
H A C K I N G T H E R E G I S T R Y

B Y K E I T H P L E A S

a
1
a
(
e
u
s
c

It’s a jungle out
there, but with some
guidance, an intrepid
developer can unlock
the secrets of the
Win32 Registry.

Hacking the
Windows Registry

Click & Retrieve

Source

CODE!
f USER, Kernel, and GDI are the heart,
brain, and eyes of Windows, the reg-
istry would be the memory—bothI

long and short term. OK, maybe this meta-
phor is a bit weak, but the point should be
obvious: the registry is a critical compo-
nent of a well-functioning system and
you’re not going to get very far without it.

The registry is lightly documented and
not well understood. Programming it can
be similar to the old neurological tech-
nique of zapping part of the cerebral
cortex with an electrode and see-
ing what happens: the patient may
remember a baseball game or expe-
rience a war-related flashback. In Windows,
you may enable a cool new feature or ren-
der your system unbootable. But it’s the
thrill of the hunt that makes it so exciting.

After a brief introduction to get our ter-
minology straight, I’ll skip the fundamen-
tals of the registry—MSDN would be an
ideal place to find this information—and
leap into advanced aspects.

Along the way I’ll note a variety of
thing you can take advantage of immedi-
22 MARCH 1996 Visual Basic Programmer’s Jo

Keith Pleas is an independent developer,
author, and trainer. He is the author of the
forthcoming book, Visual Basic Tips &
Tricks, from Addison-Wesley. He can be
reached on Compu-Serve at 71333,3014 (from
the Internet: 71333.3014@compu-serve.com).
ately: some of them are particular to the
new Windows shell (first delivered on
Windows 95 but currently in beta on Win-
dows NT), some work only with NT (also
known as “Microsoft’s real operating sys-
tem”), and some will work for everybody.
So, grab your tools (primarily a copy of
RegEdit) and prepare for an exciting round
of hacking the registry.

The registration database, commonly
called the registry, contains a substantial
amount of data about the computer and
users. It includes computer data such as
hardware, the OS, and installed applica-
tions, and user
s
f
t
H
R
t
m

information such as their desk-
top settings and customization prefer-
ences. The registry stores data in a hierar-
chically structured tree. Each node in the
tree is called a key. Each key can contain
dditional keys called subkeys (see Figure
). Keys are composed of printable char-
cters and cannot include backslashes
\) or wildcard characters (* or ?). Sev-
ral predefined keys, represented with
ppercase words separated by under-
cores, can be accessed using numeric
onstants. These keys are always “open,”
o it’s not necessary to use the RegOpen...
unctions on them. It’s important to note
hat the root key for machine information
KEY_LOCAL_MACHINE (HKEY_CLASSES_
OOT and HKEY_CURRENT_CONFIG map

o subkeys) and the root key for user infor-
urnal

ation is HKEY_USERS (HKEY_CURRENT_

©1991–1996 Fawcette Tech
USER also maps to a subkey). Keys beneath
the root are referenced by building a string
key by concatenating each node together,
separated by backslashes.

Each key also contains data stored in
values: a key may have no values, a de-
fault value, or any number of named val-
ues in addition to the default. The data in
the values may be in a variety of forms,
though text and binary data types are by
far the most common. While key names
and value names are never localized, text

data often is. Using the Windows
95 RegEdit utility shows you a

much compacted view of the regis-
try including the root keys, several

subkeys, a default (text) value, and a
named (binary) value (see Figure 2).

Note that Windows NT has a similar but
slightly different structure: it omits HKEY_
CURRENT_CONFIG and substitutes a some-
what analogous HKEY_PERFORMANCE_
DATA for HKEY_DYN_ DATA.

SPELUNKING THE REGISTRY
A variety of common components

can be found in the registry,
especially if they have anything

to do with OLE. Here are some
examples so you’ll know what you’re look-
ing at when you go spelunking with RegEdit.

Creatable OLE classes, provided by
OLE servers, must be in the registry. Each
class is registered separately in the
HKEY_CLASSES_ROOT\CLSID key under
its CLSID and must, at minimum, have
enough information for the OLE system to
locate and start the server. For example,
Access registers the Application object
with the key name on the left and the
default value on the right:

{B54DCF20-5F9C-101B- Microsoft Access Database

AF4E 00AA003F0F07}

InprocHandler32 ole32.dll

LocalServer32 C:\MSOFFICE\ACCESS\MSACCESS.EXE

ProgID Access.Application.7
http://www.windx.comnical Publications

H A C K I N G T H E R E G I S T R Y

fo

f
a
D
c

q
a
l
m
t

c
H
t
e
s
d
c

c
a

s
O
s
H
r
t

u
a
l

e

b
b
l

i
C
t

{
C
I
I
M
P
T
T
V

O
t
q

f
k
t
C
b

T
o
e

OLE controls, being specialized in-process OLE servers, must
e in the registry. If an OLE control is referenced by an application
ut is not in the registry, it can autoregister itself if the system can

ocate it by searching along the normal DLL search path.
OLE controls are registered as classes and can also be found

n the HKEY_CLASSES_ROOT\CLSID key by referencing their
LSID. For example, the PicClip control that ships with VB4 has

he following registry entries:

