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Abstract  The expectation-maximization (EM) algorithm is a broadly applicable
approach to the iterative computation of maximum likelihood (ML) estimates, useful
in a variety of incomplete-data problems. In particular, the EM algorithm simplifies
considerably the problem of fitting finite mixture models by ML, where mixture
models are used to model heterogeneity in cluster analysis and pattern recognition
contexts. The EM algorithm has a number of appealing properties, including its
numerical stability, simplicity of implementation, and reliable global convergence.
There are also extensions of the EM algorithm to tackle complex problems in various
data mining applications. It is, however, highly desirable if its simplicity and stability
can be preserved.

5.1 Introduction

The expectation-maximization (EM) algorithm has been of considerable interest in
recent years in the development of algorithms in various application areas such as data
mining, machine learning, and pattern recognition [20, 27, 28]. The seminal paper
of Dempster et al. [8] on the EM algorithm greatly stimulated interest in the use of
finite mixture distributions to model heterogeneous data. This is because the fitting of
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94 EM

mixture models by maximum likelihood (ML) is a classic example of a problem that
is simplified considerably by the EM’s conceptual unification of ML estimation from
data that can be viewed as being incomplete [20]. Maximum likelihood estimation
and likelihood-based inference are of central importance in statistical theory and
data analysis. Maximum likelihood estimation is a general-purpose method with
attractive properties [6, 13, 31]. Finite mixture distributions provide a flexible and
mathematical-based approach to the modeling and clustering of data observed on
random phenomena. We focus here on the use of the EM algorithm for the fitting of
finite mixture models via the ML approach.

With the mixture model-based approach to clustering, the observed p-dimensional
data y,, ..., y, are assumed to have come from a mixture of an initially specified
number g of component densities in some unknown proportions 7y, ..., g, which
sum to 1. The mixture density of y; is expressed as

g
f@ @)=Y mfiy;:0) (G=1....n (5.1)
i=1
where the component density f;(y;;8;) is specified up to a vector ; of unknown
parameters (i = 1, ..., g). The vector of all the unknown parameters is given by
v = (m,...,rrg_l,ﬁlT,...,Gg)T

where the superscript T denotes vector transpose. The parameter vector ¥ can be
estimated by ML. The objective is to maximize the likelihood L(W¥), or equivalently,
the log likelihood log L(¥), as a function of ¥, over the parameter space. That is, the
ML estimate of ¥, W, is given by an appropriate root of the log likelihood equation,

dlog L(W)/0W¥ =0 5.2)
where

log L(®) =) " log f(y;; ¥)
j=1

is the log likelihood function for W formed under the assumption of independent
data y,, ..., y,. The aim of ML estimation [13] is to determine an estimate ¥ for
each n, so that it defines a sequence of roots of Equation (5.2) that is consistent and
asymptotically efficient. Such a sequence is known to exist under suitable regularity
conditions [7]. With probability tending to one, these roots correspond to local maxima
in the interior of the parameter space. For estimation models in general, the likelihood
usually has a global maximum in the interior of the parameter space. Then typically a
sequence of roots of Equation (5.2) with the desired asymptotic properties is provided
by taking W for each n to be the root that globally maximizes L(W); in this case, Wis
the MLE [18]. We shall henceforth refer to W as the MLE, even in situations where it
may not globally maximize the likelihood. Indeed, in the example on mixture models
to be presented in Section 5.4.1, the likelihood is unbounded. However, there may
still exist under the usual regularity conditions a sequence of roots of Equation (5.2)
with the properties of consistency, efficiency, and asymptotic normality [16].
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5.2 Algorithm Description

The EM algorithm is an iterative algorithm, in each iteration of which there are two
steps, the Expectation step (E-step) and the Maximization step (M-step). A brief
history of the EM algorithm can be found in [18]. Within the incomplete-data frame-
work of the EM algorithm, we let y = (y!, ..., yI)T denote the vector containing
the observed data and we let z denote the vector containing the incomplete data. The
complete-data vector is declared to be

xr = (yT’ ZT)T

The EM algorithm approaches the problem of solving the “incomplete-data” log like-
lihood Equation (5.2) indirectly by proceeding iteratively in terms of the “complete-
data” log likelihood, log L.(¥). As it depends explicitly on the unobservable data z,
the E-step is performed on which log L.(¥) is replaced by the so-called Q-function,
which is its conditional expectation given y, using the current fit for ¥. More specif-
ically, on the (k 4 1)th iteration of the EM algorithm, the E-step computes

Q(; ¥Y) = Ego{log L.(P)|y)

where Egw denotes expectation using the parameter vector ¥*). The M-step up-
dates the estimate of ¥ by that value W&+ of ¥ that maximizes the Q-function,
O(F; T®), with respect to W over the parameter space [18]. The E- and M-steps are
alternated repeatedly until the changes in the log likelihood values are less than some
specified threshold. As mentioned in Section 5.1, the EM algorithm is numerically
stable with each EM iteration increasing the likelihood value as

L) = L(w®)

It can be shown that both the E- and M-steps will have particularly simple forms when
the complete-data probability density function is from an exponential family [18].
Often in practice, the solution to the M-step exists in closed form. In those instances
where it does not, it may not be feasible to attempt to find the value of W that globally
maximizes the function Q(¥; ¥®). For such situations, a generalized EM (GEM)
algorithm [8] may be adopted for which the M-step requires ¥**1 to be chosen such
that W*+1 increases the Q-function Q(¥; ¥®) over its value at ¥ = ¥®  That is,

QT D, gl > o(p®; g®)

holds; see [18].

