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Lecturel

First Order Languages

In afirst order language L, al the primitive symbols are among the following:
Connectives: ~, .

Parentheses: ().

Variables: Xq, X2, X3, . . . .

Congtants. &y, &, a3,....

Function letters. ~ f1, f3, ... (one-place);
f2 12, ... (two-place);
Predicateletters.  PL, P3,..  (one-place);

P2, P5, ... (two-place);

Moreover, we place the following constraints on the set of primitive symbols of afirst order
language L. L must contain all of the variables, as well as the connectives and parentheses.
The constants of L form an initial segment of &, &, ag, . . ., i.€., éther L containsal the
constants, or it contains all and only the constants a, . . ., a, for somen, or L contains no
congtants. Similarly, for any n, the n-place predicate |etters of L form an initial segment of
P, P5, ... and the n-place function letters form an initial segment of f3, 5, ... However, we
requirethat L contain at least one predicate letter; otherwise, there would be no formulae of
L.

(We could have relaxed these constraints, allowing, for example, the constants of a
language L to be &y, ag, as, . . . However, doing so would not have increased the expressive
power of first order languages, since by renumbering the constants and predicates of L, we
could rewrite each formula of L asaformulaof some language L' that meets our
constraints. Moreover, it will be convenient later to have these constraints.)

A first order language L is determined by a set of primitive symbols (included in the set
described above) together with definitions of the notions of aterm of L and of aformula of
L. Wewill define the notion of aterm of afirst order language L asfollows:
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(i) Variablesand constantsof L aretermsof L.
(ii) 1fty, ..., tharetermsof L and f]' isafunction letter of L, then f't;...t, isaterm of L.

(iii) Thetermsof L are only those things generated by clauses (i) and (ii).

Note that clause (iii) (the “extremal clause”) needs to be made more rigorous; we shall
make it so later on in the course.
An atomic formula of L is an expression of the form Pt;...t,, where P! isa predicate

letter of L and ty, ..., t, aretermsof L. Finaly, we define formula of L asfollows:

() Anatomicformulaof L isaformulaof L.

(i) If Aisaformulaof L, thensois~A.

(i) If A and B areformulae of L, then (A o B) isaformulaof L.

(iv) If Alisaformulaof L, thenfor any i, (x;) A isaformulaof L.

(v) Theformulae of L are only those things that are required to be so by clauses (i)-

(iv).

Here, aselsawhere, we use'A’, 'B', etc. to range over formulae.

Let x; be avariable and suppose that (x;)B isaformulawhichisapart of aformulaA.
Then B is called the scope of the particular occurrence of the quantifier (x;) in A. An
occurrence of avariable x; in A isbound if it falls within the scope of an occurrence of the
quantifier (x;), or if it occursinside the quantifier (x;) itself; and otherwiseit isfree. A
sentence (or closed formula) of L isaformulaof L in which all the occurrences of variables
are bound.

Note that our definition of formulaallows a quantifier (x;) to occur within the scope of
another occurrence of the same quantifier (x;), eg. (x2)(Pix1 D (X1) Px1). Thisis abit
hard to read, but is equivalent to (x1)(Pix1 O (X2) Pix2). Formulae of this kind could be
excluded from first order languages; this could be done without loss of expressive power,
for example, by changing our clause (iv) in the definition of formulato a clause like:

(iv") If Alisaformulaof L, then for any i, (x;) A isaformulaof L, provided that (x;)
does not occur in A.

(We may call therestriction in (iv') the “ nested quantifier restriction”). Our definition of
formulaaso alows avariable to occur both free and bound within asingle formula; for
example, Pix; O (x1) Pix; isawell formed formulain alanguage containing P} and P3. A
restriction excluding this kind of formulae could also be put in, again without |oss of
expressive power in the resulting languages. The two restrictions mentioned were adopted
by Hilbert and Ackermann, but it is now common usage not to impose them in the definition
of formula of afirst order language. We will follow established usage, not imposing the
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restrictions, although imposing them might have some advantages and no important
disadvantadge.

We have described our officia notation; however, we shall often use an unofficia
notation. For example, we shal often use'x', 'y', 'Z, etc. for variables, while officialy we
should use 'x1', ‘X2, etc. A similar remark applies to predicates, constants, and function
letters. We shall also adopt the following unofficial abbreviations:

(A v B) for (~A o B);

(A AB) for ~(A o ~B);
(A=B)for (A>B)A(B>A));
(3x) A for ~(x;) ~A.

Finally, we shall often omit parentheses when doing so will not cause confusion; in
particular, outermost parentheses may usually be omitted (e.g. writing A o B for (A © B)).
It isimportant to have parenthesesin our official notation, however, since they serve the
important function of disambiguating formulae. For example, if we did not have
parentheses (or some equivaent) we would have no way of distinguishing the two readings
of ADB>C,viz.(A>(B>C)) and ((A oB)>C). Strictly speaking, we ought to prove
that our official use of parentheses successfully disambiguates formulae. (Church proves
this with respect to his own use of parenthesesin his Introduction to Mathematical Logic.)