27395F85-0C0C-101B-A3C9-08002B2F49FB} PicClip Control
ontrol

nprocServer32 C:\WINDOWS\SYSTEM\PICCLP32.OCX
nsertable
iscStatus
rogIDPicClip.PictureClip
oolboxBitmap32 C:\WINDOWS\SYSTEM\PICCLP32.OCX, 1
ypeLib {27395F85-0C0C-101B-A3C9-08002B2F49FB}
ersion 1.0

The Control key is used when dialog boxes like the OLE Insert
bject dialog or VB4’s Custom Controls dialog is displayed with

he Controls box checked. InprocServer32 contains the fully
ualified path to the control.

ProgID contains the so-called “friendly” name, which can also be
ound in a separate key under HKEY_CLASSES_ROOT: this separate
ey contains a pointer back to the CLSID where all the information for
he control is maintained. The Insertable key behaves similarly to the
ontrol key, though it may be duplicated under the ProgID key for
ackward compatibility with OLE 1.0 servers.

The type library for a control is indicated in the TypeLib key.
ype libraries are stored separately in the registry under their
wn GUIDs in the HKEY_CLASSES_ROOT\TypeLib key. The
ntries for the PicClip control’s type library are:
http://www.windx.com ©1991–1996 Fawcette Technical Publicatio
{27395F85-0C0C-101B-A3C9-08002B2F49FB}
1.0 Microsoft PictureClip Control
0
win32 C:\WINDOWS\SYSTEM\PICCLP32.OCX
FLAGS 2
HELPDIR C:\VB4

Note that the type library itself can be stored as a separate
ile on disk (typically with a TLB or OLB extension) or attached
s a resource to a DLL or EXE. Because OLE controls are in fact
LLs, their type libraries are most often stored with the
ontrol itself.

The HELPDIR key is notable because it points to the fully
ualified location for the accompanying WinHelp file containing
dditional programming documentation about the control. This
ocation can obviously vary by installation and is typically deter-

ined when the control is first installed: if the WinHelp file is moved
he link can obviously be broken.

Licenses, such as those used by OLE controls, are also
ommonly stored in the registry. They can be found under the
KEY_CLASSES_ROOT\Licenses key, where you’ll also find

he warning that “Copying the keys may be a violation of
stablished copyrights.” No kidding. Anyway, each license is
tored under its own GUID. This example from my registry
atabase has both design and run keys (with the key values
hanged, naturally):

{B54DCF20-5F9C-101B-AF4E-00AA003F0F07}
Retail abcdefghijklmnopqrstuvwxyzabcdefghij
Runtime abcdefghijklmnopqrstuvwxyzabcdefghij

VB4 itself uses this technique: when it’s installed it merges the
ontents of one of the three REG files (for Standard, Professional,
nd Enterprise editions) into the registry.

Finally, the registry contains information about remoted OLE
ervers in both their local and remote configurations. Like the other
LE object described here, this VB4-created OLE Automation
erver registers a Clerk class under its own GUID in the
KEY_CLASSES_ROOT\CLSID key. Of course, VB4 handles all the

egistration automatically and it’s typically not necessary to modify
hese entries directly.

Running the Remote Automation Connection Manager (RacMgr32)
tility included with VB4 Enterprise Edition adds additional keys for
 remote machine name, RPC protocol, and RPC authentication
evel. When run locally, this particular class is registered as:

{8435CD47-D6BE-11CE-A842-00AA00688747}
_AuthenticationLevel 2
_NetworkAddress NT
_ProtocolSequence ncacn_ip_tcp
InprocHandler32 OLE32.DLL
LocalServer32 D:\PROJ\MSJ\CAR RENTAL\RENTAL OBJECTS.EXE
ProgID RentalObjects.Clerk
TypeLib {8435CD4E-D6EB-11CE-A842-00AA00688747}

When the class is remote, RacMgr32 changes the registration
ntries to:

{8435CD47-D6BE-11CE-A842-00AA00688747}
_LocalServer32 D:\PROJ\MSJ\CAR RENTAL\RENTAL OBJECTS.EXE
AuthenticationLevel 2
InprocHandler32 OLE32.DLL
InprocServer32 C:\WINDOWS\SYSTEM\autprx32.dll
NetworkAddress NT
ProgID RentalObjects.Clerk
ProtocolSequence ncacn_ip_tcp
Related Entries in the Registry. Expanded (Win95)
registry keys depict how root keys map to major subkeys

r current user, classes, and current configuration.

