ABOUT THIS DOCUMENT

This is the Python Tutorial provided at the creator's site, www.python.org

and was written by the creator of the Python language, Guido van Rossum

This tutorial is Release 2.2.2, dated October 14th, 2002

The Acrobat (PDF) file conversion was performed in February 2003

Front Matter

= T = Python Tutorial foc
COMTENTS

Previous. Python Tutorial Up: Python Tutorial Next: Contents

Front Matter

Copyright © 2001 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract:

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and
asimple but effective approach to object-oriented programming. Python's elegant syntax and dynamic
typing, together with its interpreted nature, make it an ideal language for scripting and rapid application
development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for
all mgjor platforms from the Python Web site, http://www.python.org/, and can be freely distributed.
The same site also contains distributions of and pointers to many free third party Python modules,
programs and tools, and additional documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or
other languages callable from C). Python is also suitable as an extension language for customizable
applications.

Thistutorial introduces the reader informally to the basic concepts and features of the Python language
and system. It helps to have a Python interpreter handy for hands-on experience, but al examples are self-
contained, so the tutorial can be read off-line as well.

For a description of standard objects and modules, see the Python Library Reference document. The

http://www.python.org/doc/current/tut/nodel.html (1 of 2) [2/18/2003 11:37:37 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/
http://www.python.org/doc/current/lib/lib.html

Front Matter

Python Reference Manual gives a more formal definition of the language. To write extensionsin C or
C++, read Extending and Embedding the Python Inter preter and Python/C API Reference. There are also
several books covering Python in depth.

Thistutorial does not attempt to be comprehensive and cover every single feature, or even every
commonly used feature. Instead, it introduces many of Python's most noteworthy features, and will give
you a good idea of the language's flavor and style. After reading it, you will be able to read and write
Python modules and programs, and you will be ready to learn more about the various Python library
modules described in the Python Library Reference.

= T =" Python Tutorial foc
COMHTEMTS

Previous: Python Tutorial Up: Python Tutorial Next: Contents

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/nodel.html (2 of 2) [2/18/2003 11:37:37 PM]

http://www.python.org/doc/current/ref/ref.html
http://www.python.org/doc/current/ext/ext.html
http://www.python.org/doc/current/api/api.html
http://www.python.org/doc/current/lib/lib.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

Contents

é ¢ 9 Python Tutorial

Previous: Front Matter Up: Python Tutorial Next: 1. Whetting Y our Appetite

Contents

. Front Matter
. 1. Whetting Y our Appetite
o 1.1 Where From Here
. 2. Using the Python Interpreter
o 2.1 Invoking the Interpreter
« 2.1.1 Argument Passing
« 2.1.2 Interactive Mode
o 2.2 Thelnterpreter and Its Environment
« 2.2.1 Error Handling
« 2.2.2 Executable Python Scripts
« 2.2.3 Thelnteractive Startup File
. 3. AnInformal Introduction to Python
o 3.1 Using Python as a Calculator
« 3.1.1 Numbers
« 3.1.2 Strings
« 3.1.3 Unicode Strings
« 3.1.4Lists
o 3.2 First Steps Towards Programming
« 4. More Control Flow Tools
o 4.1 f Statements
o 4.2f or Statements
o 4.3Therange() Function
o 4.4 br eak andcont i nue Statements, and el se Clauses on Loops
o 4.5 pass Statements
o 4.6 Defining Functions
o 4.7 More on Defining Functions
« 4.7.1 Default Argument Values
« 4.7.2 Keyword Arguments
« 4.7.3 Arbitrary Argument Lists
« 4.7.4 Lambda Forms

http://www.python.org/doc/current/tut/node2.html (1 of 3) [2/18/2003 11:37:46 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

Contents

« 4.7.5 Documentation Strings
. 5. Data Structures
o 5.1 Moreon Lists
« 5.1.1 Using Lists as Stacks
« 5.1.2 Using Lists as Queues
« 5.1.3 Functional Programming Tools
« 5.1.4 List Comprehensions
o 5.2 Thedel statement
o 5.3 Tuples and Sequences
o 5.4 Dictionaries
o 5.5 Looping Technigues
o 5.6 More on Conditions
o 5.7 Comparing Sequences and Other Types
. 6. Modules
o 6.1 Moreon Modules
« 6.1.1 The Module Search Path
« 6.1.2 "Compiled" Python files
o 6.2 Standard Modules
o 6.3Thedi r () Function
o 6.4 Packages
« 6.4.1 Importing * From a Package
« 6.4.2 Intra-package References
. 7. Input and Output
o 7.1 Fancier Output Formatting
o 7.2 Reading and Writing Files
« 7.2.1 Methods of File Objects
« 7.22Thepi ckl e Module
. 8. Errors and Exceptions
o 8.1 Syntax Errors
o 8.2 Exceptions
o 8.3 Handling Exceptions
o 8.4 Raising Exceptions
o 8.5 User-defined Exceptions
o 8.6 Defining Clean-up Actions
. 9. Classes
o 9.1 A Word About Terminology
o 9.2 Python Scopes and Name Spaces
o 9.3 A First Look at Classes

http://www.python.org/doc/current/tut/node2.html (2 of 3) [2/18/2003 11:37:46 PM]

Contents

« 9.3.1 Class Definition Syntax
« 9.3.2 Class Objects
= 9.3.3 Instance Objects
« 9.3.4 Method Objects
o 9.4 Random Remarks
o 9.5 Inheritance
« 9.5.1 Multiple Inheritance
o 9.6 Private Variables
9.7 Odds and Ends
« 9.7.1 Exceptions Can Be Classes
. 10. What Now?
. A. Interactive Input Editing and History Substitution
o A.l1Line Editing
o A.2 History Substitution
o A.3Key Bindings
o A.4 Commentary
. B. Floating Point Arithmetic: Issues and Limitations
o B.1 Representation Error
. C. History and License
o C.1 History of the software
o C.2 Terms and conditions for accessing or otherwise using Python
. About this document ...

O

= ¢ = Python Tutorial

Previous. Front Matter Up: Python Tutorial Next: 1. Whetting Y our Appetite

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/node2.html (3 of 3) [2/18/2003 11:37:46 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

1. Whetting Y our Appetite

= ’r = Python Tutorial foc
COHTEMTS

Previous. Contents Up: Python Tutorial Next: 2. Using the Python

Subsections

. 1.1 Where From Here

1. Whetting Your Appetite

If you ever wrote alarge shell script, you probably know thisfeeling: you'd love to add yet another
feature, but it's already so slow, and so big, and so complicated; or the feature involves a system call or
other function that is only accessible from C ...Usually the problem at hand isn't serious enough to
warrant rewriting the script in C; perhaps the problem requires variable-length strings or other data types
(like sorted lists of file names) that are easy in the shell but lots of work to implement in C, or perhaps
you're not sufficiently familiar with C.

Another situation: perhaps you have to work with several C libraries, and the usual C
write/compile/test/re-compile cycle istoo slow. Y ou need to devel op software more quickly. Possibly
perhaps you've written a program that could use an extension language, and you don't want to design a
language, write and debug an interpreter for it, then tie it into your application.

In such cases, Python may be just the language for you. Python issimpleto use, but it isareal
programming language, offering much more structure and support for large programs than the shell has.
On the other hand, it also offers much more error checking than C, and, being a very-high-level

language, it has high-level data types built in, such as flexible arrays and dictionaries that would cost you
days to implement efficiently in C. Because of its more general data types Python is applicable to a much
larger problem domain than Awk or even Perl, yet many things are at least as easy in Python asin those
languages.

Python allows you to split up your program in modules that can be reused in other Python programs. It
comes with alarge collection of standard modules that you can use as the basis of your programs -- or as
examples to start learning to program in Python. There are aso built-in modules that provide things like
file1/O, system calls, sockets, and even interfaces to graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program devel opment
because no compilation and linking is necessary. The interpreter can be used interactively, which makes

http://www.python.org/doc/current/tut/node3.html (1 of 2) [2/18/2003 11:38:06 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

1. Whetting Y our Appetite

it easy to experiment with features of the language, to write throw-away programs, or to test functions
during bottom-up program development. It is also a handy desk calculator.

Python allows writing very compact and readable programs. Programs written in Python are typically
much shorter than equivalent C or C++ programs, for several reasons:

. the high-level datatypes allow you to express complex operationsin a single statement;
. Statement grouping is done by indentation instead of begin/end brackets;
. ho variable or argument declarations are necessary.

Python is extensible: if you know how to programin C it is easy to add a new built-in function or module
to the interpreter, either to perform critical operations at maximum speed, or to link Python programs to
libraries that may only be available in binary form (such as a vendor-specific graphics library). Once you
are really hooked, you can link the Python interpreter into an application written in C and use it asan
extension or command language for that application.

By the way, the language is named after the BBC show ~"Monty Python's Flying Circus" and has nothing
to do with nasty reptiles. Making references to Monty Python skits in documentation is not only allowed,
it is encouraged!

1.1 Where From Here

Now that you are all excited about Python, you'll want to examine it in some more detail. Since the best
way to learn alanguageis using it, you are invited here to do so.

In the next chapter, the mechanics of using the interpreter are explained. Thisis rather mundane
information, but essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and system through examples,
beginning with simple expressions, statements and data types, through functions and modules, and finally
touching upon advanced concepts like exceptions and user-defined classes.

= T = Python Tutorial loc
COHTEMTS

Previous. Contents Up: Python Tutorial Next: 2. Using the Python

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/node3.html (2 of 2) [2/18/2003 11:38:06 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

2. Using the Python Interpreter

= T = Python Tutorial foc
COHTEMTS

Previous: 1. Whetting Y our Appetite Up: Python Tutorial Next: 3. An Informal Introduction

Subsections

. 2.1 1nvoking the Interpreter
o 2.1.1 Argument Passing
o 2.1.2 Interactive Mode

. 2.2 Thelnterpreter and Its Environment
o 2.2.1 Error Handling
o 2.2.2 Executable Python Scripts
o 2.2.3 TheInteractive Startup File

2. Using the Python Interpreter

2.1 Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python on those machines whereit is
available; putting /usr/local/bin in your Unix shell's search path makes it possible to start it by typing the
command

pyt hon
to the shell. Since the choice of the directory where the interpreter livesis an installation option, other
places are possible; check with your local Python guru or system administrator. (E.g., /usr/local/python
isapopular alternative location.)
Typing an end-of-file character (Cont r ol - Don Unix, Cont r ol - Z on DOS or Windows) at the
primary prompt causes the interpreter to exit with a zero exit status. If that doesn't work, you can exit the

interpreter by typing the following commands: "i nport sys; sys.exit()".

The interpreter's line-editing features usually aren't very sophisticated. On Unix, whoever installed the
interpreter may have enabled support for the GNU readline library, which adds more elaborate

http://www.python.org/doc/current/tut/node4.html (1 of 5) [2/18/2003 11:38:21 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

2. Using the Python Interpreter

interactive editing and history features. Perhaps the quickest check to see whether command line editing
is supported is typing Control-P to the first Python prompt you get. If it beeps, you have command line
editing; see Appendix A for an introduction to the keys. If nothing appears to happen, or if P is echoed,

command line editing isn't available; you'll only be able to use backspace to remove characters from the
current line.

The interpreter operates somewhat like the Unix shell: when called with standard input connected to a tty
device, it reads and executes commands interactively; when called with afile name argument or with a
file as standard input, it reads and executes a script from that file.

A third way of starting the interpreter is"pyt hon -c¢ command [arg] ...",whichexecutesthe
statement(s) in command, analogous to the shell's -c option. Since Python statements often contain
spaces or other characters that are special to the shell, it is best to quote command in its entirety with
double quotes.

Note that there is a difference between "pyt hon fil e" and"pyt hon <fil e". Inthelatter case,
Input requests from the program, such ascallstoi nput () andraw_i nput (), are satisfied from file.
Since thisfile has already been read until the end by the parser before the program starts executing, the
program will encounter end-of-file immediately. In the former case (which is usually what you want)
they are satisfied from whatever file or device is connected to standard input of the Python interpreter.

When ascript file is used, it is sometimes useful to be able to run the script and enter interactive mode
afterwards. This can be done by passing -i before the script. (This does not work if the script isread from
standard input, for the same reason as explained in the previous paragraph.)

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are passed to the
scriptinthevariablesys. ar gv, whichisalist of strings. Itslength is at least one; when no script and
no arguments are given, sys. ar gv[0] isan empty string. When the script nameisgivenas' -
(meaning standard input), sys. argv[0] issetto' -' . When -c command isused, sys. ar gv[0] is
setto' - ¢' . Options found after -c command are not consumed by the Python interpreter's option
processing but left insys. ar gv for the command to handle.

2.1.2 Interactive Mode

When commands are read from atty, the interpreter is said to be in interactive mode. In this mode it
prompts for the next command with the primary prompt, usually three greater-than signs (">>> "); for

http://www.python.org/doc/current/tut/node4.html (2 of 5) [2/18/2003 11:38:21 PM]

2. Using the Python Interpreter

continuation lines it prompts with the secondary prompt, by default threedots (*. . . ™). Theinterpreter
prints a wel come message stating its version number and a copyright notice before printing the first
prompt:

pyt hon

Pyt hon 1.5.2b2 (#1, Feb 28 1999, 00:02:06) |[GCC 2.8.1] on sunos5
Copyright 1991-1995 Stichting Mat hemati sch Centrum Anst er dam
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take alook at thisi f
statement:

>>> the world is flat =1
>>> | f the world is flat:
print "Be careful not to fall off!"

Be careful not to fall off!

2.2 The Interpreter and Its Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it
then returns to the primary prompt; when input came from afile, it exits with a nonzero exit status after
printing the stack trace. (Exceptions handled by an except clauseinat r y statement are not errorsin
this context.) Some errors are unconditionally fatal and cause an exit with a nonzero exit; this appliesto
internal inconsistencies and some cases of running out of memory. All error messages are written to the
standard error stream; normal output from the executed commands is written to standard outpui.

Typing the interrupt character (usually Control-C or DEL) to the primary or secondary prompt cancels

the input and returns to the primary prompt.2-1Typing an interrupt while a command is executing raises
the Keyboar dl nt er r upt exception, which may be handled by at r y statement.

2.2.2 Executable Python Scripts

http://www.python.org/doc/current/tut/node4.html (3 of 5) [2/18/2003 11:38:21 PM]

2. Using the Python Interpreter

On BSD'ish Unix systems, Python scripts can be made directly executable, like shell scripts, by putting
theline

#! /usr/bin/env python

(assuming that the interpreter is on the user's PATH) at the beginning of the script and giving the file an
executable mode. The "#! " must be the first two characters of the file. Note that the hash, or pound,
character, "#", is used to start acomment in Python.

2.2.3 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed
every timethe interpreter is started. Y ou can do this by setting an environment variable named
PYTHONSTARTUP to the name of afile containing your start-up commands. Thisis similar to the
.profile feature of the Unix shells.

Thisfileisonly read in interactive sessions, not when Python reads commands from a script, and not
when /dev/tty is given as the explicit source of commands (which otherwise behaves like an interactive
session). It is executed in the same namespace where interactive commands are executed, so that objects
that it defines or imports can be used without qualification in the interactive session. Y ou can also change
the promptssys. psl andsys. ps2 inthisfile.

If you want to read an additional start-up file from the current directory, you can program thisin the
global start-up fileusing codelike"i f os. path.isfile('.pythonrc. py'):
execfile('. pythonrc. py')". If youwantto usethe startup filein ascript, you must do this
explicitly in the script:

I nport os

filename = os.environ. get (' PYTHONSTARTUP')

I f filenane and os.path.isfile(filenane):
execfile(filenane)

Footnhotes

... prompt.2-1
A problem with the GNU Readline package may prevent this.

http://www.python.org/doc/current/tut/node4.html (4 of 5) [2/18/2003 11:38:21 PM]

2. Using the Python Interpreter

loc

6 ? 9 Python Tutorial
COMTEMTS

Previous. 1. Whetting Y our Appetite Up: Python Tutorial Next: 3. An Informal Introduction

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/node4.html (5 of 5) [2/18/2003 11:38:21 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

3. An Informal Introduction to Python

&= T = Python Tutorial foc
COMTENTS

Previous. 2. Using the Python Up: Python Tutorial Next: 4. More Control Flow

Subsections

. 3.1 Using Python as a Calculator
o 3.1.1 Numbers
o 3.1.2 Strings
» 3.1.3 Unicode Strings
o 3.1.4Lists
. 3.2 First Steps Towards Programming

3. An Informal Introduction to Python

In the following examples, input and output are distinguished by the presence or absence of prompts (">>>
and". .. "):torepeat the example, you must type everything after the prompt, when the prompt appears; lines
that do not begin with a prompt are output from the interpreter. Note that a secondary prompt on aline by itself
in an example means you must type a blank line; thisis used to end a multi-line command.

Many of the examplesin this manual, even those entered at the interactive prompt, include comments.
Comments in Python start with the hash character, "#", and extend to the end of the physical line. A comment
may appear at the start of aline or following whitespace or code, but not within a string literal. A hash character
within astring literal isjust a hash character.

Some examples:

this is the first comment

SPAM = 1 # and this is the second coment
... and now a third!

STRING = "# This is not a coment."

3.1 Using Python as a Calculator

Let's try some simple Python commands. Start the interpreter and wait for the primary prompt, ">>> ", (It
shouldn't take long.)

http://www.python.org/doc/current/tut/node5.html (1 of 13) [2/18/2003 11:38:33 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

3. An Informal Introduction to Python

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression
syntax is straightforward: the operators +, - , * and/ work just like in most other languages (for example, Pascal
or C); parentheses can be used for grouping. For example:

>>>

4
>>>

4
>>>

4
>>>

5
>>>

2
>>>

-3

2+2

This is a comment

2+2

2+2 # and a comment on the sane |ine as code
(50-5*6)/4

Integer division returns the fl oor:

7/ 3

7/ -3

Likein C, the equal sign ("=") isused to assign avalue to avariable. The value of an assignment is not written:

>>>
>>>
>>>
900

width = 20
hei ght = 5*9
wi dt h * hei ght

A value can be assigned to severa variables simultaneously:

>>>
>>>
0

>>>

0
>>>

0

X =y =2z =0 # Zero x, y and z
X

Thereisfull support for floating point; operators with mixed type operands convert the integer operand to
floating point:

>>>
7.5

3* 375/ 1.5

http://www.python.org/doc/current/tut/node5.html (2 of 13) [2/18/2003 11:38:33 PM]

3. An Informal Introduction to Python

>>> 7.0/ 2
3.5

Complex numbers are also supported; imaginary numbers are written with a suffix of “j " or "J". Complex
numbers with anonzero real component are written as"(real+imagj) ", or can be created with the
"conpl ex(real, imag)" function.

