
Chapter 8

kNN: k-Nearest Neighbors

Michael Steinbach and Pang-Ning Tan

Contents

8.1 Introduction . 151
8.2 Description of the Algorithm . 152

8.2.1 High-Level Description . 152
8.2.2 Issues . 153
8.2.3 Software Implementations . 155

8.3 Examples . 155
8.4 Advanced Topics . 157
8.5 Exercises . 158
Acknowledgments . 159
References . 159

8.1 Introduction

One of the simplest and rather trivial classifiers is the Rote classifier, which memorizes
the entire training data and performs classification only if the attributes of the test
object exactly match the attributes of one of the training objects. An obvious problem
with this approach is that many test records will not be classified because they do
not exactly match any of the training records. Another issue arises when two or more
training records have the same attributes but different class labels.

A more sophisticated approach, k-nearest neighbor (kNN) classification [10,11,21],
finds a group of k objects in the training set that are closest to the test object, and
bases the assignment of a label on the predominance of a particular class in this
neighborhood. This addresses the issue that, in many data sets, it is unlikely that one
object will exactly match another, as well as the fact that conflicting information about
the class of an object may be provided by the objects closest to it. There are several
key elements of this approach: (i) the set of labeled objects to be used for evaluating
a test object’s class,1 (ii) a distance or similarity metric that can be used to compute

1This need not be the entire training set.

151

© 2009 by Taylor & Francis Group, LLC

152 kNN: k-Nearest Neighbors

the closeness of objects, (iii) the value of k, the number of nearest neighbors, and (iv)
the method used to determine the class of the target object based on the classes and
distances of the k nearest neighbors. In its simplest form, kNN can involve assigning
an object the class of its nearest neighbor or of the majority of its nearest neighbors,
but a variety of enhancements are possible and are discussed below.

More generally, kNN is a special case of instance-based learning [1]. This includes
case-based reasoning [3], which deals with symbolic data. The kNN approach is also
an example of a lazy learning technique, that is, a technique that waits until the query
arrives to generalize beyond the training data.

Although kNN classification is a classification technique that is easy to understand
and implement, it performs well in many situations. In particular, a well-known result
by Cover and Hart [6] shows that the classification error2 of the nearest neighbor rule
is bounded above by twice the optimal Bayes error3 under certain reasonable assump-
tions. Furthermore, the error of the general kNN method asymptotically approaches
that of the Bayes error and can be used to approximate it.

Also, because of its simplicity, kNN is easy to modify for more complicated classifi-
cation problems. For instance, kNN is particularly well-suited for multimodal classes4

as well as applications in which an object can have many class labels. To illustrate the
last point, for the assignment of functions to genes based on microarray expression
profiles, some researchers found that kNN outperformed a support vector machine
(SVM) approach, which is a much more sophisticated classification scheme [17].

The remainder of this chapter describes the basic kNN algorithm, including vari-
ous issues that affect both classification and computational performance. Pointers are
given to implementations of kNN, and examples of using the Weka machine learn-
ing package to perform nearest neighbor classification are also provided. Advanced
techniques are discussed briefly and this chapter concludes with a few exercises.

8.2 Description of the Algorithm

8.2.1 High-Level Description

Algorithm 8.1 provides a high-level summary of the nearest-neighbor classification
method. Given a training set D and a test object z, which is a vector of attribute values
and has an unknown class label, the algorithm computes the distance (or similarity)

2The classification error of a classifier is the percentage of instances it incorrectly classifies.
3The Bayes error is the classification error of a Bayes classifier, that is, a classifier that knows the underlying
probability distribution of the data with respect to class, and assigns each data point to the class with the
highest probability density for that point. For more detail, see [9].
4With multimodal classes, objects of a particular class label are concentrated in several distinct areas of
the data space, not just one. In statistical terms, the probability density function for the class does not have
a single “bump” like a Gaussian, but rather, has a number of peaks.

© 2009 by Taylor & Francis Group, LLC

8.2 Description of the Algorithm 153

Algorithm 8.1 Basic kNN Algorithm
Input : D, the set of training objects, the test object, z, which is a vector of

attribute values, and L , the set of classes used to label the objects
Output : cz ∈ L , the class of z
foreach object y ∈ D do
| Compute d(z, y), the distance between z and y;

end
Select N ⊆ D, the set (neighborhood) of k closest training objects for z;
cz = argmax

v∈L

∑
y∈N I (v = class(cy));

where I (·) is an indicator function that returns the value 1 if its argument is true and
0 otherwise.

between z and all the training objects to determine its nearest-neighbor list. It then
assigns a class to z by taking the class of the majority of neighboring objects. Ties
are broken in an unspecified manner, for example, randomly or by taking the most
frequent class in the training set.