FIGURE 1
Visual Basic Programmer’s Journal MARCH 1996 23

TypeLib {8435CD4E-D6EB-11CE-A842-00AA00688747}

ns

H A C K I N G T H E R E G I S T R Y

p
u
v ,
s

l
p r
i
V
D
w -
n ,
i

M
D
R
s .

-
m
r r
m -
g -
u
r -
c
U
t

i
n

sF
Notice how the LocalServer32 key gets renamed (actually,
keys cannot be renamed, so it is destroyed and re-created) and
an additional InprocServer32 key is created. This new key
points to the remote automation proxy on the local machine,
initiating a conversation with the AutMgr utility running on the
remote machine.

Of course, you’ll never want to touch these registration entries
directly. In addition to using RacMgr32, we can also call the RacReg
OLE Automation server in code to examine and change server
settings. To do so add a reference to the RacReg32.DLL, create a
RacReg.RegClass object, and use the GetAutoServerSettings func-
tion and SetAutoServerSettings method.

Unfortunately, the documentation for these functions is a little
obscure: it’s only found in the ReadMe file that ships with VB4. But
it’s pretty obvious how the RacReg32 server reads/writes the
registry settings shown in this function prototype:

object.SetAutoServerSettings (Remote, [ProgID], [CLSID], _
[ServerName], [Protocol], [Authentication])

A side benefit of using the RacReg.RegClass object is that
Microsoft’s VB group promises that your code will be upwardly
compatible with future versions of VB, which will support true
Networked OLE: they’ll do the work of encapsulating the changes
so that you don’t have to change your code.

USING REGISTRY FUNCTIONS
The Win32 API provides a function group of 26 APIs, many of
them with both “A” (ANSI) and “W” (Wide, or Unicode) ver-
sions, for working with the registry. Five of the 26 APIs are
24 MARCH 1996 Visual Basic Programmer’s Journal ©199
rovided for backward compatibility only and shouldn’t be
sed (the corresponding ...Ex functions, which support named
alues and access to keys other than HKEY_CLASSES_ROOT
hould be used instead).

Rather than torture you with a complete list of the APIs, I’l
oint you to a couple of useful samples that highlight thei

mplementation such as the RegTool sample that ships on the
B4 disc. The RegTool sample is buried down in the \Tools\
ataex32\Source\Regtool subdirectory and has a reusable class
ith routines for creating, updating, and deleting keys. Unfortu
ately, while it can read both string and numeric (dword) data

t can only write strings.
A much better example can be found in the file REGVB4.ZIP in the

agazine Library of the VBPJ Forum on CompuServe. Written by
on Bradner, VBPJ Forum Section Leader of the “32-Bit Bucket,”
EGVB4 is a handy VB4 version of RegEdit that has well-commented
ource code for reading and writing both string and numeric values

Several of the registry functions deserve a bit more com
ent. While we do not yet have built-in support for a distributed

egistry (where part or all of your registry is stored on anothe
achine), the RegConnectRegistry function can be used pro

rammatically to connect to remote registries and get/set val
es from their registries. They can connect only through the
oot keys (HKEY_LOCAL_MACHINE and HKEY_USERS), but be
ause of the subkey mappings to HKEY_CURRENT_
SER, HKEY_CLASSES_ROOT, and HKEY_CURRENT_CONFIG

his isn’t a major limitation.
There are also a few differences between the Win95 and WinNT

mplementations of the registry functions. Of course, Win95 knows
othing about security, so Get/SetKeySecurity aren’t implemented
Text Value

Binary Value
Subkeys

Keys

Keys to the Windows Registry. The hierarchical structure of the registry consists of keys and subkeys. The associated value
for each key can be named (text) or a non-string data type (binary).IGURE 2
http://www.windx.com1–1996 Fawcette Technical Publications

H A C K I N G T H E

http://www.windx.com

on that platform. Also, while Win95 does implement QueryInfoKey,
it doesn’t track the last write time, so don’t be surprised when the
FILETIME structure comes up empty. Another thing to watch out
for, particularly if you develop under Win95, is that RegDeleteKey on
that platform deletes key and descendants, whereas on NT it can
only delete keys that have no subkeys.

Because of its architecture, Win95 has very limited support for
kernel synchronization objects, and thus RegNotifyChangeKeyValue
is not supported at all. Win95 also doesn’t implement
RegRestoreKey, which can be worked around tediously by writing
code to re-create the keys or, much easier, by using a REGEDIT4 file.