>>> 1) * 1]

(-1+0j)

>>> 1] * conpl ex(0,1)
(-1+0j)

>>> 3+1j *3

(3+3))

>>> (3+1))*3

(9+3j)

>>> (1+2))/(1+1j)
(1.5+0.5))

Complex numbers are always represented as two floating point numbers, the real and imaginary part. To extract
these parts from a complex number z, usez. r eal andz i mag.

>>> a=1. 5+0. 5]

>>> a.real
1.5
>>> a.img
0.5

The conversion functions to floating point and integer (f | oat () ,i nt () and| ong()) don't work for complex
numbers -- there is no one correct way to convert acomplex number to areal number. Use abs(z) to get its
magnitude (asafloat) or z. r eal togetitsrea part.

>>> a=3. 0+4. 0]
>>> f| oat (a)

Traceback (nost recent call last):
File "<stdin>", line 1, in ?
TypeError: can't convert conplex to float; use e.g. abs(z)
>>> a.real
3.0
>>> a.img
4.0
>>> abs(a) # sqrt(a.real**2 + a.img**2)
5.0
>>>

In interactive mode, the last printed expression is assigned to the variable _. This means that when you are using

http://www.python.org/doc/current/tut/node5.html (3 of 13) [2/18/2003 11:38:33 PM]

3. An Informal Introduction to Python

Python as a desk calculator, it is somewhat easier to continue cal culations, for example:

>>> tax = 12.5 / 100
>>> price = 100. 50
>>> price * tax

12. 5625

>>> price + _

113. 0625

>>> round(_, 2)

113. 06

>>>

This variable should be treated as read-only by the user. Don't explicitly assign avalueto it -- you would create
an independent local variable with the same name masking the built-in variable with its magic behavior.

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be
enclosed in single quotes or double quotes:

>>> ' spam eggs’

' spam eggs'

>>> 'doesn\'t’
"doesn' t"

>>> "doesn't"

"doesn' t"

>>> ""Yes," he said.'
""Yes," he said.’

>>> "\"Yes,\" he said."
""Yes," he said.'

>>> ""|sp\'t," she said.’
""Isn\'t," she said.'

String literals can span multiple lines in several ways. Continuation lines can be used, with a backslash as the last
character on the line indicating that the next lineisalogical continuation of the line:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C\n\
Not e that whitespace at the beginning of the line is\
significant."

print hello

http://www.python.org/doc/current/tut/node5.html (4 of 13) [2/18/2003 11:38:33 PM]

3. An Informal Introduction to Python

Note that newlines would still need to be embedded in the string using \ n; the newline following the trailing
backslash is discarded. This example would print the following:

This is a rather long string containing
several lines of text just as you would do in C
Not e that whitespace at the beginning of the line is significant.

If we make the string literal a™"raw" string, however, the\ n sequences are not converted to newlines, but the
backslash at the end of the line, and the newline character in the source, are both included in the string as data.
Thus, the example:

hello = r"This is a rather |l ong string containing\n\
several lines of text nuch as you would do in C"

print hello
would print:

This is a rather long string containing\n\
several lines of text nmuch as you would do in C
Or, strings can be surrounded in a pair of matching triple-quotes: """ or' ' ' . End of lines do not need to be
escaped when using triple-quotes, but they will be included in the string.
print """
Usage: thingy [OPTI ONS]
-h Di splay this usage nessage
-H host nane Host nanme to connect to

produces the following output:

Usage: thingy [OPTI ONS]
-h Di splay this usage nessage
- H host nane Host nane to connect to

The interpreter prints the result of string operations in the same way as they are typed for input: inside quotes,
and with quotes and other funny characters escaped by backslashes, to show the precise value. The string is
enclosed in double quotes if the string contains a single quote and no double quotes, elseit's enclosed in single
guotes. (Thepr i nt statement, described later, can be used to write strings without quotes or escapes.)

Strings can be concatenated (glued together) with the + operator, and repeated with * :

>>> word = "Help' +'A
>>> wor d

http://www.python.org/doc/current/tut/node5.html (5 of 13) [2/18/2003 11:38:33 PM]

3. An Informal Introduction to Python

' Hel pA
>>> '<' + word*5 + ' >
' <Hel pAHel pAHel pAHel pAHel pA>

Two string literals next to each other are automatically concatenated; the first line above could also have been
written"word = ' Hel p* ' A" "; thisonly works with two literals, not with arbitrary string expressions:

>>> jnport string

>>> 'str' 'ing' # <- This is ok
"string'

>>> string.strip('str') + 'ing' # <- This is ok
"string'

>>> string.strip('str') "ing' # <- This is invalid
File "<stdin>", line 1, in ?

string.strip('str') "ing'
N
SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a string has subscript (index) 0. Thereis no
separate character type; a character is simply astring of size one. Like in Icon, substrings can be specified with
the slice notation: two indices separated by a colon.

>>> wor d[4]
IAI

>>> wor d[0: 2]
1 I_bl

>>> wor d[2: 4]
1 | pl

Unlike a C string, Python strings cannot be changed. Assigning to an indexed position in the string resultsin an
error:

>>> word[0] = 'Xx'
Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
TypeError: object doesn't support item assignnent
>>> word[:1] = 'Splat'
Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?

TypeError: object doesn't support slice assignnent
However, creating a new string with the combined content is easy and efficient:

>>> 'x' + word[1:]
' xel pA

http://www.python.org/doc/current/tut/node5.html (6 of 13) [2/18/2003 11:38:33 PM]

3. An Informal Introduction to Python
>>> ' Splat' + word[4]
" Spl at A

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the
size of the string being sliced.

>>> wor d[: 2] # The first two characters

' He'

>>> wor d[2:] # All but the first two characters
llpAl

Here'sauseful invariant of ice operations. s[:i] + s[i:] equass.

>>> word[:2] + word[2:]
' Hel pA
>>> word[:3] + word[3:]
' Hel pA

Degenerate slice indices are handled gracefully: an index that istoo large is replaced by the string size, an upper
bound smaller than the lower bound returns an empty string.

>>> wor d[1: 100]
"el pA
>>> wor d[10:]

>>> wor d[2: 1]

Indices may be negative numbers, to start counting from the right. For example:

>>> wor d[- 1] # The | ast character

>§> wor d[- 2] # The | ast-but-one character

>E> wor d[- 2:] # The last two characters

>g§ wor d[: - 2] # Al but the last two characters
' el !

But note that -0 isreally the same as 0, so it does not count from the right!

>>> wor d[- 0] # (since -0 equals 0)
‘H

Out-of -range negative sice indices are truncated, but don't try this for single-element (non-dlice) indices:

http://www.python.org/doc/current/tut/node5.html (7 of 13) [2/18/2003 11:38:33 PM]

3. An Informal Introduction to Python

>>> wor d[- 100:]

' Hel pA

>>> wor d[- 10] # error

Traceback (nost recent call last):
File "<stdin>, line 1, in ?

I ndexError: string index out of range

The best way to remember how slices work isto think of the indices as pointing between characters, with the left
edge of the first character numbered 0. Then the right edge of the last character of astring of n characters has
index n, for example:

g &
| Hl e[I | p| A
S
0 1 2 3 4 5
-5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string; the second row gives the
corresponding negative indices. The slice from i to j consists of all characters between the edges labeled i and j,
respectively.

For non-negative indices, the length of adliceis the difference of the indices, if both are within bounds. For
example, the length of wor d[1: 3] is2.

The built-in function | en(') returnsthe length of a string:

>>> s = 'supercalifragilisticexpialidocious'
>>> | en(s)
34

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text datais available to the programmer: the Unicode object.
It can be used to store and manipulate Unicode data (see http://www.unicode.org/) and integrates well with the

existing string objects providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every script used in modern and
ancient texts. Previoudly, there were only 256 possible ordinals for script characters and texts were typically
bound to a code page which mapped the ordinals to script characters. This lead to very much confusion
especially with respect to internationalization (usually writtenas"i 18n" -- "i " + 18 characters+ "n") of
software. Unicode solves these problems by defining one code page for all scripts.

http://www.python.org/doc/current/tut/node5.html (8 of 13) [2/18/2003 11:38:33 PM]

http://www.unicode.org/

3. An Informal Introduction to Python

Creating Unicode strings in Python is just as simple as creating normal strings:

>>> u' Hello World !’
u' Hello Wrld !

Thesmall "u" in front of the quote indicates that an Unicode string is supposed to be created. If you want to
include special charactersin the string, you can do so by using the Python Unicode-Escape encoding. The
following example shows how:

>>> u' Hel | o\ u0020Worl d !
u'Hello Wrld !

The escape sequence \ u0020 indicates to insert the Unicode character with the ordinal value 0x0020 (the space
character) at the given position.

Other characters are interpreted by using their respective ordinal values directly as Unicode ordinals. If you have
literal stringsin the standard Latin-1 encoding that is used in many Western countries, you will find it convenient
that the lower 256 characters of Unicode are the same as the 256 characters of Latin-1.

For experts, there is also araw mode just like the one for normal strings. Y ou have to prefix the opening quote
with 'ur' to have Python use the Raw-Unicode-Escape encoding. It will only apply the above \ uXXXX conversion
if there is an uneven number of backslashesin front of the small 'u'.

>>> ur' Hel | o\ u0020World !
u Hello Wrld !

>>> ur' Hel | o\\ u0O020Wori d !’
u' Hel I o\\\\u0020World !’

The raw mode is most useful when you have to enter |lots of backslashes, as can be necessary in regular
expressions.

Apart from these standard encodings, Python provides awhole set of other ways of creating Unicode strings on
the basis of a known encoding.

The built-in function uni code() provides accessto all registered Unicode codecs (COders and DECoders).
Some of the more well known encodings which these codecs can convert are Latin-1, ASCII, UTF-8, and UTF-
16. The latter two are variable-length encodings that store each Unicode character in one or more bytes. The
default encoding is normally set to ASCII, which passes through characters in the range 0 to 127 and rejects any
other characters with an error. When a Unicode string is printed, written to afile, or converted withstr (),
conversion takes place using this default encoding.

>>> u"abc"

u' abc’

>>> str(u"abc")
"abc’

http://www.python.org/doc/current/tut/node5.html (9 of 13) [2/18/2003 11:38:33 PM]

3. An Informal Introduction to Python

>>> u"aod”
u' \ xed\ xf 6\ xf c'
>>> str(u"aod")
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
Uni codeError: ASCI| encoding error: ordinal not in range(128)

To convert a Unicode string into an 8-bit string using a specific encoding, Unicode objects provide an
encode() method that takes one argument, the name of the encoding. Lowercase names for encodings are
preferred.

>>> y"aol". encode(' utf-8")
"\ xc3\ xa4\ xc3\ xb6\ xc3\ xbc'

If you have datain a specific encoding and want to produce a corresponding Unicode string from it, you can use
theuni code() function with the encoding name as the second argument.

>>> uni code(' \ xc3\ xa4\ xc3\ xb6\ xc3\ xbc', 'utf-8")
u' \ xe4\ xf 6\ xf c'

3.1.4 Lists

Python knows a number of compound data types, used to group together other values. The most versatile is the
list, which can be written as alist of comma-separated values (items) between square brackets. List items need
not all have the same type.

>>> g = ['spam, 'eggs', 100, 1234]
>>> a
['spami, 'eggs', 100, 1234]

Like string indices, list indices start at O, and lists can be sliced, concatenated and so on:

>>> a[0]

' spani

>>> g[3]

1234

>>> af - 2]

100

>>> af 1: - 1]

['eggs', 100]

>>> a[:2] + ['bacon', 2*2]
['spam, 'eggs', 'bacon', 4]
>>> 3*a[:3] + ['Boe!']

http://www.python.org/doc/current/tut/node5.html (10 of 13) [2/18/2003 11:38:33 PM]

3. An Informal Introduction to Python

['spam, 'eggs', 100, 'spam, 'eggs', 100, 'spam, 'eggs', 100, 'Boe!']
Unlike strings, which are immutable, it is possible to change individual elements of alist:

>>> a

['spami, 'eggs', 100, 1234]
>>> a[2] = a[2] + 23

>>> g

['spami, 'eggs', 123, 1234]

Assignment to slices is also possible, and this can even change the size of thelist:

>>> # Repl ace sone itens:
a[0:2] =11, 12]
>>> a
[1, 12, 123, 1234]
>>> # Renobve sone:
a[0:2] =[]
>>> a
[123, 1234]
>>> # | nsert sone:
a[1:1] = ['bletch', 'xyzzy']

>>> g

[123, "bletch', '"xyzzy', 1234]

>>> g[:0] = a # Insert (a copy of) itself at the beginning
>>> g

[123, 'Dbletch', 'xyzzy', 1234, 123, 'bletch', 'xyzzy', 1234]
The built-in function | en() also appliesto lists:

>>> | en(a)
8

It is possible to nest lists (create lists containing other lists), for example:

>>> g = [2, 3]

>>>p = [1, q, 4]

>>> | en(p)

3

>>> p[1]

[2, 3]

>>> p[1] [O]

2

>>> p[1] . append(' xtra') # See section 5.1
>>> p

http://www.python.org/doc/current/tut/node5.html (11 of 13) [2/18/2003 11:38:33 PM]

3. An Informal Introduction to Python

[1, [2, 3, "xtra'], 4]
>>> (
[2, 3, '"xtra']

Note that in the last example, p[1] and q really refer to the same object! We'll come back to object semantics
later.

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of the Fibonacci series as follows:

>>> # Fi bonacci series:
the sumof two el enents defines the next

... a b =0, 1
>>> while b < 10:
print b

a, b =Db, at+b

U WN PR P

This example introduces severa new features.

. Thefirst line contains a multiple assignment: the variables a and b simultaneously get the new values 0
and 1. On the last line thisis used again, demonstrating that the expressions on the right-hand side are al
evaluated first before any of the assignments take place. The right-hand side expressions are eval uated
from the left to the right.

. Thewhi | e loop executes aslong as the condition (here: b < 10) remainstrue. In Python, likein C, any
non-zero integer value istrue; zero isfalse. The condition may also be a string or list value, in fact any
sequence; anything with anon-zero length is true, empty sequences are false. The test used in the example
is a simple comparison. The standard comparison operators are written the same asin C: < (less than), >
(greater than), == (equal to), <= (lessthan or equal to), >= (greater than or equal to) and ! = (not equal
to).

. Thebody of the loop is indented: indentation is Python's way of grouping statements. Python does not
(yet!) provide an intelligent input line editing facility, so you have to type atab or space(s) for each
indented line. In practice you will prepare more complicated input for Python with atext editor; most text

http://www.python.org/doc/current/tut/node5.html (12 of 13) [2/18/2003 11:38:33 PM]

3. An Informal Introduction to Python

editors have an auto-indent facility. When a compound statement is entered interactively, it must be
followed by ablank line to indicate completion (since the parser cannot guess when you have typed the
last line). Note that each line within a basic block must be indented by the same amount.

. Thepri nt statement writesthe value of the expression(s) it is given. It differs from just writing the
expression you want to write (aswe did earlier in the calculator examples) in the way it handles multiple
expressions and strings. Strings are printed without quotes, and a space is inserted between items, so you
can format things nicely, like this:

>>> | = 256*256
>>> print 'The value of i is', |
The value of i is 65536

A trailing comma avoids the newline after the outpuit:

>>>a, b =0, 1

>>> while b < 1000:
print b,
a, b =Db, atb

11235813 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if the last line was not
compl eted.

= T = Python Tutorial foc
COMTEMTS

Previous: 2. Using the Python Up: Python Tutorial Next: 4. More Control Flow

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/node5.html (13 of 13) [2/18/2003 11:38:33 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

4. More Control Flow Tools

= T = Python Tutorial foc
COMTENTS

Previous: 3. An Informal Introduction Up: Python Tutorial Next: 5. Data Structures

Subsections

. 41if Statements
. 4.2f or Statements
. 4.3 Ther ange() Function
. 44 break and cont i nue Statements, and el se Clauses on Loops
. 4.5 pass Statements
. 4.6 Defining Functions
. 4.7 More on Defining Functions
o 4.7.1 Default Argument Values
o 4.7.2 Keyword Arguments
o 4.7.3 Arbitrary Argument Lists
o 4.7.4 Lambda Forms
o 4.7.5 Documentation Strings

4. More Control Flow Tools

Besidesthe whi | e statement just introduced, Python knows the usual control flow statements known from other
languages, with some twists.

4.11f Statements

Perhaps the most well-known statement typeisthei f statement. For example:

>>> x = int(raw_input("Please enter an integer: "))
>>> jf x < 0:
x =0
print 'Negative changed to zero'
elif x ==
print 'Zero'
elif x ==

print 'Single'
el se:
print ' More'

http://www.python.org/doc/current/tut/node6.html (1 of 10) [2/18/2003 11:38:38 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

4. More Control Flow Tools

There can be zero or moreel i f parts, and the el se partisoptional. The keyword “el i f 'isshort for "elseif’, andis
useful to avoid excessive indentation. Ani f ...elif ...elif ... sequenceisasubstitutefor thesw t ch or case
statements found in other languages.

4.2 f or Statements

Thef or statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating
over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration step
and halting condition (as C), Python'sf or statement iterates over the items of any sequence (alist or astring), in the
order that they appear in the sequence. For example (no pun intended):

>>> # Measure sone strings:
... a=["cat', "window, 'defenestrate']
>>> for x in a:
print x, len(x)
cat 3
W ndow 6
defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence types,
such aslists). If you need to modify the list you are iterating over (for example, to duplicate selected items) you must
iterate over a copy. The slice notation makes this particularly convenient:

>>> for x in a[:]: # nmake a slice copy of the entire |ist
i f len(x) > 6: a.insert(0, x)

>>> a
['defenestrate', 'cat', 'window, 'defenestrate']

4.3 Therange() Function

If you do need to iterate over a sequence of numbers, the built-in functionr ange () comesin handy. It generates|lists
containing arithmetic progressions:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list; r ange(10) generatesalist of 10 values, exactly the legal
indices for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a
different increment (even negative; sometimesthisis called the “step):

http://www.python.org/doc/current/tut/node6.html (2 of 10) [2/18/2003 11:38:38 PM]

4. More Control Flow Tools

>>> range(5, 10)

[5, 6, 7, 8, 9]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, combiner ange() and| en() asfollows:

>>> a = ['"Mary', "had', '"a', 'little', 'lanb']
>>> for i in range(len(a)):
print i, a[i]
0O Mary
1 had
2 a
3little
4 | anb

4.4 br eak and cont 1 nue Statements, and el se
Clauses on Loops

The br eak statement, likein C, breaks out of the smallest enclosing f or or whi | e loop.