Some of the drawbacks of the EM algorithm are (a) it does not automatically pro-
duce an estimate of the covariance matrix of the parameter estimates. This disadvan-
tage, however, can easily be removed by using appropriate methodology associated
with the EM algorithm [18]; (b) it is sometimes very slow to converge; and (c) in
some problems, the E- or M-steps may be analytically intractable. We shall briefly
address the last two issues in Section 5.5.
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5.3 Software Implementation

The EMMIX program: McLachlan et al. [22] have developed the program
EMMIX as a general tool to fit mixtures of multivariate normal or ¢-distributed
components by ML via the EM algorithm to continuous multivariate data. It
also includes many other features that were found to be of use when fitting mix-
ture models. These include the provision of starting values for the application
of the EM algorithm, the provision of standard errors for the fitted parameters
in the mixture model via various methods, and the determination of the number
of components; see below.

Starting values for EM algorithm: With applications where the log likelihood
equation has multiple roots corresponding to local maxima, the EM algorithm
should be applied from a wide choice of starting values in any search for all
local maxima. In the context of finite mixture models, an initial parameter value
can be obtained using the k-means clustering algorithm, hierarchical clustering
methods, or random partitions of the data [20]. With the EMMIX program, there
is an additional option for random starts whereby the user can first subsample
the data before using a random start based on the subsample each time. This is
to limit the effect of the central limit theorem, which would have the randomly
selected starts being similar for each component in large samples [20].

Provision of standard errors: Several methods have been suggested in the EM
literature for augmenting the EM computation with some computation for ob-
taining an estimate of the covariance matrix of the computed ML estimates;
see [11, 15, 18]. Alternatively, standard error estimation may be obtained with
the EMMIX program using the bootstrap resampling approach implemented
parametrically or nonparametrically [18, 20].

Number of components: We can make a choice as to an appropriate value of the
number of components (clusters) g by consideration of the likelihood function.
In the absence of any prior information as to the number of clusters present in
the data, we can monitor the increase in log likelihood function as the value of
g increases. At any stage, the choice of g = gy versus g = go + 1 can be made
by either performing the likelihood ratio test or using some information-based
criterion, such as the Bayesian Information Criterion (BIC). Unfortunately,
regularity conditions do not hold for the likelihood ratio test statistic A to have
its usual null distribution of chi-squared with degrees of freedom equal to the
difference d in the number of parameters for g = go+1and g = go components
in the mixture model. The EMMIX program provides a bootstrap resampling
approach to assess the null distribution (and hence the p-value) of the statistic
(—21log A). Alternatively, one can apply BIC, although regularity conditions do
not hold for its validity here. The use of BIC leads to the selection of g = go+1
over g = go if —2log A is greater than d log(n).
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Other mixture software: There are some other EM-based software for mixture
modeling via ML. For example, Fraley and Raftery [9] have developed the
MCLUST program for hierarchical clustering on the basis of mixtures of nor-
mal components under various parameterizations of the component-covariance
matrices. It is interfaced to the S-PLUS commercial software and has the op-
tion to include an additional component in the model for background (Poisson)
noise. The reader is referred to the appendix in McLachlan and Peel [20] for
the availability of software for the fitting of mixture models.

5.4 Illustrative Examples

We give in this section two examples to demonstrate how the EM algorithm can be
conveniently applied to find the ML estimates in some commonly occurring situations
indata mining. Both examples concern the application of the EM algorithm for the ML
estimation of finite mixture models, which is widely adopted to model heterogeneous
data [20]. They illustrate how an incomplete-data formulation is used to derive the
EM algorithm for computing ML estimates.

5.4.1 Example 5.1: Multivariate Normal Mixtures

This example concerns the application of the EM algorithm for the ML estimation of
finite mixture models with multivariate normal components [20]. With reference to
Equation (5.1), the mixture density of y; is given by

8
f@ @)= mey;m. ) (G=1....n (5.3)

i=1

where ¢(y ;; pi, ;) denotes the p-dimensional multivariate normal distribution with
mean p; and covariance matrix 3J; . Here the vector ¥ of unknown parameters consists
of the mixing proportions 7y, . .., 7,1, the elements of the component means p; ,and
the distinct elements of the component-covariance matrices ;. The log likelihood
for W is then given by

n g
log L(P) = Zlog {Zﬂi¢(yj; Wi, Ei)}
=1 i=1

Solutions of the log likelihood equation corresponding to local maxima can be found
iteratively by application of the EM algorithm.

Within the EM framework, each y ] is conceptualized to have arisen from one of
the g components of the mixture model [Equation (5.3)]. We let zy, ..., z, denote
the unobservable component-indicator vectors, where the ith element z;; of z; is
taken to be one or zero according as the jth observation y; does or does not come
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from the ith component. The observed-data vector y is viewed as being incomplete,
as the associated component-indicator vectors, z1, ..., 2,, are not available. The

complete-data vector is therefore z = (y”, 27)", where 2 = (27, ..., zI)T. The
complete-data log likelihood for W is given by
8 n
log Le(®) =Y ) " zij{logmi + log ¢(y ;; i Ti)} (5.4)

i=1 j=1

The EM algorithm is applied to this problem by treating the z;; in Equation (5.4)
as missing data. On the (k + 1)th iteration, the E-step computes the Q-function,
Q(¥; ¥®) which is the conditional expectation of the complete-data log likelihood
given y and the current estimates W®, As the complete-data log likelihood [Equa-
tion (5.4)] is linear in the missing data z;;, we simply have to calculate the current
conditional expectation of Z;; given the observed data y, where Z;; is the random
variable corresponding to z;;. That is,