Eliminating Function L etters

In principle, we are allowing function letters to occur in our languages. Infact, in view of a
famous discovery of Russall, thisis unnecessary: if we had excluded function letters, we
would not have decreased the expressive power of first order languages. Thisis because we
can eliminate function letters from a formula by introducing a new n+1-place predicate letter
for each n-place function letter inthe formula. Let us start with the ssimplest case. Let f be
an n-place function letter, and let F be a new n+1-place predicate letter. We can then rewrite

f(X1, o Xn) =Y

F(X1, .0y Xn, Y)-

If Pisaone-place predicate letter, we can then rewrite

P(f(X1, ...y Xn))
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@y) (F(X2, s X Y) A P(Y)).

The general situation is more complicated, because formulae can contain complex termslike
f(9(x)); we must rewrite the formulaf(g(x)) =y as (32) (G(x, 2) A F(z, y)). By repeated
applications of Russall'strick, we can rewrite al formulae of theformt = x, wheretisa
term. We can then rewrite all formulae, by first rewriting

Alty, ..., )

(@X1)...(qxn) (X1 =t1 A oo AXp =1ty A A(Xg, ...y Xn)),

and finally eliminating the function letters from the formulae x; = t;.
Note that we have two different ways of rewriting the negation of aformulaA(ty,....tn).
We can either smply negate the rewritten version of A(ty, ..., tp):

~(3X1)...(3%n) X1 =t1 A cee AXp=1th A A(X1, oeey X));
or we can rewriteit as
(3X1)...(F%n) X2 =t1 A coe AXp =th A ~A(X1, ory Xp))-

Both versions are equivalent. Finally, we can eliminate constants in just the same way we
eliminated function letters, since x = g can be rewritten P(x) for a new unary predicate P.

[nterpretations

By an interpretation of afirst order language L (or amodel of L, or a structure appropriate
for L), wemean apair <D, F>, where D (the domain) is a nonempty set, and F isafunction
that assigns appropriate objects to the constants, function letters and predicate letters of L.

Specifically,

- F assigns to each constant of L an element of D;
- F assigns to each n-place function letter an n-place function with domain D" and
range included in D; and
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- F assignsto each n-place predicate letter of L an n-placereation on D (i.e., a subset
of D).

Let | =<D, F> be aninterpretation of afirst order language L. An assignmentinlisa
function whose domain is a subset of the set of variables of L and whose range is a subset
of D (i.e., an assgnment that maps some, possibly all, variables into elements of D). We
now define, for given |, and for al termst of L and assgnmentssin I, the function Den(t,s)
(the denotation (in 1) of aterm t with respect to an assgnment s(in 1)), that (when defined)
takes aterm and an assignment into an element of D, asfollows:

(i) if tisaconstant, Den(t, s)=F(t);

(i) if tisavariable and S(t) isdefined, Den(t, 5)=5(t); if S(t) isundefined, Den(t, s) is
also undefined;

(i) if tisaterm of theform fi”(tl, ..., tn) and Den(tj,s)=b; (for j =1, ..., n), then Den(t,

s):F(fi”)(bl, .., bp); if Den(t;,s) is undefined for some j<n, then Den(t,s) isalso
undefined.

Let us say that an assignment sis sufficient for aformula A if and only if it makesthe
denotations of all termsin A defined, if and only if it is defined for every variable occurring
freein A (thus, note that all assignments, including the empty one, are sufficient for a
sentence). We say that an assignment sin | satisfies (inl) aformula A of L just in case

(i) Aisan atomicformuIaPi”(tl, ..., tn), sissufficient for A and
<Den(ty,s),....Den(tn,9)> € F(P); or

(i) Ais~B, sissufficient for B but s does not satisfy B; or

(iii) Alis(B o C), sissufficient for B and C and either s does not satisfy B or s
satisfies C; or

(iv) Ais(x;)B, sissufficient for A and for every s that is sufficient for B and such
that for all j#i, s(x))=s(x;), s satisfies B.

We aso say that aformula A istrue (in an interpretation 1) with respect to an assignment s
(inl) iff Aissatisfied (inl) by s; if sissufficient for A and A is not true with respect to s,
we say that A isfalsewith respectto s.

If A isasentence, we say that A istruein | iff al assignmentsin | satisfy A (or, what is
equivalent, iff at least one assignment in | satisfies A).

We say that aformula A of L isvalid iff for every interpretation | and all assignments s
inl, Aistrue (inl) with respect to s (we aso say, for languages L containing Pf that a
formula A of L isvalid in thelogic with identity iff for every interpretation |I=<D,F> where
F(P%) isthe identity relation on D, and al assignmentssin I, A istrue (in 1) with respect to
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S). More generaly, we say that A isaconsequence of aset I" of formulas of L iff for every
interpretation | and every assignment sin 1, if all the formulasof I" are true (in I) with
respect to s, then A istrue (in 1) with respect to s. Note that a sentenceisvalid iff itistrue
inal itsinterpretationsiff it is a consequence of the empty set. We say that aformulaA is
satisfiable iff for some interpretation I, A istrue (in I) with respect to some assignment in|.
A sentenceis satisfiableiff it istrue in some interpretation.