Thecont i nue statement, also borrowed from C, continues with the next iteration of the loop.

L oop statements may have an el se clause; it is executed when the loop terminates through exhaustion of the list (with
f or) or when the condition becomes false (with whi | e), but not when the loop is terminated by abr eak statement.

Thisis exemplified by the following loop, which searches for prime numbers:

>>> for n in range(2, 10):
for x in range(2, n):

if n %x ==
print n, 'equals', x, '"*', n/Xx
br eak
el se:
loop fell through wthout finding a factor
print n, '"is a prinme nunber'’

2 is a prinme nunber
3 is a prine nunber
4 equals 2 * 2
5 1s a prine nunber
6 equals 2 * 3

http://www.python.org/doc/current/tut/node6.html (3 of 10) [2/18/2003 11:38:38 PM]

4. More Control Flow Tools

7 1s a prinme nunber
8 equals 2 * 4
9 equals 3 * 3

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the program requires
no action. For example:

>>> while 1:
pass # Busy-wait for keyboard interrupt

4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # wite Fibonacci series up to n
"""Print a Fibonacci series up to n."""
a, b=20, 1
while b < n:
print b,

a, b =D0b, atb

>>> # Now call the function we just defined:
fib(2000)
112358 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by the function name and the parenthesized list
of formal parameters. The statements that form the body of the function start at the next line, and must be indented.
Thefirst statement of the function body can optionally be a string literal; this string literal is the function's
documentation string, or docstring.

There are tools which use docstrings to automatically produce online or printed documentation, or to let the user
interactively browse through code; it's good practice to include docstrings in code that you write, so try to make a habit
of it.

The execution of afunction introduces a new symbol table used for the local variables of the function. More precisely,
all variable assignmentsin afunction store the value in the local symbol table; whereas variable references first [ook in
the local symbol table, then in the global symbol table, and then in the table of built-in names. Thus, global variables
cannot be directly assigned a value within afunction (unless named in agl obal statement), although they may be
referenced.

http://www.python.org/doc/current/tut/node6.html (4 of 10) [2/18/2003 11:38:38 PM]

4. More Control Flow Tools

The actual parameters (arguments) to afunction call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not the
value of the object).4:1 When a function calls another function, a new local symbol tableis created for that call.

A function definition introduces the function name in the current symbol table. The value of the function name has a
type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which
can then a'so be used as a function. This serves as agenera renaming mechanism:

>>> fib

<function object at 10042ed0>
>>> f = fib

>>> f(100)
11235813 21 34 55 89

Y ou might object that f i b isnot afunction but a procedure. In Python, like in C, procedures are just functions that
don't return avalue. In fact, technically speaking, procedures do return avalue, albeit arather boring one. Thisvalueis
called None (it's a built-in name). Writing the value None is normally suppressed by the interpreter if it would be the
only value written. You can seeit if you really want to:

>>> print fib(0)
None

It issimple to write a function that returns alist of the numbers of the Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n
"""Return a list containing the Fibonacci series up to n.
result =[]
a, b=0, 1
while b < n:
resul t. append(b) # see bel ow
a, b =Db, atb
return result

>>> f100 = fib2(100) # call it
>>> f 100 # wite the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

. Ther et ur n statement returns with avalue from afunction. r et ur n without an expression argument returns
None. Falling off the end of a procedure also returns None.

. Thestatementr esul t . append(b) callsamethod of thelist object r esul t . A method is afunction that
"belongs' to an object and is named obj . met hodnane, where obj is some object (this may be an
expression), and met hodnane isthe name of amethod that is defined by the object's type. Different types
define different methods. Methods of different types may have the same name without causing ambiguity. (Itis
possible to define your own object types and methods, using classes, as discussed later in thistutorial.) The

http://www.python.org/doc/current/tut/node6.html (5 of 10) [2/18/2003 11:38:38 PM]

4. More Control Flow Tools

method append() shown in the example, isdefined for list objects; it adds a new element at the end of the
list. Inthisexampleitisequivaentto"result = result + [b]", but more efficient.

4.7 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

4.7.1 Default Argument Values

The most useful form isto specify a default value for one or more arguments. This creates a function that can be called
with fewer arguments than it is defined

def ask _ok(pronpt, retries=4, conplaint="Yes or no, please!'):
while 1:
ok = raw_i nput (pronpt)
if ok in ('y', 'ye', '"yes'): return 1
if ok in('n, '"no', 'nop', '"nope'): return O
retries = retries - 1
if retries < 0: raise |Cerror, 'refusenik user’
print conpl ai nt

Thisfunction can be called either likethis: ask_ok(' Do you really want to quit?') orlikethis:
ask ok('OK to overwite the file?, 2).

The default values are evaluated at the point of function definition in the defining scope, so that

i =5
def f(arg=i):
print arg
i =6
FO)
will print 5.

I mportant warning: The default value is evaluated only once. This makes a difference when the default is a mutable
object such asalist or dictionary. For example, the following function accumul ates the arguments passed to it on
subsequent calls:

def f(a, L=[]):
L. append(a)

http://www.python.org/doc/current/tut/node6.html (6 of 10) [2/18/2003 11:38:38 PM]

4. More Control Flow Tools

return L

print f(1)

print f(2)

print f(3)
Thiswill print

[1]

[1, 2]

[1, 2, 3]

If you don't want the default to be shared between subsequent calls, you can write the function like this instead:

def f(a, L=None):
if L is None:
L =[]
L. append(a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form "keyword = value". For instance, the following

function:

def parrot(voltage,

state="a stiff',

action="'voonm , type=' Norwegian Blue'):

print "-- This parrot wouldn't", action,

print "if you put", voltage, "Volts through it."
print "-- Lovely plumage, the", type

print "-- It's", state, "!"

could be called in any of the following ways.

parr ot (1000)
parrot(action = 'VOOOOOM ,
parrot('a thousand', state
parrot('a mllion",

but the following calls would al beinvalid:

parr ot ()

parrot (vol tage=5.0, 'dead')
parrot (110, voltage=220)
parrot (actor="John C eese')

"bereft of

vol tage = 1000000)

'pushing up the daisies')
life' , "junp')

required argunent m ssing

non- keyword argunent follow ng keyword
duplicate value for argunent

unknown keyword

http://www.python.org/doc/current/tut/node6.html (7 of 10) [2/18/2003 11:38:38 PM]

4. More Control Flow Tools

In general, an argument list must have any positional arguments followed by any keyword arguments, where the
keywords must be chosen from the formal parameter names. It's not important whether aformal parameter has a
default value or not. No argument may receive avalue more than once -- formal parameter names corresponding to
positional arguments cannot be used as keywords in the same calls. Here's an example that fails due to this restriction:

>>> def function(a):
pass

>>> function(0, a=0)

Traceback (nost recent call last):
File "<stdin>", line 1, in ?

TypeError: keyword paraneter redefined

When afinal formal parameter of the form * * name is present, it receives adictionary containing all keyword
arguments whose keyword doesn't correspond to aformal parameter. This may be combined with aformal parameter
of the form * name (described in the next subsection) which receives a tuple containing the positional arguments
beyond the formal parameter list. (* name must occur before * * name.) For example, if we define afunction like this:

def cheeseshop(kind, *argunments, **keywords):
print "-- Do you have any", kind, "7
print "-- I'"'msorry, we're all out of", kind
for arg in argunents: print arg
print '-'*40
keys = keywords. keys()
keys. sort ()
for kwin keys: print kw, ':', keywords[kw]

It could be called like this:

cheeseshop(' Li nburger', "It's very runny, sir.",
"It's really very, VERY runny, sir.",
client="John C eese',
shopkeeper="M chael Palin',
sket ch=' Cheese Shop Sketch')

and of courseit would print:

-- Do you have any Linburger ?

-- I"'msorry, we're all out of Linburger
It's very runny, sir.

It's really very, VERY runny, sir.
client : John C eese

shopkeeper : M chael Palin

sketch : Cheese Shop Sketch

Notethat thesort () method of thelist of keyword argument namesis called before printing the contents of the
keywor ds dictionary; if thisis not done, the order in which the arguments are printed is undefined.

http://www.python.org/doc/current/tut/node6.html (8 of 10) [2/18/2003 11:38:38 PM]

4. More Control Flow Tools

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of
arguments. These arguments will be wrapped up in atuple. Before the variable number of arguments, zero or more
normal arguments may occur.

def fprintf(file, format, *args):
file.wite(format % args)

4.7.4 Lambda Forms

By popular demand, afew features commonly found in functional programming languages and Lisp have been added
to Python. With the | ambda keyword, small anonymous functions can be created. Here's a function that returns the
sum of itstwo arguments: "l anbda a, b: a+b".Lambdaforms can be used wherever function objects are
required. They are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a
normal function definition. Like nested function definitions, lambda forms can reference variables from the containing
SCOpeE:

>>> def make_increnentor(n):
return lanbda x: x + n

>>> f = make_i ncrenentor (42)
>>> f(0)

42

>>> (1)

43

4.7.5 Documentation Strings

There are emerging conventions about the content and formatting of documentation strings.

Thefirst line should aways be a short, concise summary of the object's purpose. For brevity, it should not explicitly
state the object's name or type, since these are available by other means (except if the name happensto be averb
describing a function's operation). This line should begin with a capital letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating the summary
from the rest of the description. The following lines should be one or more paragraphs describing the object's calling
conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process
documentation have to strip indentation if desired. Thisis done using the following convention. The first non-blank

http://www.python.org/doc/current/tut/node6.html (9 of 10) [2/18/2003 11:38:38 PM]

4. More Control Flow Tools

line after thefirst line of the string determines the amount of indentation for the entire documentation string. (We can't
use thefirst line sinceit is generally adjacent to the string's opening quotes so its indentation is not apparent in the
string literal.) Whitespace ~"equivalent” to thisindentation is then stripped from the start of al lines of the string. Lines
that are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of
whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Hereis an example of a multi-line docstring:

>>> def ny_function():
"""Do nothing, but docunent it.

No, really, it doesn't do anything.
pass

>>> print ny_function. doc_
Do not hing, but docunent it.

No, really, it doesn't do anything.

Footnotes

... object).4.1
Actually, call by object reference would be a better description, since if amutable object is passed, the caller

will see any changes the callee makesto it (itemsinserted into alist).

= T = Python Tutorial loc
COMTENTS

Previous. 3. An Informal Introduction Up: Python Tutorial Next: 5. Data Structures

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/node6.html (10 of 10) [2/18/2003 11:38:38 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

5. Data Structures

&~ T = Python Tutorial loc
COMTEMTS

Previous. 4. More Control Flow Up: Python Tutorial Next: 6. Modules

Subsections

. 5.1 Moreon Lists
o 5.1.1 Using Lists as Stacks
o 5.1.2Using Lists as Queues
o 5.1.3 Functional Programming Tools
o 5.1.4 List Comprehensions
. 5.2Thedel statement
. 5.3 Tuples and Sequences
. 5.4 Dictionaries
. 5.5 Looping Techniques
. 5.6 More on Conditions
. 5.7 Comparing Sequences and Other Types

5. Data Structures

This chapter describes some things you've learned about already in more detail, and adds some new things as
well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

append(x)
Add an item to the end of thelist; equivalenttoa[l en(a):] = [X].

ext end(L)
Extend the list by appending all theitemsin the given list; equivalenttoa[l en(a):] = L.

I nsert (i, x)
Insert an item at a given position. The first argument is the index of the element before which to

http://www.python.org/doc/current/tut/node7.html (1 of 11) [2/18/2003 11:38:45 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

5. Data Structures

insert, soa. i nsert (0,

equivalent to a. append(x) .

renove(x)

X) inserts at the front of thelist,anda. i nsert (| en(a),

X) IS

Remove the first item from the list whose valueis x. It is an error if thereis no such item.

pop([i])

Remove the item at the given position in the list, and return it. If no index is specified, a. pop()
returns the last item in the list. Theitem is also removed from the list. (The square brackets around
thei in the method signature denote that the parameter is optional, not that you should type square
brackets at that position. Y ou will see this notation frequently in the Python Library Reference.)

I ndex(X)

Return the index in the list of thefirst item whose valueis x. It isan error if there is no such item.

count (x)

Return the number of times x appearsin thelist.

sort ()

Sort the items of the list, in place.

reverse()

Reverse the elements of the list, in place.

An example that uses most of the list methods:

>>>
>>>
2 1
>>>
>>>
>>>
[66
>>>
1

>>>
>>>

[66.

>>>
>>>

[333,

>>>
>>>

http://www.python.org/doc/current/tut/node?.html (2 of 11) [2/18/2003 11:38:45 PM]

a = [66.6, 333, 333, 1,
print a.count(333),
0

1234. 5]

a.insert(2, -1)
a. append(333)
a
6, 333, -1, 333, 1, 1234.5, 333]
a. i ndex(333)
a. renove(333)
a
6, -1, 333, 1, 1234.5, 333]
a.reverse()
a
1234.5, 1, 333, -1, 66.6]
a.sort()
a

a. count (66. 6),

a.count (' x")

http://www.python.org/doc/current/lib/lib.html

5. Data Structures

[-1, 1, 66.6, 333, 333, 1234.5]

5.1.1 Using Lists as Stacks

The list methods make it very easy to use alist as a stack, where the last element added is the first el ement
retrieved (" last-in, first-out™). To add an item to the top of the stack, useappend() . To retrieve an item
from the top of the stack, use pop() without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> st ack. append(6)
>>> st ack. append(7)
>>> st ack

[3, 4, 5, 6, 7]

>>> stack. pop()

-
>>> st ack

[3, 4, 5, 6]
>>> stack. pop()
6

>>> st ack. pop()
5

>>> st ack

[3, 4]

5.1.2 Using Lists as Queues

You can aso use alist conveniently as a queue, where the first element added is the first element retrieved
(first-in, first-out™). To add an item to the back of the queue, use append() . To retrieve an item from the
front of the queue, use pop() with O astheindex. For example:

>>> queue = ["Eric", "John", "M chael"]

>>> queue. append(" Terry") # Terry arrives
>>> queue. append(" G ahant) # Gaham arrives
>>> queue. pop(0)

"Eric'

>>> queue. pop(0)

" John'

>>> gueue

['Mchael', 'Terry', 'Gahan]

http://www.python.org/doc/current/tut/node?.html (3 of 11) [2/18/2003 11:38:45 PM]

5. Data Structures

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful when used withlists: fil ter (), map(), and
reduce().

“filter(function, sequence)" returnsasequence (of the sametype, if possible) consisting of those
items from the sequence for which function(item) istrue. For example, to compute some primes:

>>> def f(x): return x %2 !'=0 and x %3 !'=0

>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

"map(function, sequence) " callsfunction(item) for each of the sequence's items and returns alist of the
return values. For example, to compute some cubes:

>>> def cube(x): return x*x*x

>>> map(cube, range(1l, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there are

sequences and is called with the corresponding item from each sequence (or None if some sequenceis
shorter than another). If None is passed for the function, a function returning its argument(s) is substituted.

Combining these two special cases, we seethat "map(None, listl, list2) " isaconvenient way of turning
apair of listsinto alist of pairs. For example:

>>> seq = range(8)
>>> def square(x): return x*x

>>> map(None, seq, map(square, seq))
[(O0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49)]

"reduce(func, sequence) " returnsasingle value constructed by calling the binary function func on the
first two items of the sequence, then on the result and the next item, and so on. For example, to compute the
sum of the numbers 1 through 10:

>>> def add(x,y): return x+y

>>> reduce(add, range(1, 11))

http://www.python.org/doc/current/tut/node?.html (4 of 11) [2/18/2003 11:38:45 PM]

5. Data Structures

55
If there's only one item in the sequence, its value is returned; if the sequence is empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the starting value is returned for an
empty sequence, and the function isfirst applied to the starting value and the first sequence item, then to the
result and the next item, and so on. For example,

>>> def sun{seq):
def add(x,y): return x+y
return reduce(add, seq, 0)

>>> sum(range(1, 11))
55

>>> sun([])
0

5.1.4 List Comprehensions

List comprehensions provide a concise way to create lists without resorting to use of map() ,filter()
and/or | anbda. The resulting list definition tends often to be clearer than lists built using those constructs.
Each list comprehension consists of an expression followed by af or clause, then zero or moref or ori f
clauses. Theresult will be alist resulting from evaluating the expression in the context of thef or andi f
clauses which follow it. If the expression would evaluate to atuple, it must be parenthesized.

>>> freshfruit = [' banana', ' |oganberry ', 'passion fruit ']
>>> [weapon. strip() for weapon in freshfruit]

[' banana', 'l oganberry', 'passion fruit']

>>> vec = [2, 4, 6]

>>> [3*x for x in vec]

[6, 12, 18]

>>> [3*x for x in vec if x > 3]

[12, 18]

>>> [3*x for x in vec if x < 2]

[]

>>> [[Xx,x**2] for x in vec]

[[2, 4], [4, 16], [6, 36]]

>>> [x, x**2 for x in vec] # error - parens required for tuples

File "<stdin>, line 1, in ?

[X, x**2 for X in vec]
N

SyntaxError: invalid syntax
>>> [(x, x**2) for x in vec]

http://www.python.org/doc/current/tut/node?.html (5 of 11) [2/18/2003 11:38:45 PM]

5. Data Structures

[(2, 4), (4, 16), (6, 36)]

>>> vecl = [2, 4, 6]

>>> vec2 = [4, 3, -9]

>>> [x*y for x in vecl for y in vec?2]

[8, 6, -18, 16, 12, -36, 24, 18, -54]

>>> [x+y for x in vecl for y in vec?2]

[6, 5, -7, 8, 7, -5, 10, 9, -3]

>>> [vecl[i]*vec2[i] for i in range(len(vecl))]
[8, 12, -54]

To make list comprehensions match the behavior of f or loops, assignments to the loop variable remain
visible outside of the comprehension:

>>> x = 100 # this gets overwitten
>>> [x**3 for x in range(5)]

[0, 1, 8, 27, 64]

>>> X

4 # the final value for range(5)
>>

5.2 The del statement

Thereisaway to remove an item from alist given itsindex instead of itsvaue: the del statement. Thiscan
also be used to remove dices from alist (which we did earlier by assignment of an empty list to the dlice).
For example

>>> a

[-1, 1, 66.6, 333, 333, 1234.5]
>>> del a[0]

>>> a

[1, 66.6, 333, 333, 1234.5]
>>> del af 2:4]
>>> a

[1, 66.6, 1234.5]
del can also be used to delete entire variables:
>>> del a

Referencing the name a hereafter isan error (at least until another value is assigned to it). Wel'll find other
usesfor del later.

http://www.python.org/doc/current/tut/node?.html (6 of 11) [2/18/2003 11:38:45 PM]

5. Data Structures

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, such asindexing and slicing operations. They
are two examples of sequence data types. Since Python is an evolving language, other sequence data types
may be added. There is also another standard sequence data type: the tuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, 'hello!
>>> t[0]
12345
>>> {
(12345, 54321, 'hello!")
>>> # Tupl es may be nest ed:
u=t, (1, 2, 3, 4, 5)
>>> U
((12345, 54321, 'hello!''), (1, 2, 3, 4, 5))

Asyou see, on output tuples are alway enclosed in parentheses, so that nested tuples are interpreted
correctly; they may be input with or without surrounding parentheses, although often parentheses are
necessary anyway (if the tupleis part of alarger expression).