Egw(Zijly) = progw{Zi; = 1|y}
= n(y;; )

- nolun 20 [ S mPelusnt B 65

fori =1,...,g;j =1,...,n. The quantity ri(yj; WH) is the posterior probabil-
ity that the jth observation y; belongs to the ith component of the mixture. From
Equations (5.4) and (5.5), it follows that

8 n
QW ®W) =" "ri(y;; U9 logmi +logp(y ;s i, )} (5.6)
i=1 j=1

For mixtures with normal component densities, it is computationally advantageous
to work in terms of the sufficient statistics [26] given by
n
TV =) uy; 9

j=1
n

k
T =) uly;: ¥y,
j=1

n
k
T = uy,; ¥y’ (5.7)
Jj=1
For normal components, the M-step exists in closed form and is simplified on the
basis of the sufficient statistics in Equation (5.7) as

20D — 7,
1

(k+1) (k) s (k)
©; =T, /T,
(k+1) (k) 0~y () T (k)
% = {TiS —Ty TiyTh }/Til (5-8)
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see [20, 26]. In the case of unrestricted component-covariance matrices 3;, L(W) is
unbounded, as each data point gives rise to a singularity on the edge of the param-
eter space [16, 20]. Consideration has to be given to the problem of relatively large
(spurious) local maxima that occur as a consequence of a fitted component having
a very small (but nonzero) generalized variance (the determinant of the covariance
matrix). Such a component corresponds to a cluster containing a few data points either
relatively close together or almost lying in a lower dimensional subspace in the case
of multivariate data.

In practice, the component-covariance matrices 3J; can be restricted to being the
same,¥; = X (i = 1,..., g), where X is unspecified. In this case of homoscedas-
tic normal components, the updated estimate of the common component-covariance
matrix X is given by

g
»k+D) Z 7}(11<)El(k+1)/n 59

i=1

where Eka) is given by Equation (5.8), and the updates of ; and p; are as above in
the heteroscedastic case [Equation (5.8)].

The well-known set of Iris data is available at the UCI Repository of machine
learning databases [1]. The data consist of measurements of the length and width
of both sepals and petals of 50 plants for each of the three types of Iris species
setosa, versicolor, and virginica. Here, we cluster these four-dimensional data, ig-
noring the known classification of the data, by fitting a mixture of g = 3 normal
components with heteroscedastic diagonal component-covariance matrices using the
EMMIX program [22]. The vector of unknown parameters ¥ now consists of the
mixing proportions 7}, 7, the elements of the component means p;, and the diago-
nal elements of the component-covariance matrices ¥; (i = 1, 2, 3). An initial value
PO is chosen to be

¥ =031, 7i¥ =0.33, 7¥ =0.36

p¥ =(5.0,3.4,1.5,02)7, n¥ =(5.8,2.7,4.2,1.3)"
) = (6.6,3.0,5.5,2.0)"

2 = diag(0.1,0.1,0.03,0.01) = = diag(0.2,0.1,0.2, 0.03)
»© = diag(0.3,0.1,0.3,0.1)

which is obtained through the use of k-means clustering method. With the EMMIX
program, the default stopping criterion is that the change in the log likelihood from
the current iteration and the log likelihood from 10 iterations previously differs by less
than 0.000001 of the current log likelihood [22]. The results of the EM algorithm are
presented in Table 5.1. The MLE of ¥ can be taken to be the value of ¥® on iteration
k = 29. Alternatively, the EMMIX program offers automatic starting values for the
application of the EM algorithm. As an example, an initial value ¥© is determined
from 10 random starts (using 70% subsampling of the data), 10 k-means starts, and 6
hierarchical methods; see Section 5.3 and [22]. The final estimates of W are the same
as those given in Table 5.1.
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TABLE 5.1 Results of the EM Algorithm for Example 5.1

Iteration

e

T
i

Diagonal Elements of Eﬁk)

Log
Likelihood

0

10

20

29

0.310
0.330
0.360

0.333
0.299
0.368

0.333
0.300
0.367

0.333
0.303
0.364

0.333
0.304
0.363

0.333
0.305
0.362

(5.00, 3.40, 1.50,0.20)
(5.80,2.70,4.20, 1.30)
(6.60,3.00, 5.50, 2.00)

(501,3.43,1.46,025)
(5.82,2.70,4.20, 1.30)
(6.62,3.01,5.48,1.98)

(501,3.43,1.46,025)
(5.83,2.70,4.21,1.30)
(6.62,3.01,5.47,1.98)

(5.01,3.43,1.46,025)
(5.83,2.70,4.22, 1.30)
(6.62,3.02,5.48,1.99)

(5.01,343,1.46,0.25)
(5.83,2.70,4.22,1.30)
(6.62,3.02,5.48,1.99)

(5.01,3.43,1.46,025)
(5.83,2.70,4.22,1.30)
(6.62,3.02,5.48,1.99)

(0.100, 0.100, 0.030,0.010)
(0.200, 0.100, 0.200, 0.030)
(0.300, 0.100, 0.300, 0.100)

(0.122,0.141,0.030,0.011)
(0.225,0.089,0.212,0.034)
(0.322,0.083,0.325, 0.088)