For the following definitions, let an interpretation 1=<D,F> be taken asfixed. If A isa
formulawhose only free variables are Xy, ..., Xp, then we say that the n-tuple<ay, ..., &>
(eDN) satisfies A (in1) just in case A is satisfied by an assignment s (in |), where s(xj) = &
fori=1,..,n. (Inthecasen=1, wesay that asatisfies A just in case the 1-tuple <a> does.)
We say that A defines (in ) therelation R (D) iff R={<by, ..., by>: <by,...,b> satisfies
A}. Ann-placereation R (cD") isdefinable (in 1) in L iff thereisaformula A of L whose
only freevariablesare xy, ..., Xp, and such that A definesR (inl). Smilarly, if tisaterm
whose free variables are Xy, ..., Xp, then we say that t defines the function h, where h(ay, ...,
an) = bjust in case Den(t,s)=b for some assignment s such that s(x;) = g. (So officialy
formulae and terms only define relations and functions when their free variablesare xq, ...,
X for some n; in practice we shdl ignore this, since any formula can be rewritten so that its
free variablesform an initial segment of all the variables.)

The Language of Arithmetic

We now give a specific example of afirst order language, along with its standard or
intended interpretation. The language of arithmetic contains one constant a;, one function
|etter f1, one 2-place predicate letter P2, and two 3-place predicate letters P, and Ps. The
standard interpretation of thislanguageis<N, F>where N isthe set {0, 1, 2, ...} of natural
numbers, and where

F(a) = 0;

F(f}) = the successor function s(x) = x+1;

F(P?) = theidentity relation {<x, y>: x = y};

F(P}) ={<x,y, z>: x +y = 7}, the graph of the addition function;
F(Pg) ={<x,y, z>: x'y =z}, the graph of the multiplication function.

We aso have an unofficia notation: wewrite

Ofor a;
x' for fix;
x =y for Pxy;

A(x, Y, Z) for Pxyz;
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M(x, y, 2) for Pixyz.

This presentation of the language of arithmetic is rather atypical, since we use afunction
letter for successor but we use predicates for addition and multiplication. Note, however, that
formulae of alanguage involving function letters for addition and multiplication instead of
the corresponding predicate |etters could be rewritten as formulae of the language of
arithmetic via Russdll’ strick.

A numeral isaterm of theform 0", i.e. the constant O followed by zero or more
successor function signs. The numeral for a number nis zero followed by n successor
function signs; we shall use the notation 0" for the numeral for n (note that ‘n’ isnot a
variable of our forma system, but avariable of our informal talk). It may be noted that the
only terms of the language of arithmetic, as we have set it up, are the numeras and
expressions of the form x;'---'.

Finally, note that for the language of arithmetic, we can define satisfaction in terms of
truth and substitution. Thisis because ak-tuple <ny, ..., N> of numbers satisfies A(X4, ...,
X) just in case the sentence A(0(ND), ..., 0(K)) istrue (where A(0(MD), .., 0(k)) comes from A
by substituting the numeral 0(ni) for all of the free occurrences of the variable x;).
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Lecturell

The Language RE

We shall now introduce the language RE. Thisis not strictly speaking afirst order
language, in the sense just defined. However, it can be regarded as a fragment of the first
order language of arithmetic.

In RE, the symbols A and v are the primitive connectives rather than ~ and o. RE
further contains the quantifier symbol 3 and the symbol < as primitive. The terms and
atomic formulae of RE are those of the language of arithmetic as presented above. Then the
notion of formula of RE is defined as follows:

() Anatomic formulaof RE isaformula

(i) If Aand B areformulae, so are (A A B) and (A v B).

(iii) If tisaterm not containing the variable x;, and A isaformula, then (3x;) A and (x;
<t) A areformulae.

(iv) Only those things generated by the previous clauses are formulae.

The intended interpretation of RE is the same as the intended interpretation of the first
order language of arithmetic (it isthe same pair <D,F>). Such notions as truth and
satisfaction for formulae of RE and definability by formulae of RE are defined in away
similar to that in which they would be defined for the language of arithmetic using our
generd definitions of truth and satisfaction; in the appropriate clause, the quantifier (x; <t)
isintuitively interpreted as "for al x; lessthant..." (it isa so called “bounded universal
quantifier”).

Note that RE does not contain negation, the conditional or unbounded universal
quantification. These are not definable in terms of the primitive symbols of RE. The
restriction on theterm t of (x; <t) in clause (iii) aboveis necessary if we areto exclude
unbounded universal quantification from RE, because (x; < x;') B is equivalent to (x;) B.