Tuples have many uses. For example: (X, y) coordinate pairs, employee records from a database, etc. Tuples,
like strings, are immutable: it is not possible to assign to the individual items of atuple (you can ssimulate
much of the same effect with slicing and concatenation, though). It is aso possible to create tuples which
contain mutable objects, such aslists.

A special problem isthe construction of tuples containing O or 1 items: the syntax has some extra quirks to
accommodate these. Empty tuples are constructed by an empty pair of parentheses; atuple with oneitemis
constructed by following a value with a comma (it is not sufficient to enclose a single value in parentheses).
Ugly, but effective. For example:

>>> empty = ()

>>> singleton = "hello', # <-- note trailing comm
>>> | en(enpty)

0

>>> | en(singl eton)

1

>>> sjngl et on

('"hello',)

http://www.python.org/doc/current/tut/node?.html (7 of 11) [2/18/2003 11:38:45 PM]

5. Data Structures

Thestatementt = 12345, 54321, 'hello!"' isanexampleof tuple packing: the values 12345,
54321 and' hel | o! ' are packed together in atuple. The reverse operation is also possible:

>>> X, y, z =t

Thisis called, appropriately enough, sequence unpacking. Sequence unpacking requires that the list of
variables on the left have the same number of elements as the length of the sequence. Note that multiple
assignment isreally just a combination of tuple packing and sequence unpacking!

Thereisasmall bit of asymmetry here: packing multiple values aways creates a tuple, and unpacking works
for any sequence.

5.4 Dictionaries

Another useful datatype built into Python is the dictionary. Dictionaries are sometimes found in other
languages as " "associative memories' or ~associative arrays'. Unlike sequences, which are indexed by a
range of numbers, dictionaries are indexed by keys, which can be any immutable type; strings and numbers
can always be keys. Tuples can be used as keysif they contain only strings, numbers, or tuples; if atuple
contains any mutable object either directly or indirectly, it cannot be used asakey. You can't use lists as
keys, since lists can be modified in place using their append() and ext end() methods, aswell asslice
and indexed assignments.

It is best to think of adictionary as an unordered set of key: value pairs, with the requirement that the keys
are unique (within one dictionary). A pair of braces creates an empty dictionary: { } . Placing a comma-
separated list of key:value pairs within the braces adds initial key:value pairsto the dictionary; thisis also
the way dictionaries are written on output.

The main operations on a dictionary are storing a value with some key and extracting the value given the
key. It isalso possible to delete a key:value pair with del . If you store using akey that is already in use, the
old value associated with that key isforgotten. It isan error to extract a value using a non-existent key.

Thekeys() method of adictionary object returns alist of all the keys used in the dictionary, in random
order (if you want it sorted, just apply thesort () method to thelist of keys). To check whether asingle
key isin thedictionary, usethe has_key() method of the dictionary.
Hereisasmall example using adictionary:

>>> tel = {"jack': 4098, 'sape': 4139}

>>> tel['guido'] = 4127
>>> tel

http://www.python.org/doc/current/tut/node7.html (8 of 11) [2/18/2003 11:38:45 PM]

5. Data Structures

{"sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']

4098

>>> del tel['sape']

>>> tel['irv'] = 4127

>>> tel

{"quido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()

[*guido', 'irv', 'jack']
>>> tel.has_key('guido')
1

Thedi ct () contructor builds dictionaries directly from lists of key-value pairs stored as tuples. When the
pairs form a pattern, list comprehensions can compactly specify the key-value list.

>>> dict([(' sape', 4139), ('guido', 4127), ('jack', 4098)])
{"sape': 4139, 'jack': 4098, 'guido': 4127}

>>> dict([(x, x**2) for x in vec]) # use a |list conprehension
{2: 4, 4: 16, 6. 36}

5.5 Looping Techniques

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using
thei t ens() method.

>>> knights = {"gallahad': '"the pure', 'robin': 'the brave'}
>>> for k, v in knights.itens():
print k, v

gal | ahad the pure
robin the brave

To loop over two or more sequences at the same time, the entries can be paired with the zi p() function.

>>> questions = ['nane', 'quest', 'favorite color']
>>> answers = ['lancelot', '"the holy grail', 'blue']
>>> for , a in zip(questions, answers):

print 'Wat is your %? It is %.' % (q, a)

What 1s your nanme? It is lancelot.
What is your quest? It is the holy grail.

http://www.python.org/doc/current/tut/node7.html (9 of 11) [2/18/2003 11:38:45 PM]

5. Data Structures

What is your favorite color? It is blue.

5.6 More on Conditions

The conditionsusedinwhi | e andi f statements above can contain other operators besides comparisons.

The comparison operatorsi n and not i n check whether a value occurs (does not occur) in a sequence.
The operatorsi s andi s not compare whether two objects are really the same object; this only matters for
mutable objects like lists. All comparison operators have the same priority, which islower than that of all
numerical operators.

Comparisons can be chained. For example,a < b == c testswhether a islessthan b and moreover b
equalsc.

Comparisons may be combined by the Boolean operators and and or , and the outcome of a comparison (or
of any other Boolean expression) may be negated with not . These all have lower priorities than comparison
operators again; between them, not has the highest priority, and or thelowest, sothat A and not B or
Cisequivaentto (A and (not B)) or C. Of course, parentheses can be used to express the desired
composition.

The Boolean operators and and or are so-called short-circuit operators: their arguments are evaluated from
left to right, and eval uation stops as soon as the outcome is determined. For example, if A and C are true but
Bisfase, A and B and Cdoes not evaluate the expression C. In general, the return value of a short-
circuit operator, when used as a general value and not as a Boolean, is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

>>> stringl, string2, string3 ="'"', '"Trondheim, 'Hammer Dance'
>>> non_null = stringl or string2 or string3

>>> non_nul |

" Tr ondhei m

Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may grumble
about this, but it avoids a common class of problems encountered in C programs. typing = in an expression
when == was intended.

5.7 Comparing Sequences and Other Types

http://www.python.org/doc/current/tut/node7.html (10 of 11) [2/18/2003 11:38:45 PM]

5. Data Structures

Sequence objects may be compared to other objects with the same sequence type. The comparison uses
lexicographical ordering: first the first two items are compared, and if they differ this determines the
outcome of the comparison; if they are equal, the next two items are compared, and so on, until either
sequence is exhausted. If two items to be compared are themselves sequences of the same type, the
lexicographical comparison is carried out recursively. If all items of two sequences compare equal, the
sequences are considered equal. If one sequenceis an initial sub-sequence of the other, the shorter sequence
Isthe smaller (lesser) one. Lexicographical ordering for strings uses the ASCII ordering for individual
characters. Some examples of comparisons between sequences with the same types:

(1, 2, 3) < (1, 2, 4)

[1, 2, 3] <[1, 2, 4]

"ABC < 'C < 'Pascal' < 'Python'

(1, 2, 3, 4) < (1, 2, 4)

(1, 2) < (1, 2, -1

(1, 2, 3) == (1.0, 2.0, 3.0)

(1, 2, (‘aa', "ab')) < (1, 2, ('abc', "a'), 4)

Note that comparing objects of different typesislegal. The outcome is deterministic but arbitrary: the types
are ordered by their name. Thus, alist isalways smaller than a string, a string is aways smaller than atuple,
etc. Mixed numeric types are compared according to their numeric value, so 0 equals 0.0, etc.21

Footnotes

.. etc.2.1
The rules for comparing objects of different types should not be relied upon; they may changein a
future version of the language.

&= T = Python Tutorial loc
COMTEMTS

Previous: 4. More Control Flow Up: Python Tutorial Next: 6. Modules

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/node7.html (11 of 11) [2/18/2003 11:38:45 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

6. Modules

= T [Python Tutorial loc
COMTEMTS

Previous: 5. Data Structures Up: Python Tutorial Next: 7. Input and Output

Subsections

. 6.1 More on Modules
o 6.1.1 The Module Search Path
o 6.1.2 Compiled" Python files
. 6.2 Standard Modules
. 6.3Thedi r () Function
. 6.4 Packages
o 6.4.1 Importing * From a Package
o 6.4.2 Intra-package References

6. Modules

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables) are
lost. Therefore, if you want to write a somewhat longer program, you are better off using atext editor to prepare the
input for the interpreter and running it with that file as input instead. Thisis known as creating a script. As your
program gets longer, you may want to split it into several filesfor easier maintenance. Y ou may also want to use a
handy function that you've written in several programs without copying its definition into each program.

To support this, Python has away to put definitionsin afile and use them in ascript or in an interactive instance of
the interpreter. Such afileis caled a module; definitions from a module can be imported into other modules or into
the main module (the collection of variables that you have access to in a script executed at the top level and in
calculator mode).

A moduleis afile containing Python definitions and statements. The file name is the module name with the suffix .py
appended. Within amodule, the modul€e's name (as a string) is available as the value of the global variable
__nane__. For instance, use your favorite text editor to create afile called fibo.py in the current directory with the
following contents:

Fi bonacci nunbers nodul e

def fib(n): # wite Fibonacci series up to n
a, b=20,1
while b < n:
print b

a, b =0>b, atb

def fib2(n): # return Fibonacci series up to n

http://www.python.org/doc/current/tut/node8.html (1 of 9) [2/18/2003 11:38:50 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

6. Modules

[

result =
a, b =0,
while b <
resul t. append(b)
a, b =0Db, atb
return result

]
1
n:

Now enter the Python interpreter and import this module with the following command:
>>> jnport fibo

This does not enter the names of the functions defined in f i bo directly in the current symbol table; it only entersthe
module namef i bo there. Using the module name you can access the functions:

>>> fibo.fib(1000)

11235813 21 34 55 89 144 233 377 610 987
>>> fjbo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo. nane_

"fibo'

If you intend to use a function often you can assign it to alocal name:

>>> fib = fibo.fib
>>> fi b(500)
112358 13 21 34 55 89 144 233 377

6.1 More on Modules

A modul e can contain executable statements as well as function definitions. These statements are intended to
initialize the module. They are executed only the first time the module is imported somewhere.6:1

Each module hasits own private symbol table, which is used as the global symbol table by al functions defined in

the module. Thus, the author of a module can use global variables in the module without worrying about accidental
clashes with a user's global variables. On the other hand, if you know what you are doing you can touch a modul€e's
global variables with the same notation used to refer to its functions, nodnane. i t enrmane.

Modules can import other modules. It is customary but not required to place all i nport statements at the beginning
of amodule (or script, for that matter). The imported module names are placed in the importing modul€'s global
symbol table.

Thereisavariant of thei npor t statement that imports names from a module directly into the importing modul€e's
symbol table. For example:

http://www.python.org/doc/current/tut/node8.html (2 of 9) [2/18/2003 11:38:50 PM]

6. Modules

>>> fromfibo inport fib, fib2
>>> fi b(500)
112358 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table (so in the
example, f i bo isnot defined).

Thereis even avariant to import all names that a modul e defines:

>>> fromfibo inport *
>>> fib(500)
11235813 21 34 55 89 144 233 377

Thisimports all names except those beginning with an underscore ().

6.1.1 The Module Search Path

When a module named spamisimported, the interpreter searches for afile named spam.py in the current directory,
and then in the list of directories specified by the environment variable PY THONPATH. This has the same syntax as
the shell variable PATH, that is, alist of directory names. When PY THONPATH is not set, or when the file is not
found there, the search continues in an installation-dependent default path; on Unix, thisis usually
../usr/local/lib/python.

Actually, modules are searched in the list of directories given by the variable sys. pat h which isinitialized from
the directory containing the input script (or the current directory), PY THONPATH and the install ation-dependent
default. This allows Python programs that know what they're doing to modify or replace the module search path. Note
that because the directory containing the script being run is on the search path, it isimportant that the script not have
the same name as a standard module, or Python will attempt to load the script as a module when that module is
imported. Thiswill generally be an error. See section 6.2, ~ Standard Modules.” for more information.

6.1.2 Compiled" Python files

As an important speed-up of the start-up time for short programs that use a lot of standard modules, if afile called
spam.pyc existsin the directory where spam.py isfound, thisis assumed to contain an already-"byte-compiled"
version of the module spam The modification time of the version of spam.py used to create spam.pyc isrecorded
in spam.pyc, and the .pyc fileisignored if these don't match.

Normally, you don't need to do anything to create the spam.pyc file. Whenever spam.py is successfully compiled,
an attempt is made to write the compiled version to spam.pyc. It is not an error if this attempt fails; if for any reason
thefileis not written completely, the resulting spam.pyc file will be recognized as invalid and thusignored later.
The contents of the spam.pyc file are platform independent, so a Python module directory can be shared by
machines of different architectures.

Somettips for experts:

http://www.python.org/doc/current/tut/node8.html (3 of 9) [2/18/2003 11:38:50 PM]

6. Modules

. When the Python interpreter isinvoked with the -O flag, optimized code is generated and stored in .pyo files.
The optimizer currently doesn't help much; it only removesassert statementsand SET_LI NENO
instructions. When -O isused, all bytecode is optimized; . pyc filesareignored and . py filesare compiled to
optimized bytecode.

. Passing two -O flags to the Python interpreter (-OO) will cause the bytecode compiler to perform
optimizations that could in some rare cases result in malfunctioning programs. Currently only __ doc___
strings are removed from the bytecode, resulting in more compact .pyo files. Since some programs may rely
on having these available, you should only use this option if you know what you're doing.

A program doesn't run any faster when it isread from a.pyc or .pyo file than when it isread from a.py file;
the only thing that's faster about .pyc or .pyo filesis the speed with which they are loaded.

. When ascript isrun by giving its name on the command line, the bytecode for the script is never writtento a
.pyc or .pyo file. Thus, the startup time of a script may be reduced by moving most of its code to a module
and having a small bootstrap script that imports that module. It is also possible to name a.pyc or .pyo file
directly on the command line.

. Itispossibleto have afile caled spam.pyc (or spam.pyo when -O is used) without afile spam.py for the
same module. This can be used to distribute alibrary of Python code in aform that is moderately hard to
reverse engineer.

. Themoduleconpi | eal | can create .pyc files (or .pyo fileswhen -O is used) for al modulesin adirectory.

6.2 Standard Modules

Python comes with alibrary of standard modules, described in a separate document, the Python Library Reference
(" "Library Reference" hereafter). Some modules are built into the interpreter; these provide access to operations that
are not part of the core of the language but are nevertheless built in, either for efficiency or to provide accessto
operating system primitives such as system calls. The set of such modulesis a configuration option which also
dependson the underlying platform For example, the anbeba moduleis only provided on systems that somehow
support Amoeba primitives. One particular module deserves some attention: sy s , which is built into every Python
interpreter. The variablessys. ps1 and sys. ps2 define the strings used as primary and secondary prompts:

>>> jnport sys
>>> gys. psl
'>>>

>>> sys. ps2

>>> sys.psl = 'C
C print ' Yuck!'
Yuck!

(o

http://www.python.org/doc/current/tut/node8.html (4 of 9) [2/18/2003 11:38:50 PM]

http://www.python.org/doc/current/lib/lib.html

6. Modules

These two variables are only defined if the interpreter isin interactive mode.

Thevariablesys. pat h isalist of strings that determine the interpreter's search path for modules. It isinitialized to
a default path taken from the environment variable PY THONPATH, or from a built-in default if PY THONPATH is
not set. Y ou can modify it using standard list operations:

>>> jnport sys
>>> sys. pat h. append(' /ufs/guido/lib/python')

6.3 Thedir () Function

The built-in function di r () isused to find out which names a module defines. It returns a sorted list of strings:

>>> jnport fibo, sys
>>> dir(fibo)

['" _nane__ ', '"fib", '"fib2']

>>> dir(sys)

[' _displayhook ', " doc_ ', ' _excepthook ', ' name_ ', ' _stderr__ ',
" stdin_ ', " stdout_ ', ' getfrane', 'argv', 'builtin_nodul e nanes',
"byteorder', 'copyright', 'displayhook', "exc_info', 'exc_type'

"except hook', 'exec_prefix', 'executable', 'exit', 'getdefaultencoding',
"getdl openflags', 'getrecursionlimt', 'getrefcount', 'hexversion'
"maxint', 'maxunicode', 'nodules', 'path', 'platform, 'prefix', 'psl',
"ps2', 'setcheckinterval', 'setdlopenflags', 'setprofile',
"setrecursionlimt', 'settrace', 'stderr', 'stdin', 'stdout', 'version',
"version_info', 'warnoptions']

Without arguments, di r () liststhe names you have defined currently:

>>> a = [1, 2, 3, 4, 5]

>>> jnport fibo, sys

>>> fib = fibo.fib

>>> dir()

['" _name__ ', 'a', 'fib'", "fibo', 'sys']

Note that it lists all types of names: variables, modules, functions, etc.

di r () doesnot list the names of built-in functions and variables. If you want alist of those, they are defined in the
standard module _builtin_

>>> jnmport _ _builtin__

>>> dir(__builtin_)

["ArithmeticError', 'AssertionError', "AttributeError',

" DeprecationWarning', 'EOFError', "Ellipsis', 'EnvironmentError',

http://www.python.org/doc/current/tut/node8.html (5 of 9) [2/18/2003 11:38:50 PM]

6. Modules

"Exception', 'FloatingPointError', "IOError', "InportError',
"IndentationError', 'IndexError', 'KeyError', 'Keyboardlnterrupt',
"LookupError', 'MenoryError', 'NaneError', 'None', 'Notlnplenented,
"Not | npl enentedError', '"OSError', 'Overflowkrror', 'Overfl owarning'
'ReferenceError', 'RuntineError', 'RuntinmeWarning', 'StandardError"',
"Stoplteration', 'SyntaxError', 'SyntaxWarning', 'SystenError',
"Systentxit', 'TabError', 'TypeError', 'UnboundLocal Error',

"Uni codeError', "UserWarning' , 'ValueError', 'Warning'

" ZeroDi vi sionError', " ', ' debug_ ', ' doc__ ', ' _inport_',
__nanme__ ', 'abs', 'apply', 'buffer', 'callable', 'chr', 'classnethod,
‘cnp', 'coerce', 'conpile', 'conplex', 'copyright', 'credits', 'delattr',

"dict', "dir', "divnod', 'eval', 'execfile', '"exit', 'file', "filter",
"float', 'getattr', 'globals', '"hasattr', 'hash', 'help', '"hex', "id',
"input', 'int', "intern', 'isinstance', 'issubclass', 'iter', 'len',
"license', 'list', '"locals', '"long', "map', "max', 'mn', 'object',
‘oct', 'open', 'ord', 'pow, 'property', 'quit', 'range', 'raw._input',
"reduce', 'reload', 'repr', 'round', 'setattr', 'slice', 'staticnethod',
"str', 'super', 'tuple', '"type', '"unichr', 'unicode', 'vars', 'xrange'
‘zip']

6.4 Packages

Packages are away of structuring Python's module namespace by using " dotted module names'. For example, the
module name A. B designates a submodule named "B" in a package named "A". Just like the use of modules saves the
authors of different modules from having to worry about each other's global variable names, the use of dotted module
names saves the authors of multi-module packages like NumPy or the Python Imaging Library from having to worry
about each other's module names.