(0.122,0.141,0.030,0.011)
(0.226,0.087,0.218,0.034)
(0.323,0.083,0.328,0.087)

(0.122,0.141,0.030,0.011)
(0.227,0.087,0.224,0.035)
(0.324,0.083, 0.328,0.086)

(0.122,0.141,0.030,0.011)
(0.228,0.087,0.225,0.035)
(0.324,0.083,0.327,0.086)

(0.122,0.141,0.030,0.011)
(0.229,0.087,0.225,0.035)
(0.324,0.083,0.327, 0.085)

—317.98421

—306.90935

—306.87370

—306.86234

—306.86075

—306.86052

54.2 Example 5.2: Mixtures of Factor Analyzers

McLachlan and Peel [21] adopt a mixture of factor analyzers model to cluster the
so-called wine data set, which is available at the UCI Repository of machine learning
databases [1]. These data give the results of a chemical analysis of wines grown
in the same region in Italy, but derived from three different cultivars. The analysis
determined the quantities of p = 13 consituents found in each of n = 178 wines.
To cluster this data set, a three-component normal mixture model can be adopted.
However, as p = 13 in this problem, the (unrestricted) covariance matrix 3; has 91
parameters for each i (i = 1, 2, 3), which means that the total number of parameters
is very large relative to the sample size of n = 178. A mixture of factor analyzers
can be used to reduce the number of parameters to be fitted. In a mixture of factor
analyzers, each observation Y ; is modeled as

Y=m +BU;+e
with probability m; (i = 1,...,g) for j = 1,...,n, where U;; is a g-dimensional
(g < p) vector of latent or unobservable variables called factors and B; is a p X

q matrix of factor loadings (parameters). The factors Uy, ..., U;, are distributed
independently N (0, I,,),independently of the €;;, which are distributed independently
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N(0, D;), where I, is the g x g identity matrix and D; is a p x p diagonal matrix
i=1,...,g). Thatis,

8
f@®) =) moly;: . )

i=1

where
21=B1BIT+DI (l=1,,g)

The vector of unknown parameters ¥ now consists of the elements of the w;, the B;,
and the D;, along with the mixing proportions 7; (i = 1,..., g — 1).

The alternating expectation conditional-maximization (AECM) algorithm [24] can
be used to fit the mixture of factor analyzers model by ML; see Section 5.5. The
unknown parameters are partitioned as (¥7, lIlg )T, where W, contains the 7; (i =
1,...,g — 1) and the elements of w; (i = 1, ..., g). The subvector ¥, contains the
elements of B; and D; (i = 1, ..., g). The AECM algorithm is an extension of the
expectation-conditional maximization (ECM) algorithm [23], where the specification
of the complete-data is allowed to be different on each conditional maximization
(CM) step. In this application, one iteration consists of two cycles corresponding to
the partition of ¥ into ¥; and ¥,, and there is one E-step and one CM-step for each
cycle. For the first cycle of the AECM algorithm, we specify the missing data to be just
the component-indicator vectors, zy, ..., z,; see Equation (5.4). The E-step on the
first cycle on the (k + 1)th iteration is essentially the same as given in Equations (5.5)
and (5.6). The first CM-step computes the updated estimate \Il(lk“) as

k+1 k
(+) Zrl()

and
(k+1) (k) (k)
Z o,/ Z )
fori =1, ..., g.Forthe second cycle for the updatmg of ¥,, we specify the missing
data to be the factors U;y, ..., U;,, as well as the component-indicator vectors,
. T T
Z1, ..., Z,. On setting W*+1/2) equal to (\1;(1"“) , ‘If(zk) )T, the E-step on the second

cycle calculates the conditional expectations as

(k+1/2) (k)T

Egwnp{ZijUij — p)ly;} =15 (y; — m)
and
Egenn{Z;jU;j — m)U;; — W)T|yj}
T, — oty — v + )
i J 4 J 4
where

¥ = (B BY' 1 D)~ B®
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and
Ql(k) — Iq (k) B(k)

fori =1, ..., g. The E-step above uses the result that the conditional distribution of
Uij given y; and z;; = 1 is given by

Uijly;.zij =1~ Ny (; — m). )

fori =1,...,g; j = 1,...,n. The CM-step on the second cycle provides the
updated estimate \Il(zkH) as

T
B(k+1) V(k+1/2) (k)( (k) V(k+l/2),Y(k)+Q(k))

Yi
and ,
D(k+1) dlag{V(k—H/Z) Bl(k+1)Hl(k+1/2)B§k+1) }
where LkH1/2) (k+1) (k+1)
+ + +IhT
Y2 Yo T (Y, —w )y, —w )
i - n k+1/2)
Zj:l Tij
and

(k+1/2) 0Ty A(k+1/2) _ (k k)
H; ! ZY:(')VI' /Yi)+Qz('