Interestingly, RegQueryMultipleValues is only implemented on
Win95 (though its primary value appears to be as a coding shortcut).
Finally, if you must store Unicode data in the Win95 registry you must
store it as REG_BINARY, because Win95 is an ANSI system.

It’s also worth pointing out that VB4 includes built-in func-
tions for working with the registry, though they only work with
information from a specific location in the registry:

HKEY_CURRENT_USERS\Software\VB and VBA Program _
Settings\<program name>

I’ve seen a number of people experience problems with the
built-in VB functions.GetSetting and GetAllSettings are functions,
but SaveSetting and DeleteSetting are statements and thus don’t
use parentheses. While SaveSetting and DeleteSetting were origi-
nally specified as functions, later they became statements.

IMPORT DATA INTO THE REGISTRY
It’s common to use registration (REG) files for importing data
into the registry. REG files have two formats: REGEDIT and

R
R
i
y

http://www.windx.com ©1991–1996 Fawcette Technical Publicatio

©1991–1996 Fawcette Technical Publicatio
 Visual Basic Programmer’s Journal MARCH 1996 25

 R E G I S T R Y

EGEDIT4. REGEDIT4 was introduced to deal with named values.
egEdit can run from the command line, but in this configuration,

t will not be able to load REGEDIT4 files. If you’re working on NT,
ou should use the RegIni utility from the NT Resource Kit.

Adding the TXT File Type to the Explorer. This view of
the New menu in the Win95 explorer is fairly typical,

except that by using the registry, I added the TXT file type to the menu.
Selecting it launches Notepad, the file associated with TXT files.

FIGURE 3

CONTINUED ON PAGE 30.

Visual Basic Programmer’s Journal MARCH 1996 25ns

ns

2

H A C K I N G T H E R E G I S T R Y

R
H

R
[
@
"

t
c
T
y
a

m
r
a
t
V
c

•
•
•
•

w

CONTINUED FROM PAGE 26.

CONTINUED ON PAGE 34.
This shows the contents of a trivial REG file using the old format:

EGEDIT
KEY_CLASSES_ROOT\.txt = txtfile

And, this shows this new format (with a named value):

EGEDIT4
HKEY_CLASSES_ROOT\.txt]
="txtfile"
Content Type"="text/plain"

If you distribute a REG file with your application, be aware
hat Setup Toolkit has somewhat limited support for this. You
an add a REG file with the Add Files button and the Setup
oolkit will register those keys on the user’s machine. However,
ou are limited to embedding relative paths and there’s no
utomated support for uninstalling the REG file entries.

If you’ve been following along on your machine, your registry
ight be getting a little wonky. It’s not uncommon for your

egistry to get whacked: hacking around manually just tends to
ccelerate this process. Eventually, you’re going to want to use
he little-known RegClean utility (16- and 32-bit) that ships with
B4 and is located in the \Tools\PSS subdirectory. It can
orrect a number of these problems in your registry:

 Mismatched GUID in TypeLib.
 Missing TypeLib GUID.
 Missing CLSID for ProgID.
 Useless NumMethods or BaseInterface keys.
6 MARCH 1996 Visual Basic Programmer’s Journal ©199
• Invalid ProgID key.
• Missing OLE key.
• Wrong value for OLE key.
• Missing file.
• Empty subkey.
• Conflicting local/remote keys.
• Improper InprocServer registration.
• Server isn’t AUTPRX16.DLL/AUTPRX32.DLL.
• Differing server paths.
• Missing InprocServer key.

RegClean also gives you the option of creating a pending change
file or just letting it rip and make the changes for you (guess
which one I chose).

EXTENDING THE NEW SHELL
If you’ve selected New from the File menu within the Windows
95 Explorer, after what seems like an inordinate delay you’ve
seen a cascading menu (see Figure 3).

The shell is searching through the registry looking for valid
file extensions (those beginning with “.”) that have a subkey of
ShellNew. Each time it finds one, it reads the value in the
extension’s key to determine the ProgID, looks up the ProgID,
and adds the value of that key to the menu.

For example, to add the TXT item to the menu shown in
Figure 3, I added the ShellNew key to the CLSID key for “.txt”
files:

HKEY_CLASSES_ROOT\.txt = txtfile
ShellNew
Adding the Test VB Finder to the Find Menu in Explorer. The registry structure for dynamically added Find items illustrates
how simple it is to add items to the menu. A modified Find Menu in the new shell’s Explorer show an entry added by MSN as

ell as two custom entries described here. It’s just as easy to add an entry for something like Yahoo for finding files on the Internet.

FIGURE 4
http://www.windx.com1–1996 Fawcette Technical Publications

H A C K I N G T H E R E G I S T R Y

r

,
l
-

.

-

”

SO

y
.