The Intuitive Concept of Computability and its Formal Counterparts

The importance of the language RE liesin the fact that with its help we will offer adefinition
that will try to capture the intuitive concept of computability. We call an n-place relation on
the set of natural numbers computable if there is an effective procedure which, when given
an arbitrary n-tuple asinput, will in afinite timeyield as output 'yes or 'no’ asthe n-tupleis
orisntintherelation. We call an n-place relation semi-computable if there is an effective
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procedure such that, when given an n-tuple which isin the relation asinput, it eventually
yields the output 'yes, and which when given an n-tuple which isnot in the relation as input,
does not eventually yield the output 'yes. We do not require the procedure to eventually
yield the output 'no’ in this case. An n-placetota function ¢ is called computable if thereis
an effective procedure that, given an n-tuple <pa,...,pr> asinput, eventualy yields ¢(ps,...,Pn)
asoutput (unless otherwise noted, an n-place function is defined for all n-tuples of natural
numbers (or al natural numbersif n= 1) —thisiswhat it meansfor it to be total; and only
takes natural numbers as values.)

It isimportant to note that we place no time limit on the length of computation for a
given input, aslong as the computation takes place within afinite amount of time. If we
required there to be atime limit which could be effectively determined from the input, then
the notions of computability and semi-computability would collapse. For let S be asemi-
computable set, and let P be a semi-computation procedure for S. Then we could find a
computation procedure for Sasfollows. Set P running on input x, and determine atime
limit L fromx. If x e S, then Pwill halt sometime before the limit L. If we reach the limit
L and P has not halted, then we will know that x ¢ P. So as soon as P haltsor wereach L,
we give an output 'yes or 'no’ as P has or hasn't halted. We will seelater in the course,
however, that the most important basic result of recursion theory is that the unrestricted
notions of computability and semi-computability do not coincide: there are semi-computable
sets and relations that are not computable.

The following, however, istrue (the complement of an n-placerelation R (-R) isthe
collection of n-tuples of natural numbersnot in R):

Theorem: A set S(or relation R) is computableiff S (R) and its complement are semi-
computable.

Proof: If aset Siscomputable, thereis a computation procedure Pfor S. Pwill aso be a
semi-computation procedure for S. To semi-compute the complement of S, smply follow
the procedure of changing a‘no’ delivered by Pto a‘yes . Now suppose we have semi-
computation procedures for both S and its complement. To compute whether anumber nis
in S, run simultaneoudly the two semi-computation procedures on n. If the semi-
computation procedure for Sdeliversa‘yes’, the answer isyes; if the semi-computation
procedure for -S deliversa‘yes, the answer is no.

We intend to give formal definitions of the intuitive notions of computable set and
relation, semi-computable set and relation, and computable function. Formal definitions of
these notions were offered for the first time in the thirties. The closest in spirit to the ones
that will be developed here were based on the formal notion of A-definable function
presented by Church. He invented aformalism that he called ‘A-calculus’, introduced the
notion of afunction definable in this calculus (a A-definable function), and put forward the
thesis that the computable functions are exactly the A-definable functions. Thisis Church’s
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thesisinitsorigina form. It states that a certain formal concept correctly captures a certain
intuitive concept.

Our own approach to recursion theory will be based on the following form of Church’'s
thesis:

Church’sThesis: A set S (or relation R) is semi-computable iff S (R) isdefinable in the
language RE.

We dso call the relations definable in RE recursively enumerable (or r.e.). Given our
previous theorem, we can define a set or relation to be recursiveif both it and its
complement arer.e.

Our version of Church's Thesisimplies that the recursive sets and relations are precisely
the computable sets and relations. To see this, suppose that aset Sis computable. Then, by
the above theorem, S and its complement are semi-computable, and hence by Church’s
Thesis, both arer.e.; so Sisrecursive. Conversely, suppose Sisrecursive. Then Sand -S
are both r.e., and therefore by Church's Thesis both are semi-computable. Then by the
above theorem, Sis computable.

The following theorem will be of interest for giving aformal definition of the remaining
intuitive notion of computable function:

Theorem: A total function ¢(m;,...,mp) iscomputable iff the n+1 place relation
d(my,...,mp)=p is semi-computable iff the n+1 place relation ¢(my,...,m,)=p is computable.
Proof: If (my,...,my) iscomputable, the following is a procedure that computes (and hence
also semi-computes) the n+1 place relation ¢(my,...,my)=p. Given an input <px,...,Pn,P>,
compute ¢(Py,...,pn)- If d(P1,....Pn)=p, the answer isyes; if d(p,....Pn)#pP, the answer is no.
Now suppose that the n+1 place relation ¢(my,...,m,)=p is semi-computable (thus the
following would still follow under the assumption that it is computable); then to compute
o(p1,---,Pn), run the semi-computation procedure on sufficient n+1 tuples of the form
<py,..,Pn,M>, via some time-sharing trick. For example, run five steps of the semi-
computation procedure on <py,...,pn,0>, then ten steps on <py,...,pn,0> and <p;,...,pn,1>, and
so on, until you get the n+1 tuple <p;,...,pn,p> for which the *yes' answer comes up. And
then give as output p.