As an illustration, a mixture of factor analyzers model with different values of ¢ is
fitted to the wine data set, ignoring the known classification of the data. To determine
the initial estimate of ¥, the EMMIX program is used to fit the normal mixture
model with unrestricted component-covariance matrices using ten random starting
values (with 70% subsampling of the data). The estimates of 7r; and w; so obtained
are used as the initial values for 7; and w; in the AECM algorithm. The estimate
of XJ; so obtained (denoted as EEO)) is used to determine the initial estimate of D);,
where Df-o) is taken to be the diagonal matrix formed from the diagonal elements of
21(»0). An initial estimate of B; can be obtained using the method described in [20].
The results of the AECM algorithm from g = 1 to g = 8 are presented in Table 5.2.
We have also reported the value of minus twice the likelihood ratio test statistic A
(i.e.,twice the increase in the log likelihood), as we proceed from fitting a mixture of g
factor analyzers to one with ¢ + 1 component factors. For a given level of the number
of components g, regularity conditions hold for the asymptotic null distribution of
—2log A to be chi-squared with d degrees of freedom, where d is the difference
between the number of parameters under the null and alternative hypotheses for the
value of ¢. It can be seen from Table 5.2 that the apparent error rate of the outright
clustering is smallest for ¢ = 2 and 3. However, this error rate is unknown in a
clustering context and so cannot be used as a guide to the choice of g. Concerning
the use of the likelihood ratio test to decide on the number of factors ¢, the test of
q = qo = 6versus g = go+1 = 7isnot significant (P = 0.28),on taking —2 log A to
be chi-squared withd = g(p —qo) = 21 degrees of freedom under the null hypothesis
thatg = go = 6.
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TABLE 5.2 Results of the AECM Algorithm for Example 5.2

q Log Likelihood Error (%ZError) —2log A
1 —3102.254 2(1.12) —

2 —2995.334 1 (0.56) 213.8
3 —2913.122 1 (0.56) 164 .4
4 —2871.655 3(1.69) 82.93
5 —2831.860 4 (2.25) 79.59
6 —2811.290 4 (2.25) 41.14
7 —2799.204 4 (2.25) 24.17
8 —2788.542 4 (2.25) 21.32

5.5 Advanced Topics

In this section, we consider some extensions of the EM algorithm to handle problems
with more difficult E-step and/or M-step computations, and to tackle problems of
slow convergence. Moreover, we present a brief account of the applications of the
EM algorithm in the context of Hidden Markov Models (HMMs), which provide a
convenient way of formulating an extension of a mixture model to allow for dependent
data.

In some applications of the EM algorithm such as with generalized linear mixed
models, the E-step is complex and does not admit a close-form solution to the
QO-function. In this case, the E-step may be executed by a Monte Carlo (MC) process.
At the (k + 1)th iteration, the E-step involves

» simulation of M independent sets of realizations of the missing data Z from
the conditional distribution g(z|y; ¥®))

* approximation of the Q-function by

M
1
QW W) ~ 0y (B W) = ) log Le(W3y, 2™)

m=1
where 2" is the mth set of missing values based on ¥®

In the M-step, the Q-function is maximized over ¥ to obtain W*+D This variant is
known as the Monte Carlo EM (MCEM) algorithm [33]. As an MC error is introduced
at the E-step, the monotonicity property is lost. But in certain cases, the algorithm
gets close to a maximizer with a high probability [4]. The problems of specifying
M and monitoring convergence are of central importance in the routine use of the
algorithm; see [4, 18, 33].

With the EM algorithm, the M-step involves only complete-data ML estimation,
which is often computationally simple. However, in some applications, such as that
in mixtures of factor analyzers (Section 5.4.2), the M-step is rather complicated.
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The ECM algorithm [23] is a natural extension of the EM algorithm in situations
where the maximization process on the M-step is relatively simple when conditional
on some function of the parameters under estimation. The ECM algorithm takes
advantage of the simplicity of complete-data conditional maximization by replacing
a complicated M-step of the EM algorithm with several computationally simpler
CM steps. In particular, the ECM algorithm preserves the appealing convergence
properties of the EM algorithm [18, 23]. The AECM algorithm [24] mentioned in
Section 5.4.2 allows the specification of the complete-data to vary where necessary
over the CM-steps within and between iterations. This flexible data augmentation and
model reduction scheme is eminently suitable for applications like mixtures of factor
analyzers where the parameters are large in number.

Massively huge data sets of millions of multidimensional observations are now
commonplace. There is an ever increasing demand on speeding up the convergence
of the EM algorithm to large databases. But at the same time, it is highly desirable
if its simplicity and stability can be preserved. An incremental version of the EM
algorithm was proposed by Neal and Hinton [25] to improve the rate of convergence
of the EM algorithm. This incremental EM (IEM) algorithm proceeds by dividing the
data into B blocks and implementing the (partial) E-step for only a block of data at
a time before performing an M-step. That is, a “scan” of the IEM algorithm consists
of B partial E-steps and B full M-steps [26]. It can be shown from Exercises 6 and
7 in Section 5.6 that the IEM algorithm in general converges with fewer scans and
hence faster than the EM algorithm. The IEM algorithm also increases the likelihood
at each scan; see the discussion in [27].

In the mixture framework with observations y,,...,y,, the unobservable
component-indicator vector z = (z],..., 2I)" can be termed as the “hidden vari-
able.” In speech recognition applications, the z; may be unknown serially dependent
prototypical spectra on which the observed speech signals y; depend (j = 1, ..., n).
Hence the sequence or set of hidden values z; cannot be regarded as independent. In
the automatic speech recognition applications or natural language processing (NLP)
tasks, a stationary Markovian model over a finite state space is generally formulated
for the distribution of the hidden variable Z [18]. As a consequence of the dependent
structure of Z, the density of Y ; will not have its simple representation [Equa-
tion (5.1)] of a mixture density as in the independence case. However, Y, ..., Y,
are assumed conditionally independent given z1, ..., z,; that is

f@ e ylzn 28 =[] F@125:0)

j=1

where 0 denotes the vector containing the unknown parameters in these conditional
distributions that are known a priori to be distinct. The application of the EM algorithm
to this problem is known as the Baum—Welch algorithm in the HMM literature. Baum
and his collaborators formulated this algorithm before the appearance of the EM
algorithm in Dempster et al. [8] and established the convergence properties for this
algorithm; see [2] and the references therein. The E-step can be implemented exactly,
but it does require a forward and backward recursion through the data [18]. The M-step
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can be implemented in closed form, using formulas which are a combination of the
MLEs for the multinomial parameters and Markov chain transition probabilities;
see [14, 30].

