taresh18 commited on
Commit
d6ce03c
·
verified ·
1 Parent(s): 1b381d8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md CHANGED
@@ -20,4 +20,88 @@ configs:
20
  data_files:
21
  - split: train
22
  path: data/train-*
 
 
 
 
 
 
 
 
 
23
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  data_files:
21
  - split: train
22
  path: data/train-*
23
+ license: cc
24
+ task_categories:
25
+ - automatic-speech-recognition
26
+ - text-to-speech
27
+ language:
28
+ - en
29
+ pretty_name: 'AnimeVox: Character TTS Corpus'
30
+ size_categories:
31
+ - 10K<n<100K
32
  ---
33
+
34
+ # AnimeVox: Character TTS Corpus
35
+
36
+ ## 🗣️ Dataset Overview
37
+
38
+ AnimeVox is an English Text-to-Speech (TTS) dataset featuring 11,020 audio clips from 19 distinct anime characters across popular series. Each clip includes a high-quality transcription, character name, and anime title, making it ideal for voice cloning, custom TTS model fine-tuning, and character voice synthesis research.
39
+
40
+ The dataset was created and processed using **[TTSizer](https://github.com/taresh18/TTSizer)**, an open-source tool that automates creating high-quality TTS datasets from raw media.
41
+
42
+ **Watch the Demo Video:**
43
+ [![AnimeVox Dataset Demo Video](https://img.youtube.com/vi/POwMVTwsZDQ/hqdefault.jpg)](https://youtu.be/POwMVTwsZDQ?si=rxNy7grLyROhdIEd)
44
+
45
+ ## 📊 Dataset Statistics
46
+
47
+ - **Total samples:** 11,020
48
+ - **Characters:** 19
49
+ - **Anime series:** 15
50
+ - **Audio format:** 44.1kHz mono WAV
51
+ - **Storage size:** ~3.5GB
52
+
53
+ ## 🎧 Dataset Structure
54
+
55
+ * **Instances:** Each sample is a dictionary with the following structure:
56
+ ```python
57
+ {
58
+ "audio": {"path": "...", "array": ..., "sampling_rate": 44100},
59
+ "transcription": "English text spoken by the character.",
60
+ "character_name": "Character Name",
61
+ "anime": "Anime Series Title"
62
+ }
63
+ * **Fields:**
64
+ * `audio`: Audio object (44.1kHz).
65
+ * `transcription`: (str) English transcription.
66
+ * `character_name`: (str) Name of the speaking character.
67
+ * `anime`: (str) Anime series title.
68
+ * **Splits:** A single train split with all 11,020 samples from 19 characters.
69
+
70
+ ## 🛠️ Dataset Creation
71
+
72
+ ### Source
73
+ Audio clips were sourced from official English-dubbed versions of popular anime series. The clips were selected to capture diverse emotional tones and vocal characteristics unique to each character.
74
+
75
+ ### Processing with TTSizer
76
+ This dataset was generated using **[TTSizer](https://github.com/taresh18/TTSizer)**, which offers an end-to-end automated pipeline for creating TTS-ready datasets. Key features utilized include:
77
+
78
+ * **Advanced Multi-Speaker Diarization:** To accurately identify and segment speech for each of the characters, even in complex audio environments.
79
+ * **State-of-the-Art Model Integration:** Leveraging models such as MelBandRoformer (for vocal separation), Gemini (for diarization), CTC-Aligner (for precise audio-text alignment), and WeSpeaker (for speaker embedding/verification).
80
+ * **Quality Control:** Implementing automatic outlier detection to flag and help refine potentially problematic audio-text pairs, ensuring higher dataset quality.
81
+
82
+ The tool's configurable nature allowed for fine-tuning the entire process to suit the specific needs of this anime voice dataset.
83
+
84
+ ## 📜 Licensing & Usage
85
+
86
+ * **License:** Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
87
+
88
+ ## 🚀 How to Use
89
+
90
+ ```python
91
+ from datasets import load_dataset
92
+
93
+ # Load the dataset
94
+ dataset = load_dataset("taresh18/AnimeVox")
95
+
96
+ # Access the training split
97
+ train_data = dataset["train"]
98
+
99
+ # Print dataset information
100
+ print(f"Dataset contains {len(train_data)} samples")
101
+
102
+ # Access a specific sample
103
+ sample = train_data[0]
104
+ print(f"Character: {sample['character_name']}")
105
+ print(f"From anime: {sample['anime']}")
106
+ print(f"Transcription: {sample['transcription']}")
107
+ ```