Suppose you want to design a collection of modules (a ™ package") for the uniform handling of sound files and sound
data. There are many different sound file formats (usually recognized by their extension, for example: .wav, .aiff,
.au), so you may need to create and maintain a growing collection of modules for the conversion between the various
file formats. There are a'so many different operations you might want to perform on sound data (such as mixing,
adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition you will be writing a
never-ending stream of modules to perform these operations. Here's a possible structure for your package (expressed
in terms of a hierarchical filesystem):

Sound/ Top- | evel package
_init__.py Initialize the sound package
For mat s/ Subpackage for file format conversions
_init__.py

wavr ead. py
wavw i te. py
ai ffread. py
aiffwite. py
aur ead. py

http://www.python.org/doc/current/tut/node8.html (6 of 9) [2/18/2003 11:38:50 PM]

6. Modules

auw i te. py

Ef f ects/ Subpackage for sound effects

_init__.py
echo. py

surround. py
reverse. py

Filters/ Subpackage for filters
_init__.py
equal i zer. py
vocoder . py
kar aoke. py

The __init__.py filesare required to make Python treat the directories as containing packages; thisis done to prevent
directories with acommon name, such as"st ri ng", from unintentionally hiding valid modules that occur later on
the module search path. In the simplest case, __init__.py can just be an empty file, but it can also execute
initialization code for the package or setthe __al | __ variable, described later.

Users of the package can import individual modules from the package, for example:
I nport Sound. Ef fects. echo
Thisloads the submodule Sound. Ef f ect s. echo. It must be referenced with its full name.
Sound. Ef f ect s. echo. echofilter(input, output, delay=0.7, atten=4)
An aternative way of importing the submoduleis:
from Sound. Ef fects i nport echo
This also loads the submodule echo, and makesiit available without its package prefix, so it can be used as follows:
echo. echofilter(input, output, delay=0.7, atten=4)
Y et another variation isto import the desired function or variable directly:
from Sound. Ef fects. echo i nport echofilter
Again, thisloads the submodule echo, but this makesitsfunctionechof i | t er () directly available:
echofilter(input, output, delay=0.7, atten=4)

Note that when using f r om package i nport item, theitem can be either a submodule (or subpackage) of the
package, or some other name defined in the package, like afunction, class or variable. Thei nport statement first

http://www.python.org/doc/current/tut/node8.html (7 of 9) [2/18/2003 11:38:50 PM]

6. Modules

tests whether the item is defined in the package; if not, it assumesit isamodule and attemptsto load it. If it failsto
findit,an | nport Err or exception israised.

Contrarily, when using syntax likei nport item.subitem.subsubitem, each item except for the last must be a
package; the last item can be a module or a package but can't be a class or function or variable defined in the previous
item.

6.4.1 Importing * From a Package

Now what happens when the user writesf r om Sound. Ef fects i nport *?Ideally, onewould hope that this
somehow goes out to the filesystem, finds which submodules are present in the package, and imports them all.
Unfortunately, this operation does not work very well on Mac and Windows platforms, where the filesystem does not
always have accurate information about the case of afilename! On these platforms, there is no guaranteed way to
know whether afile ECHO.PY should be imported as amodule echo, Echo or ECHO. (For example, Windows 95
has the annoying practice of showing all file names with a capitalized first letter.) The DOS 8+3 filename restriction
adds another interesting problem for long module names.

The only solution is for the package author to provide an explicit index of the package. The import statement uses the
following convention: if apackage's __init__.py codedefinesalistnamed __al | | itistakento bethelist of
module names that should be imported when f r om package | nport * isencountered. It isup to the package
author to keep thislist up-to-date when anew version of the package is released. Package authors may also decide not
to support it, if they don't see a use for importing * from their package. For example, the file
Sounds/Effects/__init__.py could contain the following code:

all __ = ["echo", "surround", "reverse"]

Thiswould mean that f rom Sound. Ef f ects i nmport * would import the three named submodules of the
Sound package.

If __all __ isnot defined, the statement f r om Sound. Ef f ects i nport * doesnotimport al submodules
from the package Sound. Ef f ect s into the current namespace; it only ensures that the package Sound. Ef f ect s
has been imported (possibly running itsinitialization code, __init__.py) and then imports whatever names are
defined in the package. Thisincludes any names defined (and submodules explicitly loaded) by __init__.py. It aso
includes any submodules of the package that were explicitly loaded by previous import statements. Consider this
code:

| nport Sound. Ef fects. echo
| nport Sound. Ef fects. surround
from Sound. Effects inport *

In this example, the echo and surround modules are imported in the current namespace because they are defined in
the Sound. Ef f ect s packagewhenthefrom . . i nport statement isexecuted. (This also works when
__all __isdefined.)

Note that in general the practicing of importing * from amodule or package is frowned upon, since it often causes

http://www.python.org/doc/current/tut/node8.html (8 of 9) [2/18/2003 11:38:50 PM]

6. Modules

poorly readable code. However, it is okay to useit to save typing in interactive sessions, and certain modules are
designed to export only names that follow certain patterns.

Remember, there is nothing wrong with using f r om Package i nport speci fi c_subnodul e! Infact, this
is the recommended notation unless the importing modul e needs to use submodules with the same name from
different packages.

6.4.2 Intra-package References

The submodul es often need to refer to each other. For example, the sur r ound module might use the echo module.
In fact, such references are so common that thei npor t statement first looks in the containing package before
looking in the standard modul e search path. Thus, the surround module can ssimply usei nport echo orfrom
echo inport echofilter.Iftheimported moduleisnot found in the current package (the package of which
the current module is a submodule), thei nport statement looks for atop-level module with the given name.

When packages are structured into subpackages (as with the Sound package in the example), there's no shortcut to
refer to submodules of sibling packages - the full name of the subpackage must be used. For example, if the module
Sound. Fi | ters. vocoder needsto usetheecho moduleinthe Sound. Ef f ect s package, it canusefrom
Sound. Ef fects inport echo.

Footnotes

... somewhere.6.1
In fact function definitions are also “statements' that are “executed'; the execution enters the function namein
the modul€e's global symbol table.

— T = Python Tutorial loc
COMTENTS

Previous: 5. Data Structures Up: Python Tutorial Next: 7. Input and Output

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/node8.html (9 of 9) [2/18/2003 11:38:50 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

7. Input and Output

&~ T - Python Tutorial roc
CIMTENTS

Previous: 6. Modules Up: Python Tutorial Next: 8. Errors and Exceptions

Subsections

. 7.1 Fancier Output Formatting

. 7.2 Reading and Writing Files
o 7.2.1 Methods of File Objects
o 7.2.2Thepi ckl e Module

/. Input and Output

There are several waysto present the output of a program; data can be printed in a human-readable form, or
written to afile for future use. This chapter will discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we've encountered two ways of writing values: expression statements and the pr i nt statement. (A third
way isusing thewr i t e() method of file objects; the standard output file can be referenced assys. st dout .
See the Library Reference for more information on this.)

Often you'll want more control over the formatting of your output than ssmply printing space-separated values.
There are two ways to format your output; the first way isto do all the string handling yourself; using string
dlicing and concatenation operations you can create any lay-out you can imagine. The standard module

st ri ng contains some useful operations for padding strings to a given column width; these will be discussed
shortly. The second way is to use the %operator with a string as the left argument. The %operator interprets the
left argument much likeaspri nt f () -style format string to be applied to the right argument, and returns the
string resulting from this formatting operation.

One guestion remains, of course: how do you convert values to strings? Luckily, Python has ways to convert
any valueto astring: passittother epr () orstr () functions, or just write the value between reverse quotes
(" ,equivaenttorepr()).

Thest r () function is meant to return representations of values which are fairly human-readable, while
repr () ismeant to generate representations which can be read by the interpreter (or will force a
Synt axEr r or if thereis not equivalent syntax). For objects which don't have a particular representation for

http://www.python.org/doc/current/tut/node9.html (1 of 7) [2/18/2003 11:38:54 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

7. Input and Output

human consumption, st r () will return the samevaueasr epr () . Many values, such as numbers or
structures like lists and dictionaries, have the same representation using either function. Strings and floating
point numbers, in particular, have two distinct representations.

Some examples

>>> s = 'Hello, world.'
>>> str(s)

"Hell o, world.'

>>> T g

""Hello, world.""

>>> str(0.1)

'0. 1

>>> 0.1

* 0. 10000000000000001

>>> x = 10 * 3.25

>>>y = 200 * 200

>>> s = '"The value of xis ' + x + ', andyis ' + 'y + '...

>>> print s
The value of x is 32.5, and y is 40000...
>>> # Reverse quotes work on other types besides nunbers:

oo P =Xyl
>>> ps = repr(p)
>>> ps

'[32.5, 40000]"

>>> # Converting a string adds string quotes and backsl ashes:
hello = 'hello, world\n'

>>> hellos = " hello

>>> print hellos

"hell o, world\n'

>>> # The argunent of reverse quotes may be a tuple:

.. X, Y, ('spam, 'eggs')"

"(32.5, 40000, ('spam, 'eggs'))"

Here are two ways to write a table of squares and cubes:

>>> jnmport string

>>> for x in range(1, 11):
print string.rjust(x , 2), string.rjust(x*x, 3),
Note trailing comma on previous |ine
print string.rjust(x*x*x , 4)

=

1 1
2 4 8
3 9 27

http://www.python.org/doc/current/tut/node9.html (2 of 7) [2/18/2003 11:38:54 PM]

7. Input and Output

4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

>>> for x in range(1,11):
print '%2d %3d %ld' % (x, X*X, X*X*X)

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

(Note that one space between each column was added by the way pr i nt works: it always adds spaces between
its arguments.)

This example demonstrates the function st r i ng. rj ust (), which right-justifiesa string in afield of agiven
width by padding it with spaces on the left. There are similar functionsstri ng. | j ust () and

string. center (). Thesefunctions do not write anything, they just return anew string. If the input string is
too long, they don't truncate it, but return it unchanged; this will mess up your column lay-out but that's usually
better than the alternative, which would be lying about a value. (If you really want truncation you can always
add adiceoperation, asin"string.ljust(x, n)[0:n]")

Thereisanother function, st ri ng. zfi |l | (), which padsanumeric string on the left with zeros. It
understands about plus and minus signs:

>>> jnport string

>>> string. zfill('12', 5)

' 00012

>>> string. zfill ('-3.14", 7)
'-003. 14"

>>> string. zfill (' 3.14159265359"', 5)
'+ 3. 14159265359’

Using the %operator 1ooks like this:

>>> jnport math

http://www.python.org/doc/current/tut/node9.html (3 of 7) [2/18/2003 11:38:54 PM]

7. Input and Output

>>> print 'The value of Pl is approximately 9. 3f."' % math. pi
The value of Pl is approximtely 3.142.

If there is more than one format in the string, you need to pass a tuple as right operand, as in this example:

>>> table = {' Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for nanme, phone in table.itens():
print '% 10s ==> 9%40d' % (nane, phone)

Jack ==> 4098

Dcab ==> 7678
Sj oerd ==> 4127

Most formats work exactly asin C and require that you pass the proper type; however, if you don't you get an
exception, not a core dump. The % format is more relaxed: if the corresponding argument is not a string
object, it is converted to string using the st r () built-in function. Using * to pass the width or precisioninasa
separate (integer) argument is supported. The C formats % and %p are not supported.

If you have areally long format string that you don't want to split up, it would be nice if you could reference the
variables to be formatted by name instead of by position. This can be done by using form % nane) f or mat ,
as shown here:

>>> table = {' Sjoerd' : 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print 'Jack: % Jack)d; Sjoerd: %S oerd)d; Dcab: % Dcab)d %table
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

Thisis particularly useful in combination with the new built-invar s() function, which returns a dictionary
containing all local variables.

7.2 Reading and Writing Files

open() returnsafileobject , and is most commonly used with two arguments: "open(filename, mode) ".

>>> f=open('/tnmp/workfile', "w)
>>> print f
<open file '/tnp/workfile', node 'w at 80a0960>

The first argument is a string containing the filename. The second argument is another string containing afew
characters describing the way in which the file will be used. mode canbe' r* when the file will only be read,
"W for only writing (an existing file with the same name will be erased), and' a' opensthefilefor
appending; any datawritten to the file is automatically added to theend. ' r +' opensthefile for both reading
and writing. The mode argument isoptional; ' r* will be assumed if it's omitted.

http://www.python.org/doc/current/tut/node9.html (4 of 7) [2/18/2003 11:38:54 PM]

7. Input and Output

On Windows and the Macintosh, ' b' appended to the mode opens the file in binary mode, so there are also
modeslike' rb' ,' wb' ,and' r +b' . Windows makes a distinction between text and binary files; the end-of -
line charactersin text files are automatically altered slightly when datais read or written. This behind-the-
scenes modification to file dataisfine for ASCII text files, but it'll corrupt binary data like that in JPEGs or
.EXE files. Be very careful to use binary mode when reading and writing such files. (Note that the precise
semantics of text mode on the Macintosh depends on the underlying C library being used.)

7.2.1 Methods of File Objects

The rest of the examplesin this section will assume that afile object called f has already been created.

Toread afile's contents, call f . r ead(size) , which reads some quantity of data and returnsit asastring. size
Is an optional numeric argument. When size is omitted or negative, the entire contents of the file will be read
and returned; it's your problem if the file istwice as large as your machine's memory. Otherwise, at most size
bytes are read and returned. If the end of the file has been reached, f . r ead() will return an empty string

)

>>> f . read()
"This is the entire file.\n'
>>> f . read()

f.readline() readsasinglelinefrom thefile; anewline character (\ n) isleft at the end of the string, and
isonly omitted on the last line of the fileif the file doesn't end in a newline. This makes the return value
unambiguous; if f . r eadl i ne() returnsan empty string, the end of the file has been reached, while a blank
lineisrepresented by ' \ n' , astring containing only a single newline.

>>> f . readline()

"This is the first line of the file.\n'
>>> f . readline()

"Second line of the file\n'

>>> f . readline()

f.readl i nes() returnsalist containing all the lines of datain thefile. If given an optional parameter
sizehint, it reads that many bytes from the file and enough more to complete aline, and returns the lines from
that. Thisis often used to allow efficient reading of alarge file by lines, but without having to load the entire
filein memory. Only complete lines will be returned.

>>> f.readlines()
['This is the first line of the file.\n', 'Second line of the file\n']

http://www.python.org/doc/current/tut/node9.html (5 of 7) [2/18/2003 11:38:54 PM]

7. Input and Output

f.write(string) writesthe contents of string to thefile, returning None.
>>> f, wite('This is a test\n')

f.tell () returnsaninteger giving the file object's current position in the file, measured in bytes from the
beginning of the file. To change the file object's position, use "f . seek(offset, from what) ". The position is
computed from adding offset to a reference point; the reference point is selected by the from_what argument. A
from_what value of 0 measures from the beginning of the file, 1 usesthe current file position, and 2 uses the
end of the file as the reference point. from_what can be omitted and defaults to O, using the beginning of the file
as the reference point.

>>> f=open('/tnp/workfile , 'r+")

>>> f . wite(' 0123456789abcdef')

>>> f . seek(5) # Go to the 6th byte in the file
>>> f.read(1)

I5l

>>> f.seek(-3, 2) # Go to the 3rd byte before the end
>>> f . read(1)
Idl

When you're done with afile, call f . cl ose() tocloseit and free up any system resources taken up by the
open file. After callingf . cl ose(), attempts to use the file object will automatically fail.

>>> f . cl ose()
>>> . read()
Traceback (nost recent call last):
File "<stdin>, line 1, in ?
Val ueError: 1/0O operation on closed file

File objects have some additional methods, such asi satty() andtruncat e() which areless frequently
used; consult the Library Reference for a complete guide to file objects.

7.2.2 The pi ckl e Module

Strings can easily be written to and read from afile. Numbers take a bit more effort, sincether ead() method
only returns strings, which will have to be passed to afunction likest r i ng. at oi (), which takesastring
like' 123" and returnsits numeric value 123. However, when you want to save more complex data types like
lists, dictionaries, or class instances, things get alot more complicated.

Rather than have users be constantly writing and debugging code to save complicated data types, Python

http://www.python.org/doc/current/tut/node9.html (6 of 7) [2/18/2003 11:38:54 PM]

7. Input and Output

provides a standard module called pi ckl e. Thisisan amazing module that can take almost any Python object
(even some forms of Python code!), and convert it to a string representation; this process is called pickling.
Reconstructing the object from the string representation is called unpickling. Between pickling and unpickling,
the string representing the object may have been stored in afile or data, or sent over a network connection to
some distant machine.

If you have an object x, and afile object f that's been opened for writing, the simplest way to pickle the object
takes only one line of code:

pi ckl e. dunmp(x, f)
To unpickle the object again, if f isafile object which has been opened for reading:
X = pickle.load(f)

(There are other variants of this, used when pickling many objects or when you don't want to write the pickled
datato afile; consult the complete documentation for pi ckl e inthe Library Reference.)

pi ckl e isthe standard way to make Python objects which can be stored and reused by other programs or by a
future invocation of the same program; the technical term for thisis a persistent object. Because pi ckl e isso
widely used, many authors who write Python extensions take care to ensure that new data types such as
matrices can be properly pickled and unpickled.