The storage complexity of the algorithm is O(n), where n is the number of training
objects. The time complexity is also O(n), since the distance needs to be computed
between the target and each training object. However, there is no time taken for
the construction of the classification model, for example, a decision tree or sepa-
rating hyperplane. Thus, kNN is different from most other classification techniques
which have moderately to quite expensive model-building stages, but very inexpensive
O(constant) classification steps.

8.2.2 Issues

There are several key issues that affect the performance of kNN. One is the choice
of k. This is illustrated in Figure 8.1, which shows an unlabeled test object, x, and
training objects that belong to either a “+” or “−” class. If k is too small, then the
result can be sensitive to noise points. On the other hand, if k is too large, then
the neighborhood may include too many points from other classes. An estimate of
the best value for k can be obtained by cross-validation. However, it is important to
point out that k = 1 may be able to perform other values of k, particularly for small
data sets, including those typically used in research or for class exercises. However,
given enough samples, larger values of k are more resistant to noise.

Another issue is the approach to combining the class labels. The simplest method is
to take a majority vote, but this can be a problem if the nearest neighbors vary widely
in their distance and the closer neighbors more reliably indicate the class of the object.
A more sophisticated approach, which is usually much less sensitive to the choice
of k, weights each object’s vote by its distance. Various choices are possible; for
example, the weight factor is often taken to be the reciprocal of the squared distance:
wi = 1/d(y, z)2. This amounts to replacing the last step of Algorithm 8.1 with the

© 2009 by Taylor & Francis Group, LLC

154 kNN: k-Nearest Neighbors

+

+
‒ ‒ ‒ ‒

‒
‒‒

‒ ‒ ‒
‒ ‒
‒ ‒

‒
‒

‒ ‒ ‒ ‒

+ +
+X+

+ +

++
+

‒ ‒ ‒ ‒

‒
‒

‒

‒

‒ ‒ ‒‒
‒

‒
‒

‒‒

‒ ‒ ‒ ‒

+

+
+ +

+ +
+ +

++
+

X

‒ ‒ ‒ ‒

‒‒ ‒‒ ‒ ‒‒‒ ‒
‒‒ ‒ ‒

‒ ‒ ‒ ‒

+

+
+ +

++
+ +

++
+

X

(a) Neighborhood too
small.

(b) Neighborhood just
right.

(c) Neighborhood too
large.

Figure 8.1 k-nearest neighbor classification with small, medium, and large k.

following:

Distance-Weighted Voting: cz = argmax
v∈L

∑

y∈N

wi × I (v = class(cy)) (8.1)

The choice of the distance measure is another important consideration. Commonly,
Euclidean or Manhattan distance measures are used [21]. For two points, x and y,
with n attributes, these distances are given by the following formulas:

d(x, y) =
√
√
√
√

n∑

k=1

(xk − yk)2 Euclidean distance (8.2)

d(x, y) =
√
√
√
√

n∑

k=1

|xk − yk | Manhattan distance (8.3)

where xk and yk are the kth attributes (components) of x and y, respectively.
Although these and various other measures can be used to compute the distance

between two points, conceptually, the most desirable distance measure is one for
which a smaller distance between two objects implies a greater likelihood of having
the same class. Thus, for example, if kNN is being applied to classify documents, then
it may be better to use the cosine measure rather than Euclidean distance. Note that
kNN can also be used for data with categorical or mixed categorical and numerical
attributes as long as a suitable distance measure can be defined [21].

Some distance measures can also be affected by the high dimensionality of the
data. In particular, it is well known that the Euclidean distance measure becomes less
discriminating as the number of attributes increases. Also, attributes may have to be
scaled to prevent distance measures from being dominated by one of the attributes.
For example, consider a data set where the height of a person varies from 1.5 to 1.8 m,

© 2009 by Taylor & Francis Group, LLC

8.3 Examples 155

the weight of a person varies from 90 to 300 lb, and the income of a person varies
from $10,000 to $1,000,000. If a distance measure is used without scaling, the income
attribute will dominate the computation of distance, and thus the assignment of class
labels.

8.2.3 Software Implementations

Algorithm 8.1 is easy to implement in almost any programming language. However,
this section contains a short guide to some readily available implementations of this
algorithm and its variants for those who would rather use an existing implementation.
One of the most readily available kNN implementations can be found in Weka [26].
The main function of interest is IBk, which is basically Algorithm 8.1. However, IBk
also allows you to specify a couple of choices of distance weighting and the option
to determine a value of k by using cross-validation.