A partial function is afunction defined on a subset of the natural numbers which need
not be the set of al natural numbers. We call an n-place partia function partial computable
iff there is a procedure which delivers ¢(py,...,pn) as output when ¢ is defined for the
argument tuple <pg,...,pr>, and that does not deliver any output if ¢ is undefined for the
argument tuple <pa,...,p»>. The following result, partialy analogous to the above, still holds:

Theorem: A function ¢(my,...,mp) ispartial computable iff the n+1 relation ¢(my,...,mp)=p

10
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IS semi-computable.

Proof: Suppose ¢(m;,...,m,) ispartial computable; then the following is a semi-computation
procedure for the n+1 relation ¢(my,...,my)=p: given an argument tuple <ps,...,Pn,P>, aPply
the partial computation procedure to <pa,...,p>; if and only if it eventually deliversp as
output, the answer isyes. Now suppose that the n+1 relation ¢(my,...,m,)=p is semi-
computable. Then the following isapartial computation procedure for ¢(ms,...,mp). Given
an input <p;,...,py>, run the semi-computation procedure on n+1 tuples of the form
<py,..,Pn,M>, Via some time-sharing trick. For example, run five steps of the semi-
computation procedure on <py,...,pn,0>, then ten steps on <py,...,pn,0> and <py,...,pn, 1>, and
so on. If you get an n+1 tuple <pg,...,pn,p> for which the ‘yes answer comes up, then give
as output p.

But it is not the case anymore that afunction ¢(mg,...,mp) is partial computable iff the
n+1reation ¢(my,...,mMp)=p iscomputable. Thereisno guarantee that apartial computation
procedure will provide acomputation procedure for the relation ¢(my,...,mp)=p; if ¢ is
undefined for <p;,...,pr>, the partial computation procedure will never deliver an output, but
we may have no way of telling that it will not.

In view of these theorems, we now give formal definitionsthat intend to capture the
intuitive notions of computable function and partial computable function. An n-place partia
function is called partial recursiveiff itsgraph isr.e. An n-placetotal functioniscalled
total recursive (or simply recursive) iff its graph isr.e. Sometimes the expression ‘genera
recursive’ isused instead of ‘total recursive’, but thisis confusing, since the expression
‘general recursive’ was originally used not as opposed to ‘partial recursive’ but as opposed
to ‘primitive recursive'.

It might seem that we can avoid the use of partia functions entirely, say by replacing a
partial function ¢ with atotal function y which agreeswith ¢ wherever ¢ is defined, and
which takes the value O where ¢ isundefined. Such ay would be atotal extension of o, i.e.
atotal function which agrees with ¢ wherever ¢ isdefined. However, thiswill not work,
since there are some partia recursive functions which are not totally extendible, i.e. which
do not have any total extensionswhich are recursive functions. (We shal prove thislater on
in the course.)

Our version of Church's Thesisimpliesthat afunction is computableiff it isrecursive.
To seethis, suppose that ¢ isacomputable function. Then, by one of the theorems above, its
graph is semi-computable, and so by Church’s Thesis, itisr.e,, and so ¢ isrecursive.
Conversdly, suppose that ¢ isrecursive. Then ¢'sgraphisr.e., and by Church's Thesisit is
semi-computable; so by the same theorem, ¢ is computable.

Similarly, our version of Church’s Thesisimpliesthat afunction is partial computable
iff it ispartia recursive.

We have the result that if atotal function has a semi-computable graph, then it hasa
computable graph. That means that the complement of the graph is aso semi-computable.
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We should therefore be able to show that the graph of arecursive function isalso recursive.
In order to do this, suppose that ¢ isarecursive function, and let R beitsgraph. Risr.e, so
it isdefined by some RE formulaB(Xj, ..., Xn, Xn+1). TO show that R isrecursive, we must
show that -Risr.e,, i.e. that thereisaformula of RE which defines-R. A natural attempt is
theformula

(IXn+2) (B(X1, -y Xn, Xnt2) A Xna1 # Xne2)-

This doesindeed define -R asiseasily seen, but it is not aformulaof RE, for its second

conjunct uses negation, and RE does not have anegation sign. However, we can fix this

problem if we can find aformula of RE that defines the nonidentity relation { <m,n>:m=n}.
Let us define the formula

Less(x,Y) =df. (32) A(x, Z, ).

Less (X, y) definesthe less-than relation { <m, n>: m <n}. We can now define inequality as
follows:

X #Y =¢f. Less(x, y) v Less(y, X).

This completes the proof that the graph of atotal recursive function isarecursive relation,
and also shows that the less-than and nonidentity relations are r.e., which will be useful in
the future.