Not

LIS

CONTINUED ON PAGE 38.
which, when accessed by the shell, was translated into the:

HKEY_CLASSES_ROOT\txtfile = TXT

Of course, the point of this isn’t that you can launch Notepad
(though that is somewhat useful), but that you add you
program to the New item from your users File menu with very
little effort.

The shell can be extended in many other ways. For example
you can add a destination application to the Send To menu for al
Explorer items by placing a shortcut to the destination applica
tion in the \Windows\SendTo folder. I suggest you create a
shortcut in the \Windows\SendTo directory for RegSvr32.EXE
Heck, you don’t even have to run RegEdit to do this one.

You may have clicked on files in the shell that don’t have
any extension: the resulting dialog is annoying but at least you
can associate the file with a particular application. Unfortu
nately, that association doesn’t “stick” and you have to do this
every time. Files without an extension are of class “.” and you
must manually add this type to the registry. You can either add
a single key that points to whatever (for instance) a “txtfile
might be:
http://www.windx.com ©1991–1996 Fawcette Technical Publicatio
HKEY_CLASSS_ROOT\. = "txtfile"

or you can enter your own class as in this example:

HKEY_CLASSS_ROOT\. = "none"
HKEY_CLASSS_ROOT\none\DefaultIcon = "notepad,1"
HKEY_CLASSS_ROOT\none\shell\open\command = “notepad.exe "%1.""

If you just want to add a single menu command to the context
menu of a specific file type, you can use a similar technique
method: these two entries will add an Edit menu item to VB
project (VBP) files and load them into Notepad:

HKEY_CLASSS_ROOT\VisualBasic.Project\shell\Edit = ""
HKEY_CLASSS_ROOT\VisualBasic.Project\shell\Edit\command = "notepad.exe "%1.""

EXTENDING THE FIND MENU
The new shell can be extended in a number of ways using, not
surprisingly, a mechanism called shell extensions. Shell exten-
sions are implemented as specialized DLLs that create OLE COM
objects and support specific OLE interfaces. One example is the
built-in “Files or Folders...” and “Computer...” menu items found
on the Find submenu. While it’s possible to add to this menu,
just as MSN does with the “On The Microsoft Network...” item,
shell extensions cannot currently be written in VB.

Fortunately, Jeff Richter has written a custom FindExt.DLL
that encapsulates the necessary functionality and allows at-
tachment of any program to the Find submenu (see Figure 4).
You generate custom CLSIDs that point to this DLL: when one is
invoked, the DLL looks up the associated command line and
executes it. This compiled DLL is included with the sample code
for this article available on VBPJ’s Development Exchange on
CompuServe (GO WINDX), The Microsoft Network (GO WINDX)
and the World Wide Web (http://www.windx.com) and can be
freely distributed. Richter will be writing about and publishing
the source code later this year.

Extensions to the Find submenu are stored in the registry,
buried in the HKEY_LOCAL_MACHINE\SOFTWARE\
M i c r o s o f t \ W i n d o w s \ C u r r e n t V e r s i o n \ e x p l o r e r \
FindExtensions subkey. Extensions stored at that level are loaded
automatically when the Explorer is first loaded (normally the
shell boots when Windows 95 is first loaded). The Static subkey
beneath that contains extensions that are loaded dynamically:
they are invoked when the user selects the item on the Find
submenu. This is where you should put your custom find utilities.

To do so you need to create three additional nested subkeys:
the extension that points to the CLSID of the InProc server, the
menu text, and the menu icon. The first item to add is the
extension that points to the CLSID of the InProc OLE server.

The name of this key (InetFind, MSNFind, and VBFind in the
figure) is unimportant: Windows never displays it and the
submenu items are actually drawn from the registry in the order
they were added, not alphabetically. The value of this key is the
text version of a CLSID that points to FindExt.DLL, in this case.
Next, add the menu text itself (including an accelerator key if
desired). The name of this key must be “0.”

Finally, add the icon to be displayed in the menu, which has
a value that includes the file name of the executable and the
index of the icon (typically zero) to be used. The name of this key
must be “DefaultIcon.”