Another popular nearest neighbor implementation is PEBLS (Parallel Exemplar-
Based Learning System) [5,19] from the CMU Artificial Intelligence repository [20].
According to the site, “PEBLS (Parallel Exemplar-Based Learning System) is a
nearest-neighbor learning system designed for applications where the instances have
symbolic feature values.”

8.3 Examples

In this section we provide a couple of examples of the use of kNN. For these examples,
we will use the Weka package described in the previous section. Specifically, we used
Weka 3.5.6.

To begin, we applied kNN to the Iris data set that is available from the UCI Machine
Learning Repository [2] and is also available as a sample data file with Weka. This data
set consists of 150 flowers split equally among three Iris species: Setosa, Versicolor,
and Virginica. Each flower is characterized by four measurements: petal length, petal
width, sepal length, and sepal width.

The Iris data set was classified using the IB1 algorithm, which corresponds to the
IBk algorithm with k = 1. In other words, the algorithm looks at the closest neighbor,
as computed using Euclidean distance from Equation 8.2. The results are quite good,
as the reader can see by examining the confusion matrix5 given in Table 8.1.

However, further investigation shows that this is a quite easy data set to classify
since the different species are relatively well separated in the data space. To illustrate,
we show a plot of the data with respect to petal length and petal width in Figure 8.2.
There is some mixing between the Versicolor and Virginica species with respect to

5A confusion matrix tabulates how the actual classes of various data instances (rows) compare to their
predicted classes (columns).

© 2009 by Taylor & Francis Group, LLC

156 kNN: k-Nearest Neighbors

TABLE 8.1 Confusion Matrix for Weka kNN
Classifier IB1 on the Iris Data Set

Actual/Predicted Setosa Versicolor Virginica

Setosa 50 0 0
Versicolor 0 47 3
Virginica 0 4 46

their petal lengths and widths, but otherwise the species are well separated. Since
the other two variables, sepal width and sepal length, add little if any discriminating
information, the performance seen with basic kNN approach is about the best that can
be achieved with a kNN approach or, indeed, any other approach.

The second example uses the ionosphere data set from UCI. The data objects in this
data set are radar signals sent into the ionosphere and the class value indicates whether
or not the signal returned information on the structure of the ionosphere. There are 34
attributes that describe the signal and 1 class attribute. The IB1 algorithm applied on
the original data set gives an accuracy of 86.3% evaluated via tenfold cross-validation,
while the same algorithm applied to the first nine attributes gives an accuracy of 89.4%.
In other words, using fewer attributes gives better results. The confusion matrices are
given below. Using cross-validation to select the number of nearest neighbors gives an
accuracy of 90.8% with two nearest neighbors. The confusion matrices for these cases
are given below in Tables 8.2, 8.3, and 8.4, respectively. Adding weighting for nearest
neighbors actually results in a modest drop in accuracy. The biggest improvement is
due to reducing the number of attributes.

Pe
ta

l w
id

th

Petal length

2.5

1

1.5

1

0.5

0

Setosa
Versicolor
Virginica

1 2 3 4 5 6 7

Figure 8.2 Plot of Iris data using petal length and width.

© 2009 by Taylor & Francis Group, LLC

8.4 Advanced Topics 157

TABLE 8.2 Confusion Matrix for Weka kNN Classifier
IB1 on the Ionosphere Data Set Using All Attributes

Actual/Predicted Good Signal Bad Signal

Good Signal 85 41
Bad Signal 7 218

8.4 Advanced Topics

To address issues related to the distance function, a number of schemes have been
developed that try to compute the weights of each individual attribute or in some other
way determine a more effective distance metric based upon a training set [13, 15].
In addition, weights can be assigned to the training objects themselves. This can
give more weight to highly reliable training objects, while reducing the impact of
unreliable objects. The PEBLS system by Cost and Salzberg [5] is a well-known
example of such an approach.

As mentioned, kNN classifiers are lazy learners, that is, models are not built explic-
itly unlike eager learners (e.g., decision trees, SVM, etc.). Thus, building the model
is cheap, but classifying unknown objects is relatively expensive since it requires the
computation of the k-nearest neighbors of the object to be labeled. This, in general,
requires computing the distance of the unlabeled object to all the objects in the la-
beled set, which can be expensive particularly for large training sets. A number of
techniques, e.g., multidimensional access methods [12] or fast approximate similar-
ity search [16], have been developed for efficient computation of k-nearest neighbor
distance that make use of the structure in the data to avoid having to compute distance
to all objects in the training set. These techniques, which are particularly applicable
for low dimensional data, can help reduce the computational cost without affecting
classification accuracy. The Weka package provides a choice of some of the multi-
dimensional access methods in its IBk routine. (See Exercise 4.)