While we have not introduced bounded existential quantification as a primitive notation
of RE, we can defineit in RE, asfollows:

(3x <t) B =¢f. (AX) (Less(x, t) A B).
In practice, we shall often write'x <y'for 'Less (X, y)'. However, it isimportant to
distinguish the defined symbol '<' from the primitive symbol '<' as it appears within the
bounded universal quantifier. We also define

(3x £1) B(X) =¢f. (Ix <t) B(X) v B(1);
(x 1) B(X) =¢f. (x <t) B(X) A B(t).

The Status of Church's Thesis

Our form of Church'sthesisis that the intuitive notion of semi-computability and the formal
notion of recursive enumerability coincide. That is, a set or relation is semi-computable iff it
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isr.e. Schematically:
r.e. = semi-computable.

The usual form of Church's Thesisis: recursive = computable. But as we saw, our form of
Church's Thesisimplies the usual form.

In some introductory textbooks on recursion theory Church's Thesisis assumed in
proofs, e.g. in proofs that afunction is recursive that appeal to the existence of an effective
procedure (in the intuitive sense) that computesit. (Hartley Rogers Theory of Recursive
Functions and Effective Computability is an example of this.) There are two advantagesto
this approach. Thefirst is that the proofs are intuitive and easier to grasp than very
“formal” proofs. The second isthat it allows the student to cover relatively advanced
material fairly early on. The disadvantage is that, since Church's Thesis has not actually
been proved, the student never sees the proofs of certain fundamental theorems. We shall
therefore not assume Church's Thesisin our proofs that certain sets or relations are
recursive. (In practice, if arecursion theorist is given an informal effective procedure for
computing afunction, he or shewill regard it as proved that that function is recursive.
However, an experienced recursion theorist will easily be able to convert this proof into a
rigorous proof which makes no appeal whatsoever to Church's Thesis. So working
recursion theorists should not be regarded as appealing to Church's Thesisin the sense of
assuming an unproved conjecture. The beginning student, however, will not in genera have
the wherewithal to convert informal procedures into rigorous proofs.)

Another usua standpoint in some presentations of recursion theory is that Church's
Thesisis not susceptible of proof or disproof, because the notion of recursivenessisa
precise mathematical notion and the notion of computability is an intuitive notion. Indeed,
it has not in fact been proved (although thereisalot of evidence for it), but in the author's
opinion, no one has shown that it is not susceptible of proof or disproof. Although the
notion of computability isnot taken as primitive in standard formulations of mathematics,
say in set theory, it does have many intuitively obvious properties, some of which we have
just used in the proofs of perfectly rigoroustheorems. Also, y = x! isevidently computable,
and so is z=xY (athough it is not immediately obvious that these functions are recursive, as
we have defined these notions). So supposeit turned out that one of these functions was
not recursive. That would be an absolute disproof of Church's Thesis. Y ears before the
birth of recursion theory a certain very wide class of computable functions wasisolated, that
later would come to be referred to as the class of “primitive recursive” functions. In a
famous paper, Ackermann presented a function which was evidently computable (and which
isin fact recursive), but which was not primitive recursive. If someone had conjectured that
the computabl e functions are the primitive recursive functions, Ackermann’ s function would
have provided an absolute disproof of that conjecture. (Later we will explain what isthe
class of primitive recursive functions and we will define Ackermann’s function.) For
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another example, note that the composition of two computable functionsisintuitively
computable; o, if it turned out that the formal notion of recursiveness was not closed under
composition, this would show that Church’s Thesisiswrong.

Perhaps some authors acknowledge that Church's Thesisis open to absol ute disproof,
asin the examples above, but claim that it is not open to proof. However, the conventiona
argument for this goes on to say that since computability and semi-computability are merely
intuitive notions, not rigorous mathematical notions, a proof of Church's Thesis could not be
given. This position, however, is not consistent if the intuitive notions in question cannot be
used in rigorous mathematical arguments. Then adisproof of Church's Thesiswould be
impossible also, for the same reason as a proof. In fact, suppose for example that we could
givealist of principlesintuitively true of the computable functions and were able to prove
that the only class of functions with these properties was exactly the class of the recursive
functions. We would then have a proof of Church's Thesis. Whilethisisin principle
possible, it has not yet been done (and it seemsto be avery difficult task).

In any event, we can give a perfectly rigorous proof of one half of Church'sthesis,
namely that every r.erelation (or set) is semi-computable.

Theorem: Every r.e. relation (or set) is semi-computable.

Proof: We show by induction on the complexity of formulae that for any formulaB of RE,
therelation that B definesis semi-computable, from which it follows that al r.e. relations are
semi-computable. We give, for each formula B of RE, a procedure Pg which isa semi-
computation of the relation defined by B.

If B isatomic, thenit is easy to see that an appropriate Pg exists; for example, if B is
theformulax;™ = xo', then Pg isthe following procedure: add 3 to the first input, then add
1 to the second input, and seeif they are the same, and if they are, halt with output 'yes.

If Bis(C A D), then Pg isthe following procedure: first run P, and if it haltswith
output 'yes, run Pp; if that also halts, then halt with output 'yes.