= T - Python Tutorial loc
COMTENTS

Previous: 6. Modules Up: Python Tutorial Next: 8. Errors and Exceptions

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/node9.html (7 of 7) [2/18/2003 11:38:54 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

8. Errors and Exceptions

= T — Python Tutorial foc
COMTENTS

Previous: 7. Input and Output Up: Python Tutorial Next: 9. Classes

Subsections

. 8.1 Syntax Errors

. 8.2 Exceptions

. 8.3 Handling Exceptions

. 8.4 Raising Exceptions

. 8.5 User-defined Exceptions

. 8.6 Defining Clean-up Actions

8. Errors and Exceptions

Until now error messages haven't been more than mentioned, but if you have tried out the examples you have probably
seen some. There are (at |least) two distinguishable kinds of errors. syntax errors and exceptions.

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you are still
learning Python:

>>> while 1 print '"Hello world'
File "<stdin>", line 1, in ?
while 1 print "Hello world'

N

SyntaxError: invalid syntax

The parser repeats the offending line and displays allittle “arrow' pointing at the earliest point in the line where the error
was detected. The error is caused by (or at least detected at) the token preceding the arrow: in the example, the error is
detected at the keyword pr i nt , sinceacolon (": ") ismissing before it. File name and line number are printed so you
know where to look in case the input came from a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute it.

http://www.python.org/doc/current/tut/node10.html (1 of 7) [2/18/2003 11:38:58 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

8. Errors and Exceptions

Errors detected during execution are called exceptions and are not unconditionally fatal: you will soon learn how to
handle them in Python programs. Most exceptions are not handled by programs, however, and result in error messages
as shown here:

>>> 10 * (1/0)
Traceback (nost recent call last):
File "<stdin>", line 1, in ?
ZeroDi visionError: integer division or nodulo
>>> 4 + spant3
Traceback (nost recent call last):
File "<stdin>, line 1, in ?
NaneError: nane 'spami is not defined
>>> ' 20+ 2

Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
TypeError: illegal argunment type for built-in operation

The last line of the error message indicates what happened. Exceptions come in different types, and the type is printed as
part of the message: the types in the example are Zer oDi vi si onEr r or , NarmeEr r or and TypeEr r or . The string
printed as the exception type is the name of the built-in name for the exception that occurred. Thisistrue for all built-in
exceptions, but need not be true for user-defined exceptions (although it is a useful convention). Standard exception
names are built-in identifiers (not reserved keywords).

Therest of thelineis adetaill whose interpretation depends on the exception type; its meaning is dependent on the
exception type.

The preceding part of the error message shows the context where the exception happened, in the form of a stack
backtrace. In general it contains a stack backtrace listing source lines; however, it will not display lines read from
standard inpui.

The Python Library Reference lists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the following example, which asks the user for
input until avalid integer has been entered, but allows the user to interrupt the program (using Cont r ol - C or whatever
the operating system supports); note that a user-generated interruption is signalled by raising the

Keyboar dl nt er r upt exception.

>>> while 1:
try:
X = int(raw_input("Please enter a nunber: "))
br eak
except Val ueError:
print "Oops! That was no valid nunber. Try again..."

http://www.python.org/doc/current/tut/node10.html (2 of 7) [2/18/2003 11:38:58 PM]

http://www.python.org/doc/current/lib/module-exceptions.html

8. Errors and Exceptions

Thet r y statement works as follows.
. First, thetry clause (the statement(s) betweenthet r y and except keywords) is executed.
. If no exception occurs, the except clause is skipped and execution of thet r y statement is finished.

. If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then if itstype
matches the exception named after the except keyword, the rest of the try clause is skipped, the except clause is
executed, and then execution continues after thet r y statement.

. If an exception occurs which does not match the exception named in the except clause, it is passed on to outer
t ry statements; if no handler isfound, it is an unhandled exception and execution stops with a message as shown
above.

At ry statement may have more than one except clause, to specify handlers for different exceptions. At most one
handler will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other
handlers of the samet r y statement. An except clause may name multiple exceptions as a parenthesized list, for
example:

except (RuntinmeError, TypeError, NaneError):
pass

The last except clause may omit the exception name(s), to serve as awildcard. Use this with extreme caution, sinceit is
easy to mask areal programming error in thisway! It can also be used to print an error message and then re-raise the
exception (allowing a caller to handle the exception as well):

i mport string, sys

try:
f

open(' nyfile.txt")

S f.readline()

[int(string.strip(s))
except 1 OError, (errno, strerror):

print "I/Oerror(%): %" % (errno, strerror)
except Val ueError:

print "Could not convert data to an integer."
except:

print "Unexpected error:", sys.exc_info()][O0]

rai se

Thetry ...except statement has an optional else clause, which, when present, must follow all except clauses. Itis
useful for code that must be executed if the try clause does not raise an exception. For example:

for arg in sys.argv[1l:]:
try:
f = open(arg, 'r')
except |1 OError:

http://www.python.org/doc/current/tut/node10.html (3 of 7) [2/18/2003 11:38:58 PM]

8. Errors and Exceptions

print 'cannot open', arg

el se:
print arg, 'has', len(f.readlines()), 'lines'
f.close()

The use of the el se clauseis better than adding additional codeto thet r y clause because it avoids accidentally
catching an exception that wasn't raised by the code being protected by thet ry ... except statement.

When an exception occurs, it may have an associated value, a'so known as the exception's argument. The presence and
type of the argument depend on the exception type. For exception types which have an argument, the except clause may
specify avariable after the exception name (or list) to receive the argument's value, as follows:

>>> try:
span()
except NaneError, X:
print 'name', x, 'undefined’
nanme spam undefi ned

If an exception has an argument, it is printed as the last part ("detail") of the message for unhandled exceptions.

Exception handlers don't just handle exceptions if they occur immediately in the try clause, but also if they occur inside
functions that are called (even indirectly) in the try clause. For example:

>>> def this fails():

x =1/0
>>> try:
this fails()
except ZeroDivisionError, detail:
print '"Handling run-time error:', detail

Handling run-tinme error: integer division or nodulo

8.4 Raising Exceptions

Ther ai se statement allows the programmer to force a specified exception to occur. For example:

>>> rai se NaneError, 'Hi There'
Traceback (nost recent call last):

File "<stdin>, line 1, in ?
NaneError: Hi There

Thefirst argument tor ai se names the exception to be raised. The optional second argument specifies the exception's
argument.

http://www.python.org/doc/current/tut/node10.html (4 of 7) [2/18/2003 11:38:58 PM]

8. Errors and Exceptions

If you need to determine whether an exception was raised but don't intend to handle it, asimpler form of ther ai se
statement allows you to re-raise the exception:

>>> try:
rai se NaneError, 'H There'
except NameError:
print 'An exception flew by!’
rai se

An exception flew by!

Traceback (nost recent call last):
File "<stdin>, line 2, in ?

NaneError: Hi There

8.5 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class. Exceptions should typically be derived
from the Except i on class, either directly or indirectly. For example:

>>> class MyError (Exception):
def __init__(self, value):
sel f.val ue = val ue
def _ str__ (self):
return " self.val ue’
>>> try:
rai se MyError (2*2)
except MyError, e:
print 'My exception occurred, value:', e.value

My exception occurred, value: 4
>>> rai se MyError, 'oops!’
Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
__main__.MWError: 'oops!’

Exception classes can be defined which do anything any other class can do, but are usually kept smple, often only
offering a number of attributes that allow information about the error to be extracted by handlers for the exception.
When creating a module which can raise several distinct errors, acommon practice isto create a base class for
exceptions defined by that module, and subclass that to create specific exception classes for different error conditions:

cl ass Error(Exception):
"""Base class for exceptions in this nodul e.
pass

class InputError(Error):

http://www.python.org/doc/current/tut/node10.html (5 of 7) [2/18/2003 11:38:58 PM]

8. Errors and Exceptions

"""Exception raised for errors in the input.

Attri butes:
expression -- input expression in which the error occurred
nessage -- explanation of the error

def __init_ (self, expression, nessage):

sel f. expressi on = expression
sel f. message = nessage

class TransitionError(Error):
"""Rai sed when an operation attenpts a state transition that's not

al | owned.
Attributes:

previous -- state at beginning of transition

next -- attenpted new state

nessage -- explanation of why the specific transition is not all owed
def __init_ (self, previous, next, message):

sel f. previous = previous
sel f. next = next
sel f. message = nessage

Most exceptions are defined with names that end in " Error," similar to the naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may occur in functions they define. More
information on classes is presented in chapter 9, ~ Classes.”

8.6 Defining Clean-up Actions

Thet r y statement has another optional clause which isintended to define clean-up actions that must be executed under
al circumstances. For example:

>>> try:
rai se Keyboardl nterrupt
finally:
print 'Goodbye, world!’

Goodbye, worl d!
Traceback (nost recent call |ast):

File "<stdin>", line 2, in ?
Keyboar dl nt er r upt

A finally clause is executed whether or not an exception has occurred in the try clause. When an exception has occurred,

http://www.python.org/doc/current/tut/node10.html (6 of 7) [2/18/2003 11:38:58 PM]

8. Errors and Exceptions

itisre-raised after the finally clause is executed. The finally clauseis also executed ““on the way out" whenthet ry
statement isleft viaabr eak or r et ur n statement.

The codein thefinally clauseis useful for releasing external resources (such asfiles or network connections), regardless
of whether or not the use of the resource was successful.

At ry statement must either have one or more except clauses or one finally clause, but not both.

= T — Python Tutorial foc
COMTENTS

Previous: 7. Input and Output Up: Python Tutorial Next: 9. Classes

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/node10.html (7 of 7) [2/18/2003 11:38:58 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

9. Classes

= T = Python Tutorial foc
CMTENTS

Previous:. 8. Errors and Exceptions Up: Python Tutorial Next: 10. What Now?

Subsections

. 9.1 A Word About Terminology
. 9.2 Python Scopes and Name Spaces
. 9.3A First Look at Classes
o 9.3.1 Class Definition Syntax
o 9.3.2 Class Objects
o 9.3.3 Instance Objects
o 9.3.4 Method Objects
. 9.4 Random Remarks
« 9.5 Inheritance
o 9.5.1 Multiple Inheritance
. 9.6 Private Variables
. 9.7 Odds and Ends
o 9.7.1 Exceptions Can Be Classes

9. Classes

Python's class mechanism adds classes to the language with a minimum of new syntax and semantics. It
Isamixture of the class mechanisms found in C++ and Modula-3. Asistrue for modules, classesin
Python do not put an absolute barrier between definition and user, but rather rely on the politeness of the
user not to ~"break into the definition.” The most important features of classes are retained with full
power, however: the class inheritance mechanism allows multiple base classes, a derived class can
override any methods of its base class or classes, a method can call the method of a base class with the
same name. Objects can contain an arbitrary amount of private data.

In C++ terminology, all class members (including the data members) are public, and all member
functions are virtual. There are no special constructors or destructors. Asin Modula-3, there are no
shorthands for referencing the object's members from its methods: the method function is declared with
an explicit first argument representing the object, which is provided implicitly by the call. Asin
Smalltalk, classes themselves are objects, abeit in the wider sense of the word: in Python, all datatypes
are objects. This provides semantics for importing and renaming. But, just like in C++ or Modula-3, built-

http://www.python.org/doc/current/tut/node11.html (1 of 14) [2/18/2003 11:39:03 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

9. Classes

in types cannot be used as base classes for extension by the user. Also, likein C++ but unlike in Modula-
3, most built-in operators with special syntax (arithmetic operators, subscripting etc.) can be redefined for
class instances.

9.1 A Word About Terminology

Lacking universally accepted terminology to talk about classes, | will make occasional use of Smalltalk
and C++ terms. (I would use Modula-3 terms, since its object-oriented semantics are closer to those of
Python than C++, but | expect that few readers have heard of it.)

| also have to warn you that there's aterminological pitfall for object-oriented readers. the word "~ object”
in Python does not necessarily mean a class instance. Like C++ and Modula-3, and unlike Smalltalk, not
all typesin Python are classes: the basic built-in types like integers and lists are not, and even somewhat

more exotic types like files aren't. However, all Python types share alittle bit of common semantics that

is best described by using the word object.

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This
isknown as aliasing in other languages. Thisis usually not appreciated on afirst glance at Python, and
can be safely ignored when dealing with immutable basic types (numbers, strings, tuples). However,
aliasing has an (intended!) effect on the semantics of Python code involving mutable objects such as lists,
dictionaries, and most types representing entities outside the program (files, windows, etc.). Thisis
usually used to the benefit of the program, since aliases behave like pointers in some respects. For
example, passing an object is cheap since only a pointer is passed by the implementation; and if a
function modifies an object passed as an argument, the caller will see the change -- this obviates the need
for two different argument passing mechanisms as in Pascal.

9.2 Python Scopes and Name Spaces

Before introducing classes, | first have to tell you something about Python's scope rules. Class definitions
play some neat tricks with namespaces, and you need to know how scopes and namespaces work to fully
understand what's going on. Incidentally, knowledge about this subject is useful for any advanced Python
programmer.

L et's begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python
dictionaries, but that's normally not noticeable in any way (except for performance), and it may changein

http://www.python.org/doc/current/tut/node11.html (2 of 14) [2/18/2003 11:39:03 PM]

9. Classes

the future. Examples of namespaces are: the set of built-in names (functions such asabs() , and built-in
exception names); the global names in amodule; and the local names in a function invocation. In a sense
the set of attributes of an object also form a namespace. The important thing to know about namespacesis
that there is absolutely no relation between names in different namespaces; for instance, two different
modules may both define afunction " maximize" without confusion -- users of the modules must prefix it
with the module name.

By theway, | use the word attribute for any name following a dot -- for example, in the expression

z. real ,real isanattribute of the object z. Strictly speaking, references to namesin modules are
attribute references: in the expression nodnane. f uncnane, nodnane isamodule object and

f uncnane isan attribute of it. In this case there happens to be a straightforward mapping between the

modul€e's attributes and the global names defined in the module: they share the same namespace! -1

Attributes may be read-only or writable. In the latter case, assignment to attributesis possible. Module
attributes are writable: you can write "nodnane. t he_answer = 42". Writable attributes may also
be deleted with the del statement. For example, "del nodnane. t he_answer " will remove the
attributet he_answer from the object named by nodnane.

Name spaces are created at different moments and have different lifetimes. The namespace containing the
built-in names is created when the Python interpreter starts up, and is never deleted. The global
namespace for amodule is created when the module definition is read in; normally, module namespaces
also last until the interpreter quits. The statements executed by the top-level invocation of the interpreter,
either read from a script file or interactively, are considered part of amodule called __mai n__, sothey
have their own global namespace. (The built-in names actually also live in amodule; thisis called
__builtin__)

The local namespace for afunction is created when the function is called, and deleted when the function
returns or raises an exception that is not handled within the function. (Actually, forgetting would be a
better way to describe what actually happens.) Of course, recursive invocations each have their own local
namespace.

A scopeis atextual region of a Python program where a namespace is directly accessible. ""Directly
accessible" here means that an unqualified reference to a name attempts to find the name in the
namespace.

Although scopes are determined statically, they are used dynamically. At any time during execution,
there are at least three nested scopes whose hamespaces are directly accessible: the innermost scope,
which is searched first, contains the local names; the namespaces of any enclosing functions, which are
searched starting with the nearest enclosing scope; the middle scope, searched next, contains the current
modul€'s global names; and the outermost scope (searched last) is the namespace containing built-in
names.

http://www.python.org/doc/current/tut/node11.html (3 of 14) [2/18/2003 11:39:03 PM]

9. Classes

If anameisdeclared global, then all references and assignments go directly to the middle scope
containing the modul€e's global names. Otherwise, all variables found outside of the innermost scope are
read-only.

Usually, the local scope references the local names of the (textually) current function. Outside of
functions, the local scope references the same namespace as the global scope: the modul €'s namespace.
Class definitions place yet another namespace in the local scope.

It is important to realize that scopes are determined textually: the global scope of afunction defined in a
module is that modul€'s namespace, no matter from where or by what alias the function is called. On the
other hand, the actual search for names is done dynamically, at run time -- however, the language
definition is evolving towards static name resolution, at ~"compile" time, so don't rely on dynamic name
resolution! (In fact, local variables are already determined statically.)

A special quirk of Python is that assignments always go into the innermost scope. Assignments do not
copy data -- they just bind names to objects. The same istrue for deletions: the statement "del x"
removes the binding of x from the namespace referenced by the local scope. In fact, all operations that
introduce new names use the local scope: in particular, import statements and function definitions bind
the module or function name in the local scope. (The gl obal statement can be used to indicate that
particular variables live in the global scope.)

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

cl ass C assNane:
<statenment-1>

<st at enent - N>

Class definitions, like function definitions (def statements) must be executed before they have any

http://www.python.org/doc/current/tut/nodel11.html (4 of 14) [2/18/2003 11:39:03 PM]

9. Classes

effect. (Y ou could conceivably place a class definition in abranch of ani f statement, or inside a
function.)

In practice, the statementsinside a class definition will usually be function definitions, but other
statements are allowed, and sometimes useful -- we'll come back to this later. The function definitions
inside a class normally have a peculiar form of argument list, dictated by the calling conventions for
methods -- again, thisis explained later.

When aclass definition is entered, a new namespace is created, and used as the local scope -- thus, all
assignmentsto local variables go into this new namespace. In particular, function definitions bind the
name of the new function here.

When a class definition is left normally (viathe end), a class object is created. Thisis basically awrapper
around the contents of the namespace created by the class definition; we'll learn more about class objects
in the next section. The original local scope (the one in effect just before the class definitions was
entered) is reinstated, and the class object is bound here to the class name given in the class definition
header (Cl assNane in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and instantiation.

Attribute references use the standard syntax used for all attribute referencesin Python: obj . nane. Valid
attribute names are all the names that were in the class's namespace when the class object was created.
S0, if the class definition looked like this:

cl ass Myd ass:
"“A sinple exanple class"
I = 12345
def f(self):
return "hello world'

then MyCl ass. i and MyCl ass. f arevalid attribute references, returning an integer and a method
object, respectively. Class attributes can also be assigned to, so you can change the value of MyCl ass. i
by assignment. _doc___ isalso avalid attribute, returning the docstring belonging to the class: " A

si npl e exanpl e cl ass").