Although the basic kNN algorithm and some of its variations, such as weighted
kNN and assigning weights to objects, are relatively well known, some of the more
advanced techniques for kNN are much less known. For example, it is typically
possible to eliminate many of the stored data objects, but still retain the classification
accuracy of the kNN classifier. This is known as “condensing” and can greatly speed
up the classification of new objects [14]. In addition, data objects can be removed to

TABLE 8.3 Confusion Matrix for Weka kNN Classifier
IB1 on the Ionosphere Data Set Using the First Nine Attributes

Actual/Predicted Good Signal Bad Signal

Good Signal 100 26
Bad Signal 11 214

© 2009 by Taylor & Francis Group, LLC

158 kNN: k-Nearest Neighbors

TABLE 8.4 Confusion Matrix for Weka kNN
Classifier IBk on the Ionosphere Data Set Using
the First Nine Attributes with k = 2

Actual/Predicted Good Signal Bad Signal

Good Signal 103 9
Bad Signal 23 216

improve classification accuracy, a process known as “editing” [25]. There has also
been a considerable amount of work on the application of proximity graphs (nearest
neighbor graphs, minimum spanning trees, relative neighborhood graphs, Delaunay
triangulations, and Gabriel graphs) to the kNN problem. Recent papers by Toussaint
[22–24], which emphasize a proximity graph viewpoint, provide an overview of work
addressing these three areas and indicate some remaining open problems.

Other important resources include the collection of papers by Dasarathy [7] and
the book by Devroye, Gyorfi, and Lugosi [8]. Also, a fuzzy approach to kNN can be
found in the work of Bezdek [4]. Finally, an extensive bibliography on this subject is
also available online as part of the Annotated Computer Vision Bibliography [18].

8.5 Exercises

1. Download the Weka machine learning package from the Weka project home-
page and the Iris and ionosphere data sets from the UCI Machine Learning
Repository. Repeat the analyses performed in this chapter.

2. Prove that the error of the nearest neighbor rule is bounded above by twice the
Bayes error under certain reasonable assumptions.

3. Prove that the error of the general kNN method asymptotically approaches that
of the Bayes error and can be used to approximate it.

4. Various spatial or multidimensional access methods can be used to speed up
the nearest neighbor computation. For the k-d tree, which is one such method,
estimate how much the saving would be. Comment: The IBk Weka classification
algorithm allows you to specify the method of finding nearest neighbors. Try
this on one of the larger UCI data sets, for example, predicting sex on the
abalone data set.

5. Consider the one-dimensional data set shown in Table 8.5.

TABLE 8.5 Data Set for Exercise 5

x 1.5 2.5 3.5 4.5 5.0 5.5 5.75 6.5 7.5 10.5
y + + − − − + + − + +

© 2009 by Taylor & Francis Group, LLC

References 159

(a) Given the data points listed in Table 8.5, compute the class of x = 5.5
according to its 1-, 3-, 6-, and 9-nearest neighbors (using majority vote).

(b) Repeat the previous exercise, but use the weighted version of kNN given
in Equation (8.1).

6. Comment on the use of kNN when documents are compared with the cosine
measure, which is a measure of similarity, not distance.

7. Discuss kernel density estimation and its relationship to kNN.

8. Given an end user who desires not only a classification of unknown cases, but
also an understanding of why cases were classified the way they were, which
classification method would you prefer: decision tree or kNN?

9. Sampling can be used to reduce the number of data points in many kinds of
data analysis. Comment on the use of sampling for kNN.

10. Discuss how kNN could be used to perform classification when each class can
have multiple labels and/or classes are organized in a hierarchy.

Acknowledgments

This work was supported by NSF Grant CNS-0551551, NSF ITR Grant ACI-0325949,
NSF Grant IIS-0308264, and NSF Grant IIS-0713227. Access to computing facil-
ities was provided by the University of Minnesota Digital Technology Center and
Supercomputing Institute.

References

[1] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms.
Mach. Learn., 6(1):37–66, January 1991.

[2] A. Asuncion and D. Newman. UCI Machine Learning Repository, 2007.