If Bis(C v D), then Pgisasfollows. Run Pc and Pp simultaneously via some time-
sharing trick. (For example, run 10 steps of P, then 10 steps of Pp, then 10 more steps of
Pc, ....) Assoon as one answers 'yes, then let Pg halt with output 'yes.

Suppose now that B is(y <t) C(Xy, ..., Xn, ¥). If tisanumerd 0(F), then <my, ..., mp>
satisfies B just in case dl of <my, ..., mp, 0> through <mq, ..., my, p-1> satisfy C, so run Pc
on input <my, ..., mp, 0>; if Pc answersyes, run Pc on input <mgy, ..., mp, 1>, ... If you
reach p-1 and get an answer yes, then <my, ..., my> satisfies B, so halt with output 'yes. If t
isaterm x;"-*', then the procedure is basically the same. Given an input which includesthe
valuesmy, ..., my of X4, ..., Xp, aswell asthe vaue of x;, first calculate the value p of the term
t, and then run Pc on <my, ..., mp, 0> through <my, ..., mp, p-1>, asabove. So in either case,
an appropriate Pg exigts.

Finally, if B = (3y) C(Xy, ..., Xn, ¥), then Pcisasfollows. giveninput <mg, ..., my>, run
Pc on <mq, ..., m,, k> simultaneously for all k and wait for P to deliver 'yes for somek.
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Again, we use atime-sharing trick; for example: first run Pc on <my, ..., mp, 0> for 10
steps, then run Pc on <my, ..., m,, 0> and <my, ..., my, 1> for 20 steps each, then ... Thus,
an appropriate Pg existsin this case as well, which compl etes the proof.

This proof cannot be formalized in set theory, so in that sense the famous thesis of the
logicists that all mathematics can be done in set theory might be wrong. But aweaker thesis
that every intuitive mathematical notion can always be replaced by one definable in set
theory (and coextensive with it) might yet be right.

Kreisdl's opinion—in areview—appears to be that computability is alegitimate primitive
only for intuitionistic mathematics. In classical mathematicsit is not a primitive, although
(pace Kreisdl) it could be taken to be one. In fact the above argument, that the recursive sets
are all computable, isnot intuitionistically valid, because it assumes that a number will be
either in aset or in its complement. (If you don't know what intuitionism is, don't worry.)

It isimportant to notice that recursiveness (and recursive enumerability) isa
property of aset, function or relation, not a description of a set, function or relation. In
other words, recursivenessis a property of extensions, not intensions. To say that aset is
r.e. isjust to say that there exists aformulain RE which definesit, and to say that aset is
recursiveisto say that there exists a pair of formulae in RE which define it and its
complement. But you don't necessarily have to know what these formulae are, contrary to
the point of view that would be taken on this by intuitionistic or constructivist
mathematicians. We might have atheory of recursive descriptions, but thiswould not be
conventional recursive function theory. So for example, we know that any finite set is
recursive; every finite set will be defined in RE by aformulaof the form
x1=0(KDv....vxn=0(Kn), and its complement by aformulaof the form
x120(KD ... Axp20(K). But we may have no procedure for deciding whether something is
inacertain finite set or not - finding such a procedure might even be afamous unsolved
problem. Consider thisexample: let S={n: at least n consecutive 7's appear in the decimal
expansion of m}. Now it's hard to say what particular n'sarein S (it's known that at |east
four consecutive 7's appear, but we certainly don't know the answer for numbers much
greater than this), but nonetheless Sisrecursive. For, if ne Sthen any number lessthan n
isasoin S, so Swill either beafiniteinitia segment of the natural numbers, or elseit will
contain al the natural numbers. Either way, Sisrecursive.

Thereis, however, an intensiona version of Church’s Thesisthat, although hard to state
in arigorous fashion, seemsto be true in practice: whenever we have an intuitive procedure
for semi-computing a set or relation, it can be “trandated” into an appropriate formula of
the formalism RE, and this can be done in some sense effectively (the “trandation” is
intuitively computable). This version of Church’s Thesis operates with the notion of
arbitrary descriptions of sets or relations (in English, or in mathematical notation, say),
which is somewhat vague. It would be good if a more rigorous statement of this version of
Church’s Thesis could be made.
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The informal notion of computability we intend to study in this courseisanotion
different from a notion of analog computability that might be studied in physics, and for
which thereis no reason to believe that Church’s Thesisholds. Itisnot at all clear that every
function of natural numbers computable by aphysical device, that can use analog properties
of physical concepts, is computable by adigital agorithm. There have been some
discussions of this matter in afew papers, although the ones known to the author are quite
complicated. Here we will make afew rather unsophisticated remarks.