5.6 Exercises

Ten exercises are given in this section. They arise in various scientific fields in the
contexts of data mining and pattern recognition, in which the EM algorithm or its
variants have been applied. The exercises include problems where the incompleteness
of the data is perhaps not as natural or evident as in the two illustrative examples in
Section 5.4.

1. Bohning et al. [3] consider a cohort study on the health status of 602 preschool
children from 1982 to 1985 in northest Thailand [32]. The frequencies of illness
spells (fever, cough, or both) during the study period are presented in Table 5.3.
A three-component mixture of Poisson distributions is fitted to the data. The
log likelihood function is given by

n 3
log L(¥) = Zlog {Z i f(y;, 91')}
=1 i=1

where ¥ = (71, 72, 01, 65, 63) and
f(j.0) = exp(=606;" /y;! (i =1.2.3)

With reference to Section 5.4.1, let

fl(yj’ ‘I’(k)) _ n,(k)f yj’ 0(/() /Zn(k)f yj’ 9(1{) (l — 1’ 2’ 3)

denote the posterior probability that y; belongs to the ith component. Show
that the M-step updates the estimates as

n

ni(k+l) _ Z.L.i(yj;\ll(k))/n i=12)
j=1

o =3y e W)y (V) i =1.2.3)
j=1

Using the initial estimates 7; = 0.6, 7, = 0.3,0, = 2,6, = 9,and 63 = 17,
find the MLE of W.
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TABLE 5.3 Frequencies of Illness Spells for a Cohort Sample
of Preschool Children in Northest Thailand

No. of No. of No. of
Illnesses Frequency Illnesses Frequency Illnesses Frequency
0 120 8 25 16 6
1 64 9 19 17 5
2 69 10 18 18 1
3 72 11 18 19 3
4 54 12 13 20 1
5 35 13 4 21 2
6 36 14 3 23 1
7 25 15 6 24 2

2. The fitting of mixtures of (multivariate) ¢ distributions was proposed by
McLachlan and Peel [19] to provide a more robust approach to the fitting of
normal mixture models. A g-component mixture of ¢ distributions is given by

8
fy;;¥)= Zﬂif(yj;w, 3, vi)

i=1

where the component density f(y 7> Wi 3%, v;) has a multivariate ¢ distribution
with location p;, positive definite inner product matrix ¥;, and v; degrees of

freedom (i =1, ..., g); see [19, 29]. The vector of unknown parameters is
W= (my,..., 71, o7, vT)T

wherev = (vy, ..., vg)T are the degrees of freedom for the ¢ distributions, and

0=o7,..., Gg)T , and where 0; contains the elements of w; and the distinct

elements of 3; (i = 1, ..., g). With reference to Section 5.4.1, the observed

data augmented by the component-indicator vectors z1, ..., 2, are viewed as

still being incomplete. Additional missing data, u, ..., u,, are introduced into

the complete-data vector, that is,

T

T = (yT,le,...,zn,ul,...,un)T
where uy, ..., u, are defined so that, given z;; = 1,
Yiluj,zij=1~ N, Z;/uj)
independently for j =1, ..., n,and
Ujlzij =1~ gamma(%v,-, %v,-)
Show that the complete-data log likelihood can be written in three terms as

log L(®) = log L () + log Loc(¥) + log Ls.(8) (5.10)
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where

g n
log Li.(7) = Z Z zijlogm;

=1 j=1
g n
log Loc(v) = ZZZU{_ log "'(3vi) + 3v; log(5vi) + svi(logu; — u;) — logu;}

i=1 j=1

and

I4 n
log L3(0) = > Y "z {— splog2m) — 3 log || — Ju;8(y;. mi.: Ti)}

i=1 j=1
where
8y mis ) =(y; — ) B (y; — mi)
3. With reference to the above mixtures of ¢ distributions, show that the E-step on
the (k + 1)th iteration of the EM algorithm involves the calculation of

k O ) (K
® 7} )f(y,,llf ), 21(- ), Vi( )

Egw(Zijly) = 7;" = F(y, T0) (5.11)
(k)
1y ,® +p
E'Il(k)(Uj|y1 Zij = 1) - uij = (k)+8(y u(k) Z(k)) (512)
and
(k) )
v+ v+
Egn(ogUjly. 2 = 1) = logu? + {w (Tp> ~log (Tp> }

fori =1,...,g;j=1,...,n.In Equation (5.13),
Y(r) ={3l(r)/or}/T'(r)

is the Digamma function [29]. Hint for Equation (5.12): the gamma distribution
is the conjugate prior distribution for U;; Hint for Equation (5.13): if a random
variable S has a gamma(c, B) distribution, then

E(og S) = ¥ () — log B.