Class instantiation uses function notation. Just pretend that the class object is a parameterless function
that returns a new instance of the class. For example (assuming the above class):

http://www.python.org/doc/current/tut/node11.html (5 of 14) [2/18/2003 11:39:03 PM]

9. Classes
x = Myd ass()
creates a new instance of the class and assigns this object to the local variable x.
The instantiation operation (" "calling" a class object) creates an empty object. Many classes like to create
objectsin aknown initial state. Therefore a class may define aspecial methodnamed __init __ (), like

this:

def __init__ (self):
self.data = []

When aclassdefinesan __i nit __ () method, classinstantiation automatically invokes __init__ ()
for the newly-created class instance. So in this example, a new, initialized instance can be obtained by:

x = Myd ass()

Of course, the i nit__ () method may have arguments for greater flexibility. In that case, arguments
given to the class instantiation operator arepassedonto i nit __ (). For example,

>>> cl ass Conpl ex:

def __init__(self, realpart, inmagpart):
self.r = real part
self.i = imgpart

>>> x = Conplex(3.0, -4.5)
>>> X.r, X.i
(3.0, -4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations understood by instance objects are
attribute references. There are two kinds of valid attribute names.

Thefirst I'll call data attributes. These correspond to " instance variables' in Smalltalk, and to ““data
members' in C++. Data attributes need not be declared; like local variables, they spring into existence
when they arefirst assigned to. For example, if x isthe instance of MyCl ass created above, the
following piece of code will print the value 16, without leaving atrace:

X.counter =1
whil e x.counter < 10:;:

http://www.python.org/doc/current/tut/node11.html (6 of 14) [2/18/2003 11:39:03 PM]

9. Classes

X.counter = x.counter * 2
print x.counter
del Xx.counter

The second kind of attribute references understood by instance objects are methods. A method isa
function that “"belongsto™ an object. (In Python, the term method is not unique to class instances: other
object types can have methods as well. For example, list objects have methods called append, insert,
remove, sort, and so on. However, below, we'll use the term method exclusively to mean methods of class
instance objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By definition, all attributes of a class that
are (user-defined) function objects define corresponding methods of its instances. So in our example, x. f
isavalid method reference, since Myl ass. f isafunction, but x. i isnot, sinceMyCl ass. i isnot.
But x. f isnot the samethingasMyCl ass. f --itisa method object, not a function object.

9.3.4 Method Objects

Usually, amethod is called immediately:

x. ()

In our example, thiswill returnthe string’ hel | o wor | d' . However, it is not necessary to call a
method right away: x. f isamethod object, and can be stored away and called at alater time. For
example:

xf = x.f
while 1:
print xf()

will continueto print "hel | o wor | d" until the end of time.

What exactly happens when a method is called? Y ou may have noticed that x. f () was called without an
argument above, even though the function definition for f specified an argument. What happened to the
argument? Surely Python raises an exception when afunction that requires an argument is called without
any -- even if the argument isn't actually used...

Actually, you may have guessed the answer: the special thing about methods is that the object is passed
asthefirst argument of the function. In our example, thecall x. f () isexactly equivalent to

MyCl ass. f (x) . Ingeneral, calling amethod with alist of n arguments is equivalent to calling the
corresponding function with an argument list that is created by inserting the method's object before the

http://www.python.org/doc/current/tut/nodel11.html (7 of 14) [2/18/2003 11:39:03 PM]

9. Classes

first argument.

If you still don't understand how methods work, alook at the implementation can perhaps clarify matters.
When an instance attribute is referenced that isn't a data attribute, its classis searched. If the name
denotes avalid class attribute that is a function object, a method object is created by packing (pointers to)
the instance object and the function object just found together in an abstract object: thisis the method
object. When the method object is called with an argument list, it is unpacked again, a new argument list
is constructed from the instance object and the original argument list, and the function object is called
with this new argument list.

9.4 Random Remarks

[These should perhaps be placed more carefully...]

Data attributes override method attributes with the same name; to avoid accidental name conflicts, which
may cause hard-to-find bugsin large programs, it is wise to use some kind of convention that minimizes

the chance of conflicts. Possible conventions include capitalizing method names, prefixing data attribute
names with a small unique string (perhaps just an underscore), or using verbs for methods and nouns for

data attributes.

Data attributes may be referenced by methods as well as by ordinary users (" clients") of an object. In
other words, classes are not usable to implement pure abstract data types. In fact, nothing in Python
makes it possible to enforce data hiding -- it is all based upon convention. (On the other hand, the Python
implementation, written in C, can completely hide implementation details and control access to an object
If necessary; this can be used by extensions to Python writtenin C.)

Clients should use data attributes with care -- clients may mess up invariants maintained by the methods
by stamping on their data attributes. Note that clients may add data attributes of their own to an instance
object without affecting the validity of the methods, as long as name conflicts are avoided -- again, a
naming convention can save alot of headaches here.

There is no shorthand for referencing data attributes (or other methods!) from within methods. | find that
this actually increases the readability of methods: there is no chance of confusing local variables and
instance variables when glancing through a method.

Conventionally, the first argument of methods is often called sel f . Thisisnothing more than a
convention: the name sel f has absolutely no special meaning to Python. (Note, however, that by not
following the convention your code may be less readable by other Python programmers, and it is aso
conceivable that a class browser program be written which relies upon such a convention.)

http://www.python.org/doc/current/tut/node11.html (8 of 14) [2/18/2003 11:39:03 PM]

9. Classes

Any function object that is a class attribute defines a method for instances of that class. It is not necessary
that the function definition is textually enclosed in the class definition: assigning a function object to a
local variable in the classis also ok. For example:

Function defined outside the class
def fl(self, x, y):
return mn(x, X+y)

class C
f =f1
def g(self):
return '"hello world'
h =g

Now f , g and h are all attributes of class C that refer to function objects, and consequently they are all
methods of instances of C-- h being exactly equivaent to g. Note that this practice usualy only servesto
confuse the reader of a program.

Methods may call other methods by using method attributes of the sel f argument:

cl ass Bag:

def __init__ (self):
self.data = []

def add(self, x):
sel f. dat a. append(x)

def addtw ce(self, x):
sel f. add(x)
sel f.add(x)

Methods may reference globa names in the same way as ordinary functions. The global scope associated
with amethod is the module containing the class definition. (The class itself is never used as a global
scope!) While one rarely encounters a good reason for using global data in a method, there are many
legitimate uses of the global scope: for one thing, functions and modules imported into the global scope
can be used by methods, as well as functions and classes defined in it. Usually, the class containing the
method isitself defined in this global scope, and in the next section we'll find some good reasons why a
method would want to reference its own class!

9.5 Inheritance

Of course, alanguage feature would not be worthy of the name " "class" without supporting inheritance.

http://www.python.org/doc/current/tut/node11.html (9 of 14) [2/18/2003 11:39:03 PM]

9. Classes

The syntax for aderived class definition looks as follows:

cl ass DerivedC assNane(BaseC assNane) :
<st at ement - 1>

<st at enent - N>

The name BaseC assNane must be defined in a scope containing the derived class definition. Instead
of abase class name, an expression is also allowed. Thisis useful when the base classis defined in
another module,

cl ass Derivedd assNane(nodnane. BaseC assNane) :

Execution of a derived class definition proceeds the same as for a base class. When the class object is
constructed, the base classis remembered. Thisis used for resolving attribute references: if arequested
attribute is not found in the class, it is searched in the base class. Thisruleis applied recursively if the
base class itself is derived from some other class.

There's nothing special about instantiation of derived classes. Der i vedCl assNane() createsanew
instance of the class. Method references are resolved as follows: the corresponding class attribute is
searched, descending down the chain of base classes if necessary, and the method reference isvalid if this
yields a function object.

Derived classes may override methods of their base classes. Because methods have no special privileges
when calling other methods of the same object, a method of a base class that calls another method defined
in the same base class, may in fact end up calling a method of a derived class that overridesit. (For C++
programmers:. al methods in Python are effectively vi r t ual .)

An overriding method in a derived class may in fact want to extend rather than simply replace the base
class method of the same name. There is a simple way to call the base class method directly: just call
"BaseCl assNane. net hodnane(sel f, argunents)". Thisisoccasionally useful to clients as
well. (Note that this only works if the base class is defined or imported directly in the global scope.)

9.5.1 Multiple Inheritance

Python supports a limited form of multiple inheritance aswell. A class definition with multiple base
classes |ooks as follows:

http://www.python.org/doc/current/tut/nodel11.html (10 of 14) [2/18/2003 11:39:03 PM]

9. Classes

cl ass Derivedd assNane(Basel, Base2, Base3):
<st at enent - 1>

<st at enent - N>

The only rule necessary to explain the semanticsis the resolution rule used for class attribute references.
Thisis depth-first, left-to-right. Thus, if an attribute is not found in Der i vedC assNane, it is searched
in Basel, then (recursively) in the base classes of Basel, and only if it isnot found there, it is searched
in Base2, and so on.

(To some people breadth first -- searching Base2 and Base 3 before the base classes of Basel -- looks
more natural. However, this would require you to know whether a particular attribute of Basel is
actually defined in Basel or in one of its base classes before you can figure out the consequences of a
name conflict with an attribute of Base2. The depth-first rule makes no differences between direct and
inherited attributes of Base1l.)

It is clear that indiscriminate use of multiple inheritance is a maintenance nightmare, given the reliancein
Python on conventions to avoid accidental name conflicts. A well-known problem with multiple
inheritance is a class derived from two classes that happen to have a common base class. While it is easy
enough to figure out what happensin this case (the instance will have a single copy of "instance
variables' or data attributes used by the common base class), it is not clear that these semantics are in any
way useful.

9.6 Private Variables

Thereislimited support for class-private identifiers. Any identifier of theform __spam(at least two
leading underscores, at most one trailing underscore) is now textually replaced with

_cl assnane__spam where cl assnane isthe current class name with leading underscore(s)
stripped. This mangling is done without regard of the syntactic position of the identifier, so it can be used
to define class-private instance and class variables, methods, as well as globals, and even to store instance
variables private to this class on instances of other classes. Truncation may occur when the mangled
name would be longer than 255 characters. Outside classes, or when the class name consists of only
underscores, no mangling occurs.

Name mangling is intended to give classes an easy way to define " private” instance variables and
methods, without having to worry about instance variables defined by derived classes, or mucking with
instance variables by code outside the class. Note that the mangling rules are designed mostly to avoid
accidents; it still is possible for a determined soul to access or modify avariable that is considered

http://www.python.org/doc/current/tut/nodel11.html (11 of 14) [2/18/2003 11:39:03 PM]

9. Classes

private. This can even be useful in special circumstances, such asin the debugger, and that's one reason
why this loophole is not closed. (Buglet: derivation of a class with the same name as the base class makes
use of private variables of the base class possible.)

Notice that code passed to exec, eval () oreval fil e() doesnot consider the classname of the
invoking class to be the current class; thisis similar to the effect of the gl obal statement, the effect of
which islikewise restricted to code that is byte-compiled together. The same restriction applies to
getattr(),setattr() anddel attr (), aswel aswhenreferencing __di ct ___ directly.

9.7 Odds and Ends

Sometimesiit is useful to have a data type similar to the Pascal “record” or C " "struct”, bundling together
a couple of named dataitems. An empty class definition will do nicely:

cl ass Enpl oyee:
pass

j ohn = Enpl oyee() # Create an enpty enpl oyee record

Fill the fields of the record
j ohn. nanme = ' John Doe’

j ohn. dept = 'conputer |ab

j ohn.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that
emulates the methods of that data type instead. For instance, if you have afunction that formats some
datafrom afile object, you can define a class with methodsr ead() andr eadl i ne() that getsthe
data from a string buffer instead, and pass it as an argument.

Instance method objects have attributes, too: m i m sel f isthe object of which the method is an
instance, and m i m_f unc isthe function object corresponding to the method.

9.7.1 Exceptions Can Be Classes

User-defined exceptions are no longer limited to being string objects -- they can be identified by classes
aswell. Using this mechanism it is possible to create extensible hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

http://www.python.org/doc/current/tut/nodel11.html (12 of 14) [2/18/2003 11:39:03 PM]

9. Classes

rai se Cl ass, 1 nstance

rai se i nstance

Inthefirst form, i nst ance must be an instance of Cl ass or of aclass derived from it. The second
form is a shorthand for:

rai se instance. __class__, instance

An except clause may list classes as well as string objects. A classin an except clause is compatible with
an exception if it isthe same class or a base class thereof (but not the other way around -- an except
clause listing a derived class is not compatible with a base class). For example, the following code will
print B, C, D in that order:

cl ass B:
pass
class C(B):
pass
class D(O):
pass

for cin[B C D:

try:
rai se c()
except D
print "D
except C
print "C'
except B:
print "B"

Note that if the except clauses were reversed (with "except B" first), it would have printed B, B, B --
the first matching except clause istriggered.

When an error message is printed for an unhandled exception which is a class, the class name s printed,
then a colon and a space, and finally the instance converted to a string using the built-in function st r () .

Footnotes

http://www.python.org/doc/current/tut/nodel11.html (13 of 14) [2/18/2003 11:39:03 PM]

9. Classes

... namespace! 9:1
Except for one thing. Module objects have a secret read-only attribute called __di ct __ which

returns the dictionary used to implement the modul€'s namespace; thename __di ct __ isan
attribute but not a global name. Obviously, using this violates the abstraction of namespace
implementation, and should be restricted to things like post-mortem debuggers.

= T = Python Tutorial foc
CMTENTS

Previous:. 8. Errors and Exceptions Up: Python Tutorial Next: 10. What Now?

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/nodel11.html (14 of 14) [2/18/2003 11:39:03 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

10. What Now?

= T = Python Tutorial foc
COHTEMTS

Previous:. 9. Classes Up: Python Tutorial Next: A. Interactive Input Editing

10. What Now?

Reading this tutorial has probably reinforced your interest in using Python -- you should be eager to
apply Python to solve your real-world problems. Now what should you do?

Y ou should read, or at least page through, the Python Library Reference, which gives complete (though
terse) reference material about types, functions, and modules that can save you alot of time when writing
Python programs. The standard Python distribution includes alot of code in both C and Python; there are
modules to read Unix mailboxes, retrieve documents via HT TP, generate random numbers, parse
command-line options, write CGI programs, compress data, and alot more; skimming through the
Library Reference will give you an idea of what's available.

The major Python Web site is http://www.python.org/; it contains code, documentation, and pointers to

Python-related pages around the Web. This Web site is mirrored in various places around the world, such
as Europe, Japan, and Australia; amirror may be faster than the main site, depending on your
geographical location. A more informal site is http://starship.python.net/, which contains a bunch of

Python-related personal home pages; many people have downloadable software there.

For Python-related questions and problem reports, you can post to the newsgroup comp.lang.python, or
send them to the mailing list at python-list@python.org. The newsgroup and mailing list are
gatewayed, so messages posted to one will automatically be forwarded to the other. There are around 120
postings aday, asking (and answering) questions, suggesting new features, and announcing new
modules. Before posting, be sure to check the list of Frequently Asked Questions (also called the FAQ),
at http://www.python.org/doc/FAQ.html, or ook for it in the Misc/ directory of the Python source
distribution. Mailing list archives are available at http://www.python.org/pipermail/. The FAQ answers
many of the questions that come up again and again, and may already contain the solution for your
problem.

= T = Python Tutorial foc
COMTENTS

Previous: 9. Classes Up: Python Tutorial Next: A. Interactive Input Editing

Release 2.2.2, documentation updated on October 14, 2002.

http://www.python.org/doc/current/tut/node12.html (1 of 2) [2/18/2003 11:39:08 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/lib/lib.html
http://www.python.org/
http://starship.python.net/
news:comp.lang.python
http://www.python.org/doc/FAQ.html
http://www.python.org/pipermail/
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

10. What Now?

See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/node12.html (2 of 2) [2/18/2003 11:39:08 PM]

http://www.python.org/doc/current/tut/about.html

A. Interactive Input Editing and History Substitution

= T [Python Tutorial loc
COMTEMTS

Previous: 10. What Now? Up: Python Tutorial Next: B. Floating Point Arithmetic:

Subsections

. A.lLineEditing

. A.2 History Substitution
. A.3Key Bindings

. A.4 Commentary

A. Interactive Input Editing and History Substitution

Some versions of the Python interpreter support editing of the current input line and history substitution, similar to
facilities found in the Korn shell and the GNU Bash shell. Thisisimplemented using the GNU Readline library,
which supports Emacs-style and vi-style editing. This library has its own documentation which | won't duplicate here;
however, the basics are easily explained. The interactive editing and history described here are optionally availablein
the Unix and CygWin versions of the interpreter.

This chapter does not document the editing facilities of Mark Hammond's PythonWin package or the Tk-based
environment, IDLE, distributed with Python. The command line history recall which operates within DOS boxes on
NT and some other DOS and Windows flavorsis yet another beast.

A.l Line Editing

If supported, input line editing is active whenever the interpreter prints a primary or secondary prompt. The current
line can be edited using the conventional Emacs control characters. The most important of these are: C- A (Control-A)
moves the cursor to the beginning of the line, C- E to the end, C- B moves it one position to the left, C- F to theright.
Backspace erases the character to the left of the cursor, C- D the character to its right. C- K kills (erases) the rest of the
line to the right of the cursor, C- Y yanks back the last killed string. C- under scor e undoes the last change you
made; it can be repeated for cumulative effect.

A.2 History Substitution

History substitution works as follows. All non-empty input lines issued are saved in a history buffer, and when a new
prompt is given you are positioned on anew line at the bottom of this buffer. C- P moves one line up (back) in the
history buffer, C- N moves one down. Any line in the history buffer can be edited; an asterisk appears in front of the

http://www.python.org/doc/current/tut/node13.html (1 of 4) [2/18/2003 11:39:13 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

A. Interactive Input Editing and History Substitution

prompt to mark aline as modified. Pressing the Ret ur n key passes the current line to the interpreter. C- R starts an
incremental reverse search; C- S starts aforward search.

A.3 Key Bindings

The key bindings and some other parameters of the Readline library can be customized by placing commandsin an
initialization file called ~/.inputrc. Key bindings have the form

key- nane: function-name
or

"string": function-nane
and options can be set with

set option-nane val ue
For example:

| prefer vi-style editing:
set editing-node vi

Edit using a single line:
set horizontal -scroll-npde On

Rebi nd sone keys:

Met a- h: backward- ki |l | -word

"\ G- u": universal -argunent
"\CGxX\Cr": re-read-init-file

Note that the default binding for Tab in Pythonisto insert a Tab character instead of Readline's default filename
completion function. If you insist, you can override this by putting

Tab: conplete
inyour ~/.inputrc. (Of course, this makesit harder to type indented continuation lines.)