[3] B. Bartsch-Spörl, M. Lenz, and A. Hübner. Case-based reasoning—survey
and future directions. In F. Puppe, editor, XPS-99: Knowledge-Based
Systems—Survey and Future Directions, 5th Biannual German Conference on
Knowledge-Based Systems, volume 1570 of Lecture Notes in Computer Sci-
ence, Würzburg, Germany, March 3-5 1999. Springer.

[4] J. C. Bezdek, S. K. Chuah, and D. Leep. Generalized k-nearest neighbor rules.
Fuzzy Sets Syst., 18(3):237–256, 1986.

[5] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning
with symbolic features. Mach. Learn., 10(1):57–78, 1993.

© 2009 by Taylor & Francis Group, LLC

160 kNN: k-Nearest Neighbors

[6] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions
on Information Theory, 13(1):21–27, January 1967.

[7] B. Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classification Tech-
niques. Computer Society Press, 1991.

[8] L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recog-
nition. Springer-Verlag, 1996.

[9] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Edition).
Wiley-Interscience, November 2000.

[10] E. Fix and J. J. Hodges. Discriminatory analysis: Non-parametric discrimi-
nation: Consistency properties. Technical report, USAF School of Aviation
Medicine, 1951.

[11] E. Fix and J. J. Hodges. Discriminatory analysis: Non-parametric discrimina-
tion: Small sample performance. Technical report, USAF School of Aviation
Medicine, 1952.

[12] V. Gaede and O. Günther. Multidimensional access methods. ACM Comput.
Surv., 30(2):170–231, 1998.

[13] E.-H. Han, G. Karypis, and V. Kumar. Text categorization using weight adjusted
k-nearest neighbor classification. In PAKDD ’01: Proceedings of the 5th Pacific-
Asia Conference on Knowledge Discovery and Data Mining, pages 53–65,
London, UK, 2001. Springer-Verlag.

[14] P. Hart. The condensed nearest neighbor rule. IEEE Trans. Inform., 14(5):515–
516, May 1968.

[15] T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classifica-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 18(6):607–616, 1996.

[16] M. E. Houle and J. Sakuma. Fast approximate similarity search in extremely
high-dimensional data sets. In ICDE ’05: Proceedings of the 21st Interna-
tional Conference on Data Engineering, pages 619–630, Washington, DC,
2005. IEEE Computer Society.

[17] M. Kuramochi and G. Karypis. Gene classification using expression profiles:
A feasibility study. In BIBE ’01: Proceedings of the 2nd IEEE International
Symposium on Bioinformatics and Bioengineering, page 191, Washington, DC,
2001. IEEE Computer Society.

[18] K. Price. Nearest neighbor classification bibliography. http://www.visionbib.
com/bibliography/pattern621.html, 2008. Part of the Annotated Computer
Vision Bibliography.

[19] J. Rachlin, S. Kasif, S. Salzberg, and D. W. Aha. Towards a better understanding
of memory-based reasoning systems. In International Conference on Machine
Learning, pages 242–250, 1994.

© 2009 by Taylor & Francis Group, LLC

References 161

[20] S. Salzberg. PEBLS: Parallel exemplar-based learning system. http://www.
cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/learning/systems/pebls/0.html,
1994.

[21] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Minining. Pearson
Addison-Wesley, 2006.

[22] G. T. Toussaint. Proximity graphs for nearest neighbor decision rules: Recent
progress. In Interface-2002, 34th Symposium on Computing and Statistics,
Montreal, Canada, April 17–20, 2002.

[23] G. T. Toussaint. Open problems in geometric methods for instance-based learn-
ing. In Discrete and Computational Geometry, volume 2866 of Lecture Notes
in Computer Science, pages 273–283, December 6–9, 2003.

[24] G. T. Toussaint. Geometric proximity graphs for improving nearest neighbor
methods in instance-based learning and data mining. Int. J. Comput. Geometry
Appl., 15(2):101–150, 2005.

[25] D. Wilson. Asymptotic properties of nearest neighbor rules using edited data.
IEEE Trans. Syst., Man, and Cybernetics, 2:408–421, 1972.

[26] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques, Second Edition (Morgan Kaufmann Series in Data Management
Systems). Morgan Kaufmann, June 2005.

© 2009 by Taylor & Francis Group, LLC

	The Top Ten Algorithms in Data Mining
	Table of Contents
	Chapter 8: kNN: k-Nearest Neighbors
	8.1 Introduction
	8.2 Description of the Algorithm
	8.2.1 High-Level Description
	8.2.2 Issues
	8.2.3 Software Implementations

	8.3 Examples
	8.4 Advanced Topics
	8.5 Exercises
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