Also, it follows from Equation (5.10) that w**D, @%*+D and v*+D can be
computed on the M-step independently of each other. Show that the updating
formulas for the first two are

(k+1) Z (k)
T;i
(1) _ (k) (k) (k) (k)
l“‘i 1] ul] y]/zf
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and

n (k) (k) (k+1) (k+1)\T
E(k.},—]) . Zj 1 Tij (y_] M )(y] L )
i - n (k)
Zj:l Tij

The updates v(kH) for the degrees of freedom need to be computed iteratively.

It follows from Equation (5.10) that v(kﬂ) is a solution of the equation

{ w( V,)+10g( V,)+l+ (k)zl 1 l(,k)(logu(k) l(f))

(k) (k)
+p v +p

k k
Wheren() Z'jl | I(J)(z_l ., 8).

4. The EMMIX program [22] has an option for the fitting of mixtures of multi-
variate t components. Now fit a mixture of two t components (with unrestricted
scale matrices 3; and unequal degrees of freedom v;) to the Leptograpsus crab
data set of Campbell and Mahon [5]. With the crab data, one species has been
split into two new species, previously grouped by color form, orange and blue.
Data are available on 50 specimens of each sex of each species. Attention here
is focussed on the sample of n = 100 five-dimensional measurements on or-
ange crabs (the two components correspond to the males and females). Run the
EMMIX program with automatic starting values from 10 random starts (using
100% subsampling of the data), 10 k-means starts, and 6 hierarchical methods
(with user-supplied initial values v(O) = véo) 13.193 which is obtained in the
case of equal scale matrices and equal degrees of freedom). Verify estimates of
v are ¥ = 12.2 and ¥, = 300.0 and the numbers assigned to each component
are, respectively, 47 and 53 (misclassification rate = 3%).

5. For a mixture of g component distributions of generalized linear models
(GLMs) in proportions 71, ..., g, the density of the jth response variable
Y; is given by

8
[ ¥) = Znif()’j;eijv Ki)

i=1

where the log density for the ith component is given by

Ing(yj;eij»Ki) =K; { ijYj — 5(911)}+C()’;,Kz) (i =1, g)

where 6;; is the natural or canonical parameter and «; is the dispersion parameter.
For the ith component GLM, denote u;; the conditional mean of Y; and ;; =
hi(uij) = Bchc ; the linear predictor, where £;(-) is the link function and x;
is a vector of explanatory variables on the jth response y; [20]. The vector
of unknown parameters is ¥ = (71, ..., Tg_1, K1, ..., kg, Bl ..., Bg)T. Let
z;j denote the component-indicator variables as defined in Section 5.4.1. The
E-step is essentially the same as given in Equations (5.5) and (5.6), with the
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component densities ¢(y ;; > Wi 3.;) replaced by f(y;;6;;, ;). On the M-step,

the updating formula for n(kH) i=1,...,g—1Dis

k k
( +1) Z.L,l( )

where
(k) (k) (k) (k) (k) (k) (k)
—7'[ f y.l’el] ’ 1 /Znh f(yj’eh] ’Kh )
=1

(k+1) B(k+1)
1

The updates «; and need to be computed iteratively by solving

Z v 0 log £(53 61, )/ D = 0

Ztg()fﬂogf(yj;@ij,Ki)/aﬁi =0 (5.14)

Consider a mixture of gamma distributions, where the gamma density function
for the ith component is given by

o )a, (ai—

o )
oy exp(— 2 y))
(i)

f()’j;Mij,Oli)I

where «; > 0 is the shape parameter, which does not depend on the explanatory
variables. The linear predictor is modelled via a log-link as

nij = hi(wij) = log wi; = B! x;

With reference to Equation (5.14), show that the M-step for a mixture of gamma
distributions involves solving the nonlinear equations

Zfl(k){l +loga; —loguij +1logy; — y;/mi; — ¥} = 0,

er“( L+ y;/wipeiz; = 0

where ¢ (r) = {0'(r)/0r}/ I'(r) is the digamma function.

6. With the IEM algorithm described in Section 5.5, let Wk+b/B) denote the value
of W after the bth iteration on the (k + 1)th scan (b = 1, ..., B). In the context
of g-component normal mixture models (Section 5.4.1), the partial E-step on
the (b + 1)th iteration of the (k + 1)th scan replaces z;; by 7;(y;; ¥*/)
for those y; in the (b + Dth block (b =0,...,B—1;i =1,...,¢). With

reference to Equation (5.7), let TfI:;,}Zf) denote the conditional expectations of
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the sufficient statistics for the (b 4 1)thblock (b =0,...,B—1; g =1,2,3).
For example,

k+b/B :
Tz('1;+/1 "= E Ti(y;; WEH/B)) i=1,...,9
JESH

where S, is a subset of {1, ..., n} containing the subscripts of those y ] that
belong to the (b 4 1)th block (b =0, ..., B — 1). From Equations (5.7) and
(5.8), show that the M-step on the (b + 1)th iteration of the (k 4+ 1)th scan of
the IEM algorithm involves the update of the estimates of m;, p;, and X; as
follows:

ni(k+(b+1)/3) _ Ti(lk+b/B)/n

M§k+(b+1)/B) _ Tg/;%/B)/Ti(lkw/B)