Automatic completion of variable and module namesis optionally available. To enable it in the interpreter's
interactive mode, add the following to your startup file:A-1

i nport rlconpleter, readline
readl i ne. parse_and_bi nd('tab: conplete')

http://www.python.org/doc/current/tut/node13.html (2 of 4) [2/18/2003 11:39:13 PM]

A. Interactive Input Editing and History Substitution

Thisbinds the Tab key to the completion function, so hitting the Tab key twice suggests completions; it looks at
Python statement names, the current local variables, and the available module names. For dotted expressions such as
string. a, it will evaluate the the expression up to the final ". " and then suggest completions from the attributes of
the resulting object. Note that this may execute application-defined code if an object witha__getattr__ ()
method is part of the expression.

A more capable startup file might look like this example. Note that this deletes the names it creates once they are no

longer needed; thisis done since the startup file is executed in the same namespace as the interactive commands, and
removing the names avoids creating side effects in the interactive environments. Y ou may find it convenient to keep

some of the imported modules, such as os, which turn out to be needed in most sessions with the interpreter.

Add auto-conpletion and a stored history file of commands to your Python
interactive interpreter. Requires Python 2.0+, readline. Autoconplete is
bound to the Esc key by default (you can change it - see readline docs).
#

Store the file in ~/.pystartup, and set an environnent variable to point
#toit, e.g. "export PYTHONSTARTUP=/ max/ home/itamar/.pystartup" in bash.
#

Note that PYTHONSTARTUP does *not* expand "~", so you have to put in the
full path to your hone directory.

| nport atexit

| nport os

| nport readline

I nport rlconpleter

hi storyPat h = os. pat h. expanduser (" ~/. pyhi story")

def save_hi story(historyPat h=hi st oryPat h):
i nport readline
readline.wite history file(historyPath)

i f o0s.path.exists(historyPath):
readline.read_history file(historyPath)

atexit.regi ster(save_history)
del os, atexit, readline, rlconpleter, save history, historyPath

A.4 Commentary

Thisfacility is an enormous step forward compared to earlier versions of the interpreter; however, some wishes are
left: 1t would be nice if the proper indentation were suggested on continuation lines (the parser knows if an indent
token isrequired next). The completion mechanism might use the interpreter's symbol table. A command to check (or
even suggest) matching parentheses, quotes, etc., would also be useful.

http://www.python.org/doc/current/tut/node13.html (3 of 4) [2/18/2003 11:39:13 PM]

A. Interactive Input Editing and History Substitution

Footnotes

- fileAd
Python will execute the contents of afileidentified by the PY THONSTARTUP environment variable when

you start an interactive interpreter.

foc

e ¢ 9 Python Tutorial
CONTENTS

Previous: 10. What Now? Up: Python Tutorial Next: B. Floating Point Arithmetic:

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/node13.html (4 of 4) [2/18/2003 11:39:13 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

B. Floating Point Arithmetic: |ssues and Limitations

= T = Python Tutorial foc
COHTEMTS

Previous. A. Interactive Input Editing Up: Python Tutorial Next: C. History and License

Subsections

. B.1 Representation Error

B. Floating Point Arithmetic: Issues and
Limitations

Floating-point numbers are represented in computer hardware as base 2 (binary) fractions. For example,
the decimal fraction

0.125
has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction
0. 001

has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only real difference being that
the first iswritten in base 10 fractional notation, and the second in base 2.

Unfortunately, most decimal fractions cannot be represented exactly as binary fractions. A consequence
Isthat, in general, the decimal floating-point numbers you enter are only approximated by the binary
floating-point numbers actually stored in the machine.

The problem is easier to understand at first in base 10. Consider the fraction 1/3. Y ou can approximate
that as a base 10 fraction:

0.3
or, better,

0. 33

http://www.python.org/doc/current/tut/node14.html (1 of 6) [2/18/2003 11:39:19 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

B. Floating Point Arithmetic: |ssues and Limitations

or, better,
0. 333

and so on. No matter how many digits you're willing to write down, the result will never be exactly 1/3,
but will be an increasingly better approximation to 1/3.

In the same way, no matter how many base 2 digits you're willing to use, the decimal value 0.1 cannot be
represented exactly as a base 2 fraction. In base 2, 1/10 is the infinitely repeating fraction

0.0001100110011001100110011001100110011001100110011. ..
Stop at any finite number of bits, and you get an approximation. Thisiswhy you see things like:

>>> 0.1
0. 10000000000000001

On most machines today, that is what you'll seeif you enter 0.1 at a Python prompt. Y ou may not,
though, because the number of bits used by the hardware to store floating-point values can vary across
machines, and Python only prints a decimal approximation to the true decimal value of the binary
approximation stored by the machine. On most machines, if Python were to print the true decimal value
of the binary approximation stored for 0.1, it would have to display

>>> 0.1
0. 1000000000000000055511151231257827021181583404541015625

instead! The Python prompt (implicitly) usesthe builtinr epr () function to obtain a string version of
everything it displays. For floats, r epr (float) rounds the true decimal value to 17 significant digits,

giving
0. 10000000000000001

r epr (float) produces 17 significant digits because it turns out that's enough (on most machines) so that
eval (repr(x)) == xexactly for al finite floats x, but rounding to 16 digitsis not enough to make
that true.

Note that thisisin the very nature of binary floating-point: thisisnot a bug in Python, it isnot abug in
your code either, and you'll see the same kind of thing in all languages that support your hardware's
floating-point arithmetic (although some languages may not display the difference by default, or in all
output modes).

http://www.python.org/doc/current/tut/node14.html (2 of 6) [2/18/2003 11:39:19 PM]

B. Floating Point Arithmetic: |ssues and Limitations

Python's builtin st r () function produces only 12 significant digits, and you may wish to use that
instead. It's unusual for eval (str (X)) toreproduce x, but the output may be more pleasant to look at:

>>> print str(0.1)
0.1

It's important to realize that thisis, in areal sense, anillusion: the value in the machine is not exactly
1/10, you're simply rounding the display of the true machine value.

Other surprises follow from this one. For example, after seeing

>>> 0.1
0. 10000000000000001

you may be tempted to use ther ound() function to chop it back to the single digit you expect. But that
makes no difference:

>>> round(0.1, 1)
0. 10000000000000001

The problem is that the binary floating-point value stored for "0.1" was already the best possible binary
approximation to 1/10, so trying to round it again can't make it better: it was already as good asiit gets.

Another consequenceisthat since 0.1 is not exactly 1/10, adding 0.1 to itself 10 times may not yield
exactly 1.0, either:

>>> sum = 0.0

>>> for i in range(10):
sum += 0.1

>>> sum

0. 99999999999999989

Binary floating-point arithmetic holds many surprises like this. The problem with "0.1" is explained in
precise detail below, in the "Representation Error" section. See The Perils of Floating Point for a more

complete account of other common surprises.

Asthat says near the end, " there are no easy answers." Still, don't be unduly wary of floating-point! The
errorsin Python float operations are inherited from the floating-point hardware, and on most machines
are on the order of no more than 1 part in 2**53 per operation. That's more than adequate for most tasks,
but you do need to keep in mind that it's not decimal arithmetic, and that every float operation can suffer
anew rounding error.

http://www.python.org/doc/current/tut/node14.html (3 of 6) [2/18/2003 11:39:19 PM]

http://www.lahey.com/float.htm

B. Floating Point Arithmetic: |ssues and Limitations

While pathological cases do exist, for most casual use of floating-point arithmetic you'll see the result
you expect in the end if you simply round the display of your final results to the number of decimal digits
you expect. st r () usually suffices, and for finer control see the discussion of Pythons's %format
operator: the %g, % and % format codes supply flexible and easy ways to round float results for

display.

B.1 Representation Error

This section explainsthe ""0.1" example in detail, and shows how you can perform an exact analysis of
cases like this yourself. Basic familiarity with binary floating-point representation is assumed.

Representation error refersto that some (most, actually) decimal fractions cannot be represented exactly
as binary (base 2) fractions. Thisisthe chief reason why Python (or Perl, C, C++, Java, Fortran, and
many others) often won't display the exact decimal number you expect:

>>> 0.1
0. 10000000000000001

Why isthat? 1/10 is not exactly representable as a binary fraction. Almost all machines today (November
2000) use |EEE-754 floating point arithmetic, and almost all platforms map Python floats to IEEE-754
"double precision”. 754 doubles contain 53 bits of precision, so on input the computer strives to convert
0.1 to the closest fraction it can of the form J/2**N where J is an integer containing exactly 53 bits.
Rewriting

1/ 10 ~=J [(2**N)

J ~=2**N/ 10
and recalling that J has exactly 53 bits (is>= 2**52 but < 2**53), the best value for N is 56:

>>> 2L**52
4503599627370496L
>>> 2L.**53
9007199254740992L
>>> 2L**56/ 10
7205759403792793L

http://www.python.org/doc/current/tut/node14.html (4 of 6) [2/18/2003 11:39:19 PM]

B. Floating Point Arithmetic: |ssues and Limitations

That is, 56 isthe only value for N that leaves J with exactly 53 bits. The best possible value for J isthen
that quotient rounded:

>>> q, r = divnod(2L**56, 10)
>>> r
6L

Since the remainder is more than half of 10, the best approximation is obtained by rounding up:

>>> q+1
7205759403792794L

Therefore the best possible approximation to 1/10 in 754 double precision is that over 2**56, or
7205759403792794 | 72057594037927936

Note that since we rounded up, thisis actually alittle bit larger than 1/10; if we had not rounded up, the
quotient would have been alittle bit smaller than 1/10. But in no case can it be exactly 1/10!

So the computer never ““sees’ 1/10: what it sees is the exact fraction given above, the best 754 double
approximation it can get:

>>> 1 * 2L**56
7205759403792794. 0

If we multiply that fraction by 10** 30, we can see the (truncated) value of its 30 most significant
decimal digits:

>>> 7205759403792794L * 10L**30 / 2L**56
100000000000000005551115123125L

meaning that the exact number stored in the computer is approximately equal to the decimal value
0.100000000000000005551115123125. Rounding that to 17 significant digits gives the
0.10000000000000001 that Python displays (well, will display on any 754-conforming platform that
does best-possible input and output conversionsin its C library -- yours may not!).

= T = Python Tutorial foc
COWTEMTS

Previous. A. Interactive Input Editing Up: Python Tutorial Next: C. History and License

http://www.python.org/doc/current/tut/node14.html (5 of 6) [2/18/2003 11:39:19 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html

C. History and License

= T = Python Tutorial foc
COHTEMTS

Previous. B. Floating Point Arithmetic: Up: Python Tutorial Next: About this document ...

Subsections

. C.1 History of the software
. C.2 Terms and conditions for accessing or otherwise using Python

C. History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI,
see http://www.cwi.nl/) in the Netherlands as a successor of alanguage called ABC. Guido remains

Python's principal author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives
(CNRI, see http://www.cnri.reston.va.us/) in Reston, Virginiawhere he released several versions of the

software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen
PythonL abs team. In October of the same year, the PythonL abs team moved to Zope Corporation (then
Digital Creations; see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see

http://www.python.org/psf/) was formed, a non-profit organization created specifically to own Python-
related Intellectual Property. Zope Corporation is a sponsoring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition).

Historically, most, but not all, Python releases have also been GPL -compatible; the table below
summarizes the various rel eases.

Release Derived from @ Year Owner GPL compatible?
0.9.0thru 1.2 n/a 1991-1995 Cwi yes
1.3thrul5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no

http://www.python.org/doc/current/tut/nodel15.html (1 of 6) [2/18/2003 11:39:23 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

C. History and License

2.0 1.6 2000 |BeOpen.com |no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
20.1 2.0+1.6.1 2001 PSF yes
21.1 2.1+2.0.1 2001 PSF yes
2.2 21.1 2001 PSF yes
2.1.2 21.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes

Note: GPL-compatible doesn't mean that we're distributing Python under the GPL. All Python licenses,
unlike the GPL, let you distribute a modified version without making your changes open source. The
GPL-compatible licenses make it possible to combine Python with other software that is released under
the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido's direction to make these releases
possible.

C.2 Terms and conditions for accessing or
otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.2

1. ThisLICENSE AGREEMENT is between the Python Software Foundation ("' PSF"), and the
Individual or Organization (" Licensee") accessing and otherwise using Python 2.2.2 software in
source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a
nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use Python 2.2.2 alone or in any
derivative version, provided, however, that PSF's License Agreement and PSF's notice of
copyright, i.e., "Copyright © 2001, 2002 Python Software Foundation; All Rights Reserved" are
retained in Python 2.2.2 alone or in any derivative version prepared by Licensee.

3. Inthe event Licensee prepares a derivative work that is based on or incorporates Python 2.2.2 or
any part thereof, and wants to make the derivative work available to others as provided herein,
then Licensee hereby agreesto include in any such work a brief summary of the changes made to

http://www.python.org/doc/current/tut/nodel15.html (2 of 6) [2/18/2003 11:39:23 PM]

C. History and License

Python 2.2.2.

4. PSF is making Python 2.2.2 availableto Licensee on an "AS1S" basis. PSF MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.2.2 WILL NOT INFRINGE
ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.2.2
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGESOR LOSSAS A
RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.2.2, OR
ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. ThisLicense Agreement will automatically terminate upon a material breach of its terms and
conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between PSF and Licensee. This License Agreement does not grant
permission to use PSF trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.2.2, Licensee agrees to be bound by the terms
and conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. ThisLICENSE AGREEMENT is between BeOpen.com (" 'BeOpen"), having an office at 160
Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization (" Licensee")
accessing and otherwise using this software in source or binary form and its associated
documentation (" "the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby
grants Licensee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test,
perform and/or display publicly, prepare derivative works, distribute, and otherwise use the
Software alone or in any derivative version, provided, however, that the BeOpen Python License
Isretained in the Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “"ASIS" basis. BEOPEN MAKES
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

http://www.python.org/doc/current/tut/nodel15.html (3 of 6) [2/18/2003 11:39:23 PM]

C. History and License

EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE
ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE
SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR
LOSSASA RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR
ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. ThisLicense Agreement will automatically terminate upon a material breach of its terms and
conditions.

6. ThisLicense Agreement shall be governed by and interpreted in all respects by the law of the
State of California, excluding conflict of law provisions. Nothing in this License Agreement shall
be deemed to create any relationship of agency, partnership, or joint venture between BeOpen and
Licensee. This License Agreement does not grant permission to use BeOpen trademarks or trade
names in atrademark sense to endorse or promote products or services of Licensee, or any third
party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that
web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms
and conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. ThisLICENSE AGREEMENT is between the Corporation for National Research Initiatives,
having an office at 1895 Preston White Drive, Reston, VA 20191 ("' CNRI"), and the Individual or
Organization (" Licensee") accessing and otherwise using Python 1.6.1 software in source or
binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a
nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use Python 1.6.1 alone or in any
derivative version, provided, however, that CNRI's License Agreement and CNRI's notice of
copyright, i.e., " Copyright © 1995-2001 Corporation for National Research Initiatives; All Rights
Reserved" areretained in Python 1.6.1 alone or in any derivative version prepared by Licensee.
Alternately, in lieu of CNRI's License Agreement, Licensee may substitute the following text
(omitting the quotes): ~ Python 1.6.1 is made available subject to the terms and conditionsin
CNRI's License Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle): 1895.22/1013. This

http://www.python.org/doc/current/tut/nodel15.html (4 of 6) [2/18/2003 11:39:23 PM]

C. History and License

Agreement may also be obtained from a proxy server on the Internet using the following URL.:
http://hdl.handle.net/1895.22/1013."

3. Inthe event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or
any part thereof, and wants to make the derivative work available to others as provided herein,
then Licensee hereby agrees to include in any such work a brief summary of the changes made to
Python 1.6.1.

4. CNRI ismaking Python 1.6.1 availableto Licenseeon an ~"ASIS" basis. CNRI MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT INFRINGE
ANY THIRD PARTY RIGHTS.,

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGESOR LOSSASA
RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR
ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

7. ThisLicense Agreement shall be governed by the federal intellectual property law of the United
States, including without limitation the federal copyright law, and, to the extent such U.S. federal
law does not apply, by the law of the Commonwealth of Virginia, excluding Virginia's conflict of
law provisions. Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed under the GNU
General Public License (GPL), the law of the Commonwealth of Virginia shall govern this
License Agreement only as to issues arising under or with respect to Paragraphs 4, 5, and 7 of this
License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking onthe "ACCEPT" button where indicated, or by copying, installing or otherwise
using Python 1.6.1, Licensee agrees to be bound by the terms and conditions of this License
Agreement.

ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

http://www.python.org/doc/current/tut/nodel15.html (5 of 6) [2/18/2003 11:39:23 PM]

http://hdl.handle.net/1895.22/1013

C. History and License

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights
reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and that the name
of Stichting Mathematisch Centrum or CWI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMSALL WARRANTIESWITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

= T = Python Tutorial foc
COMTENTS

Previous. B. Floating Point Arithmetic: Up: Python Tutorial Next: About this document ...

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/nodel15.html (6 of 6) [2/18/2003 11:39:23 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

About this document ...

é T Python Tutorial oc
COMTENTS

Previous. C. History and License Up: Python Tutorial

About this document ...

Python Tutorial, October 14, 2002, Release 2.2.2

This document was generated using the L aT eX2HTML trandlator.

LaTeX2HTM. is Copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos, Computer Based Learning
Unit, University of Leeds, and Copyright © 1997, 1998, Ross M oore, Mathematics Department,
Macquarie University, Sydney.

The application of LaTeX2HTM. to the Python documentation has been heavily tailored by Fred L.
Drake, Jr. Original navigation icons were contributed by Christopher Petrilli.

Comments and Questions

General comments and questions regarding this document should be sent by email to python-
docs@python.org. If you find specific errorsin this document, please report the bug at the Python Bug
Tracker at SourceForge.

Questions regarding how to use the information in this document should be sent to the Python news
group, comp.lang.python, or the Python mailing list (which is gated to the newsgroup and carries the

same content).

For any of these channels, please be sure not to send HTML email. Thanks.

= T Python Tutorial foc
COMTENTS

Previous: C. History and License Up: Python Tutorial

Release 2.2.2, documentation updated on October 14, 2002.
See About this document... for information on suggesting changes.

http://www.python.org/doc/current/tut/node16.html [2/18/2003 11:39:36 PM]

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www.maths.mq.edu.au/~ross/
http://saftsack.fs.uni-bayreuth.de/~latex2ht/
mailto:python-docs@python.org
mailto:python-docs@python.org
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/bugs/?group_id=5470
http://sourceforge.net/
news:comp.lang.python
http://www.python.org/mailman/listinfo/python-list
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/about.html

	About this document
	Front Matter
	Table Of Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Appendix A
	Appendix B
	Appendix C
	Comments & Questions