To see the new menu item, it’s necessary to restart the
Explorer. You can either restart Windows 95, which is slow and
inconvenient, particularly if you have multiple applications
open, or you can shut down and restart the shell. To shut down
the shell, choose “Shutdown” from the Start menu and, when
you see the “Shut Down Windows” dialog box, hold down the
Dim CRLF As String
Dim QT As String
Dim sFile As String
For x = 1 To Len(txtFile) 'Double \\

If Mid$(txtFile, x, 1) = "\" Then sFile = _
sFile & "\"

sFile = sFile & Mid$(txtFile, x, 1)
Next x
CRLF = Chr$(13) & Chr$(10)
QT = Chr$(34)
txtScript = ""
txtScript = "REGEDIT4"
txtScript = txtScript & CRLF & "[HKEY_LOCAL_MACHINE_

FTWARE\Microsoft\Windows\CurrentVersion\explorer_
FindExtensions\Static\" & txtShort & "]"

txtScript = txtScript & CRLF & "@=" & QT & _
txtGUID & QT

txtScript = txtScript & CRLF & "[HKEY_LOCAL_MACHINE_
SOFTWARE\Microsoft\Windows\CurrentVersion_
explorer\FindExtensions\Static\" & txtShort & _
"\0]"

txtScript = txtScript & CRLF & "@=" & QT & _
txtDescription & QT

txtScript = txtScript & CRLF & "[HKEY_LOCAL_MACHINE_
SOFTWARE\Microsoft\Windows\CurrentVersion_
explorer\FindExtensions\Static\" & txtShort & _
"\0\DefaultIcon]"

txtScript = txtScript & CRLF & "@=" & QT & sFile & _
",0" & QT

txtScript = txtScript & CRLF
txtScript = txtScript & CRLF & _

"[HKEY_CLASSES_ROOT\CLSID\" _
& txtGUID & "\FindCmd]"

txtScript = txtScript & CRLF & "@=" & QT & sFile & QT
txtScript = txtScript & CRLF & _

"[HKEY_CLASSES_ROOT\CLSID\" _
& txtGUID & "\InprocServer32]"

txtScript = txtScript & CRLF & "@=" & QT & _
"FindExt.dll" & QT

txtScript = txtScript & CRLF & QT & _
"ThreadingModel" & QT _
& "=" & QT & "Apartment" & QT

txtScript = txtScript & CRLF

REGEDIT4 Script Generation. This script is prett
standard string manipulation code, with one exception

e the required doubled backslashes and trailing blank line.

TING 1
Visual Basic Programmer’s Journal MARCH 1996 27ns

H A C K I N G T H E R E G I S T R Y

w
t
t

S
c
c
s
w

i
f

a
x
f
p

H
r

Byte, lMax As Long) As Long

VB4

c
w
R

Ctrl-Alt-Shift key combination and click on the “No” button. This
leaves you in something like the old shell, where pressing Ctrl-
Escape brings up the Task Manager, from which you can select
“Run” from the File menu and restart Explorer.

Although the menu item is visible at this point, it won’t
actually do anything. To make it work, you must add the CLSID
to the HKEY_CLASSES_ROOT\CLSID key and create a couple of
additional subkeys: the CLSID of the OLE InProc server refer-
enced by the Find extension, the command line to be executed
by FindExt.DLL, which must be stored under the FindCmd key,
and finally the InprocServer32 key with two values. The first,
which is the default, contains the path (if appropriate) and file
name of the FindExt.DLL, which will typically be located in the
\Windows\System subdirectory.

The second key, “ThreadingModel,” should be set to “Apart-
ment” because the FindExt.DLL uses that mechanism and is, in fact,
thread safe. The threading model applies only to OLE Servers that
are loading in process. The steps I’ve outlined are a bit tedious, yet
they must be carried out exactly for this to work properly. To ease
the procedure, I wrote a small Finder Installation utility that
automates the whole process (available for download from the
online services described elsewhere in this article).
28 MARCH 1996 Visual Basic Programmer’s Journal ©199
The first step in using this utility is to generate a new CLSID,
hich is equivalent to a GUID (for “Globally Unique ID” in Microsoft

erminology) or UUID (for “Universally Unique ID,” in DCE/RPC
erminology).

VB creates GUIDs for us automatically when we create OLE
ervers, and the GUIDGen utility included in the Win32 SDK
an be used to generate them manually. Anyway, I want to
reate a CLSID programmatically so I need to create a GUID
tructure and fill it in by calling the OLE function CoCreateGuid,
hich in turn calls the RPC function UuidCreate.

The Win32 documentation states that UuidCreate is not
mplemented on Windows 95, but that isn’t true: it can be
ound in RPCRT4.DLL.

The Win32 header files give this structure for a GUID:

typedef struct _GUID { // size is 16
DWORD Data1;
WORD Data2;
WORD Data3;
BYTE Data4[8];

} GUID;

which I translated into this VB code:

Type tGUID
P1 As Long
P2 As Integer
P3 As Integer
P4 As Byte
P5 As Byte
P6 As Byte
P7 As Byte
P8 As Byte
P9 As Byte
P10 As Byte
P11 As Byte

End Type

The CoCreateGuid declaration was pretty obvious:

Declare Function CoCreateGuid Lib _
"OLE32.DLL" (guid As tGUID) As Long

Calling it is dead simple:

Dim tmp As tGUID
lRet = CoCreateGuid(tmp)