(k+(b+1)/B) (k+b/B) (k4b/B) = r(k+b/B) r(k+b/B) T (k+b/B)
Ei = {TiS - T; T, T }/Til

fori =1,..., g, where
(k+b/B) (k+(b—1)/B) (k—1+b/B) (k+b/B)
T, =T, —Tigpr1 +Ti 0 (5.15)
fori =1,...,gand g = 1, 2, 3. It is noted that the first and second terms on

the right-hand side of Equation (5.15) are already available from the previous
iteration and the previous scan, respectively. In practice, the IEM algorithm
is implemented by running the standard EM algorithm for the first few scans
to avoid the “premature component starvation” problem [26]. In this case, we

have
B

T =Ty, (=1..¢g4¢=123
b=1

7. With the IEM algorithm, Ng and McLachlan [26] provide a simple guide for
choosing the number of blocks B for normal mixtures. In the case of component-
covariance matrices specified to be diagonal (such as in Example 5.1), they
suggest B ~ n'/3. For the Iris data in Example 5.1, it implies that B ~ (150)/3.
Run an IEM algorithm to the /ris data with B = 5 and the same initial values of
W as in Example 5.1. Verify that (a) the final estimates and the log likelihood
value are approximately the same as those using the EM algorithm, and (b) the
IEM algorithm converges with fewer scans than the EM algorithm and increases
the likelihood at each scan; see the discussion in [27].

8. Ng and McLachlan [28] apply the ECM algorithm for training the mixture of
experts (ME) networks [10, 12]. In ME networks, there are several modules,
referred to as expert networks. These expert networks approximate the distri-
bution of y; within each region of the input space. The expert network maps its
input x; to an output y i with conditional density f;,(y j |z;;0;), where 0 is a
vector of unknown parameters for the ith expert network (h = 1, ..., M). The
gating network provides a set of scalar coefficients 7, (;; o) that weight the
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contributions of the various experts, where a is a vector of unknown parameters
in the gating network. The final output of the ME network is a weighted sum
of all the output vectors produced by the expert networks,

M
e @) =m0 fuly;lz;:8,)

h=1

Within the incomplete-data framework of the EM algorithm, we introduce the
indicator variables Zj;, where z;; is 1 or 0 according to whether Y, belongs or
does not belong to the hth expert. Show that the complete-data log likelihood
for W is given by

n M

log L.(P) = Z Z znj{log m(x s @) + log fu(y,l;: 05))
j=1 h=1

and the Q-function can be decomposed into two terms with respect to o and
0, (h=1,..., M), respectively, as

0T, ¥Y) = 04 + Q9

where
Qu = ZZ%Y" log (@ ; @)
j=1 h=1
n M
00 = > ¥ log fiy, |z, 04)
j=1 h=1
and where

M
k k
Ty = mn(ay; o) f (y_;lmj;ﬂi))/Zm(mj;a("))ﬁ(y,-le;ﬁﬁ"))
r=I1

9. With the ME networks above, the output of the gating network is usually
modeled by the multinomial logit (or softmax) function as

exp(v,fa:j)
1+Z, | exp(vrij)

(X o) = th=1,...,M—1)

and Ty (T;; o) = 1/(1 + E 1 exp('v x;)). Here o contains the elements in
vy (h=1, —1). Show that the updated estimate of a**" on the M-step
is obtained by solving

n T,
3 s e DR

j=1 1+Zr | exp(v x;)
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forh =1,..., M —1,which is a set of nonlinear equations. It is noted that the
nonlinear equation for the Ath expert depends not only on the parameter vector
vy, but also on other parameter vectors in «. In other words, each parameter
vector v, cannot be updated independently. With the IRLS algorithm presented
in [12], the independence assumption on these parameter vectors was used
implicitly. Ng and McLachlan [28] propose an ECM algorithm for which the
M-step is replaced by (M — 1) computationally simpler CM-steps for v;, (h =
,....M—-1).

10. McLachlan and Chang [17] consider the mixture model-based approach to the
cluster analysis of mixed data, where the observations consist of both continu-
ous and categorical variables. Suppose that p; of the p feature variablesin Y ;
are categorical, where the gth categorical variable takes on m, distinct values
(g =1, ..., p1). With the location model-based cluster approach [20], the p,
categorical variables are uniquely transformed to a single multinomial random

variable U with § cells, where S = (’;‘,1 m, is the number of distinct patterns
(locations) of the p; categorical variables. We let (u ), be the label for the sth
location of the jthentity (s =1,...,8; j =1,...,n), where (u;); = 1 if

the realizations of the p; categorical variables correspond to the sth pattern,
and is zero otherwise. The location model assumes further that conditional on
(u;); = 1, the conditional distribution of the p — p; continuous variables is
normal with mean p;; and covariance matrix ¥;, which is the same for all §
cells. Let p;; be the conditional probability that (U ;), = 1 given its mem-
bership of the ith component of the mixture (s = 1,...,S5; i = 1,...,2).
With reference to Section 5.4.1, show that on the (k + 1)th iteration of the EM
algorithm, the updated estimates are given by

R = 338l [

s=1 j=I1

(k+l) (k) (k)
St/ 3o

r=1 j=1

(k+1) k) (k)
Mg Zajfrzjsyj/zaﬂrus

and

SIS 3 URTIDEICIINCELID 9 oyt

s=1 j=I1 s=1 j=1

where 6 j; is 1 or 0 according as to whether (u ), equals 1 or 0, yj contains the
continuous variables in y e and

(k) (k) (k) (k) (k) (k) (k) (k) (k)
szs_n Dis ¢(yj"‘l’1s’2 /ZTL’ phs¢ y/’uhs’zh )

fors=1,...,8,i=1,...,g.
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