.12560}
}
```
## 💬 Discussion
Chat with the maintainers: [https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions](https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions)
## 🤝 Data Providers
| Name | Role | URL |
| --------------- | ---------------- | ------------------------------------------------ |
| Planet Labs PBC | Imagery provider | [https://www.planet.com](https://www.planet.com) |
## 👥 Curators
| Name | Organization | URL |
| ------------------------ | ------------------------- | ---------------------------------------------------------------------------------------------- |
| Oscar J. Pellicer-Valero | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.com/citations?user=CCFJshwAAAAJ&hl=en) |
| Cesar Aybar | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.es/citations?user=rfF51ocAAAAJ&hl=es) |
| Julio Contreras | Image Signal Processing (ISP) | [GitHub](https://github.com/JulioContrerasH) |