Unfortunately, the GUID you end up with is binary. You need
 string in this format: “{xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxx}”. The Win32 API does provide a UuidToString
unction located in RPCRT4.DLL and the Win32 SDK header files
rovides this prototype:

UuidToStringA (
IN UUID __RPC_FAR * Uuid,
OUT unsigned char __RPC_FAR * __RPC_FAR _

* StringUuid
);

But, it turns out that this function isn’t callable from VB.
owever, another function, StringFromGUID2, gets us on the

ight track using this declaration:

Declare Function StringFromGUID2 Lib _
"OLE32.DLL" (guid As tGUID, lpszString As _
Declare Function RegNotifyChangeKeyValue Lib _
"advapi32.dll" _
(ByVal hKey As Long, ByVal bWatchSubtree As Long, _
ByVal dwNotifyFilter As Long, ByVal hEvent As Long, _
ByVal fAsynchronus As Long) As Long

Declare Function WaitForSingleObject Lib "kernel32" _
(ByVal hHandle As Long, ByVal dwMilliseconds As _
Long) As Long

Declare Function CreateEvent Lib "kernel32" Alias _
"CreateEventA" (lpEventAttributes As Long, ByVal _
bManualReset As Long, ByVal bInitialState As Long, _
ByVal lpName As String) As Long

Declare Function CloseHandle Lib "kernel32" (ByVal _
hObject As Long) As Long

Public Const HKEY_CLASSES_ROOT = &H80000000
Public Const REG_NOTIFY_CHANGE_ATTRIBUTES = &H2
Public Const REG_NOTIFY_CHANGE_LAST_SET = &H4
Public Const REG_NOTIFY_CHANGE_NAME = &H1
Public Const REG_NOTIFY_CHANGE_SECURITY = &H8

Private Sub cmdRegistry_Click()
Dim lChange As Long
mhEvent = CreateEvent(0&, False, False, vbNullString)
lChange = RegNotifyChangeKeyValue_

(HKEY_CLASSES_ROOT, True, _
REG_NOTIFY_CHANGE_NAME, mhEvent, True)

tmrRegistry.Enabled = True
Me.Caption = "Waiting for registry change..."

End Sub

Private Sub tmrRegistry_Timer()
Static lSignal As Long
Static lResult As Long

lSignal = WaitForSingleObject(mhEvent, 0&)
If lSignal = 0 Then

Me.Caption = "Registry Changed"
tmeRegistry.Enabled = False
lResult = CloseHandle(mhEvent)

End If

End Sub

Declarations and Code for Handling Registry
Change Notification.The cmdRegistry_Click subroutine

reates the event object, passes its handle to the system signalling
hen the registry changes, and starts the polling timer. Details about
egistry Change Notification messages are shown in Table 1.

LISTING 2
http://www.windx.com1–1996 Fawcette Technical Publications

H A C K I N G T H E R E G I S T R Y

c

b
y
th
b
c

k
m

c
s
th
m
fo
c

n
c
c
S
fi

h

&
E
fi
p
t

D
A
d
fo
N
s
li
a
w
t

p
R

a
h
o

s
s
f
n

s
a
e
(
l
t
a

e
c
p
c
W
i

e
e
H
m
o

f
d

t

a
s

r
a
s
b
c
s

t
l

a
r
f
l

Calling this function and putting the result into the Text
ontrol is a piece of cake:

Dim bBuff(256) As Byte
lRet2 = StringFromGUID2(tmp, bBuff(0), 256&)
txtGUID = bBuff

These three lines of code are doing a lot. The contents of the bBuff
yte array are actually a Unicode string. If you examine it in detail,
ou’ll see that every element contains the ASCII value of a character
at you want in the string version. Assigning the contents of the

uffer to a string (or, in this case, the text property of a Text control)
onverts it correctly because VB4 strings are internally Unicode.

The second and third steps are to simply fill in the extension
ey name (which is not used), menu text, and complete com-
and line that we wish to execute.

The fourth step is to generate a complete REGEDIT4 script that
ontains all of the entries in the appropriate format. This is
traightforward VB string manipulation code (see Listing 1) with
ese caveats: any key value containing a backslash character
ust be doubled and the script must have a blank line at the end
r the previous line to be registered correctly. The last step is to

opy this script into a REG file and execute it from the shell.
Again, because you create your own CLSID, you can have any

umber of Find extensions on a system without worrying about
olliding with one written and installed by someone else. Be-
ause the FindExt.DLL is internally calling the new Win32
hellExecute function, you can even substitute the executable
le name with something like this:

ttp://www.yahoo.com

You might associate this with the menu description “On The
Internet... .” Choosing this automatically brings up the Internet
xplorer, logs you on to the Internet, and take you to the Yahoo
nder. Other ideas for Find extensions might include a com-
any-wide address book, a shortcut to MSDN, or virtually any-
hing else that makes sense to you.

IFFERENCES BETWEEN NT AND 95
s developers are all too painfully aware, there are major
ifferences between the Windows 95 and Windows NT plat-
rms. Some of these differences will disappear over time: the
T Shell Update Release (SUR) will add the new shell, TAPI
upport, and so on, while some of the most glaring differences,
ke Windows 95’s lack of security, will remain. One of the gray
reas is support for theWin32 Kernel synchronization objects:
hile support for the file change notifications is supported

hrough the FindXXXChangeNotification family of APIs on both
http://www.windx.com ©1991–1996 Fawcette Technical Publicatio
latforms, support for registry change notifications (through
egNotifyChangeKeyValue) is supported only on NT.

While a full discussion of kernel synchronization objects—such
s mailslots, processes, threads, mutexes, events, semaphores, file
andles, file mappings, named pipes—will have to wait until an-
ther time, I’ll cover only registry synchronization for now.

Kernel event objects can exist in either a signaled or not-
ignaled state. Basically, we create an event object, tell the
ystem to signal that object when the registry changes, and wait
or the object to get signaled. Normally this is done synchro-
ously by suspending the calling thread until the signal occurs.

Unfortunately, because VB apps can currently use only a
ingle thread, this would have the effect of hanging the entire
pp until the change occurs. Freezing an application is consid-
red to be sub-optimal from an implementation standpoint
users generally don’t like this), so I programmed around this
imitation using a Timer and periodically checking the state of
he event. While polling is usually a sign of a bad application
rchitecture, in this case there’s no other choice.

To illustrate this, I created a small testing application that’s
asy to follow (see Listing 2). The code starts in the
mdRegistry_Click subroutine, which creates the event object,
asses its handle to the system to get signaled when the registry
hanges, and starts the polling timer. The timer calls
aitForSingleObject (with a time of 0 milliseconds) and returns

mmediately.
When the event gets signaled, the timer is disabled and the

vent object is destroyed by closing its handle. This particular
xample looks for changes to key names at the root level of
KEY_CLASSES_ROOT and includes subkeys: it’s probably the
ost useful, although you may want to examine the other

ptions from the Win32 SDK (see Table 1).
As a final reminder, since the RegNotifyChangeKeyValue

unction is implemented only on Windows NT, this tester won’t
o anything on Windows 95.

Here are some useful tips. First, any long file names stored in
he registry should be enclosed in quotes, like this:

shell\open\command = “C:\Program Files\My Accessories\WinWord.Exe” %1

Alternately, the short file name could be stored so it will work on
ll systems. An example of this is the system-supplied Find utility that
upplies the “Files or Folders...” and “Computer...” menu items:

C:\Progra~1\TheMic~1\findstub.dll

While type and size of data you can store in the registry is
elatively unlimited, in general you should not store frequently
ccessed data in the registry. Registry access is much slower than
hared memory and even slower than file access. You should also
e aware that named values consume less space than keys
onsume. You might also consider packing data together into a
tructure and storing the entire structure as a single binary value.

If your application is adding more than a couple of kilobytes
o the registry, consider storing a pointer to that data and
ocating it elsewhere, either as a file or perhaps as a type library.

Also, while it’s certainly possible, Microsoft strongly encour-
ges developers not to store binary, executable programs in the
egistry. If you’re still interested in the registry and are looking
or a place to jump in where you’re likely to see familiar stuff, I’ll
eave you with these keys as “suggested reading:”

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDlls
HKEY_LOCAL_MACHINE\System\CurrentControlSet\control\SessionManager\KnownDLLs
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\IniFileMapping
HKEY_LOCAL_MACHINE\\SOFTWARE\Microsoft\Windows\CurrentVersion\AppPaths
HKEY_LOCAL_MACHINE\\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall
What’s Changed? Registry change notification messages,
and their descriptions. Be aware that some messages that

exist on Windows NT aren’t supported by Windows 95.

TABLE 1

MESSAGE DESCRIPTION

REG_NOTIFY_CHANGE_NAME Changes to key names that occur in the specified
key or in the specified key and its subkeys cause
a change notification. This includes key creations
and deletions.

REG_NOTIFY_CHANGE_ATTRIBUTES Attribute changes that occur in a key or in a key
and its subkeys cause a change notification.

REG_NOTIFY_CHANGE_LAST_SET Changes to the last write time that occur in a key
or in a key and its subkeys cause a change
notification.

REG_NOTIFY_CHANGE_SECURITY Security-descriptor changes that occur in a key or in
a key and its subkeys cause a change notification.
Visual Basic Programmer’s Journal MARCH 1996 29ns

	Source Code