There are certain numbersin physics known as universal constants. Some of these
numbers are given in terms of units of measure, an are different depending on the system of
units of measures adopted. Some other of these numbers, however, are not given in terms of
units of measure, for example, the electron-proton mass ratio; that is, the ratio of the mass of
an electron to the mass of a proton. We know that the electron-proton massratioisa
positive real number r lessthan 1 (the proton is heavier than the electron). Consider the
following function y: (k) = the kth number in the decimal expansion of r. (There are two
ways of expanding finite decimals, with nines at the end or with zeros at theend; in caser is
finite, we arbitrarily stipulate that its expansion iswith zeros at the end.) Asfar as| know,
nothing known in physics allows us to ascribe to r any mathematical properties (e.g., being
rational or irrational, being algebraic or transcendental, even being afinite or aninfinite
decimal). Also, asfar as| know, it is not known whether this number isrecursive, or Turing
computable.

However, people do attempt to measure these constants. There might be problemsin
carrying out the measurement to an arbitrary degree of accuracy. It might take longer and
longer to calculate each decimal place, it might take more and more energy, time might be
finite, etc. Nevertheless, let us abstract from all these difficulties, assuming, e.g., that timeis
infinite. Then, asfar as| can see, thereis no reason to believe that there cannot be any
physical device that would actually calculate each decimal place of r. But thisisnot an
algorithm in the standard sense. y might even then be uncomputable in the standard sense.

Let usreview another example. Consider some quantum mechanical process where we
can ask, e.g., whether a particle will be emitted by a certain source in the next second, or
hour, etc. According to current physics, thiskind of thing is not a deterministic process, and
only relevant probabilities can be given that a particle will be emitted in the next second, say.
Suppose we set up the experiment in such away that thereis a probability of 1/2 for an
emission to occur in the next second, starting at some second s5. We can then define a
function x(k) = 1 if an emission occursin s, and = 0 if an emission does not occur in .
Thisis not auniversaly defined function like y, but if time goes on forever, this experiment
isaphysica devicethat givesauniversally defined function. There are only adenumerable
number of recursive functions (there are only countably many stringsin RE, and hence only
countably many formulag). In terms of probability theory, for any infinite sequence such as
the one determined by  thereisaprobability of 1 that it will lie outside any denumerable
set (or set of measure zero). So in away we can say with certainty that i, even though
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“computable” by our physical device, isnot recursive, or, equivaently, Turing computable.
(Of course, x may turn out to be recursive if there is an underlying deterministic structure to
our experiment, but assuming quantum mechanics, thereisnot.) This example again
illustrates the fact that the concept of physical computability involved is not the informal
concept of computability referred to in Church’s Thesis.
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Lecturelll

ThelLanguageLim

In the language RE, we do not have a negation operator. However, sometimes, the
complement of arelation definable by aformula of RE is definable in RE by means of some
trick. We have aready seen that the relation defined by ty#t, (wheret, t, are two terms of
RE) is definable in RE, and whenever B defines the graph of atotal function, the
complement of this graph is definable.

In RE we also do not have the conditional. However, if A isaformulawhose negation
isexpressiblein RE, say by aformula A* (notice that A need not be expressiblein RE),
then the conditional (A oB) would be expressible by means of (A*vB) (provided B isa
formula of RE); thus, for example, (t1=t,oB) isexpressiblein RE, since t;#t; is. So when
we use the conditional in our proofs by appeal to formulae of RE, we' |l have to make sure
that if aformulaappears in the antecedent of a conditional, its negation is expressiblein the
language. In fact, this requirement istoo strong, since aformula appearing in the antecedent
of aconditional may appear without a negation sign in front of it when written out only in
terms of negation, conjunction and digunction. Consider, for example, aformula

(A oB) oC,

inwhich the formula A appears as a part in the antecedent of a conditional. This conditional
isequivalent to

(~AvB)oC,
andinturnto
~(~AvB)VvC,
and to
(AA~B)VC.
In the last formula, in which only negation, conjunction and digunction are used, A appears

purely positively, so it’s not necessary that its negation be expressible in RE in order for (A
>B) oC to be expressible in RE.

A bit more rigorously, we give an inductive construction that determines when an
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occurrence of aformula A in aformulaF whose only connectives are ~ and o is positive or
negative: if A isF, A'soccurrencein Fispoditive; if Fis~B, A'soccurrencein F is negative
if itispogitivein B, and vice versg; if Fis(B>C), an occurrence of A in B isnegative if
positivein B, and vice versa, and an occurrence of A in C is positiveif postivein C, and
negative if negativein C.

It follows from thisthat if an occurrence of aformula appears as a part in another
formulain an even number of antecedents (e.g., A in the formula of the example above), the
corresponding occurrence will be positive in an ultimately reduced formula employing only
negation, conjunction and digunction. If an occurrence of aformulaappearsasapart in
another formulain an odd number of antecedents (e.g., B in the formula above), the
corresponding occurrence will appear with anegation sign in front of it in the ultimately
reduced formula (i.e., it will be negative) and we will have to make sure that the negated
formulais expressible in RE.

In order to avoid some of these complications involved in working within RE, we will
now define alanguage in which we have unrestricted use of negation, but such that all the
relations definablein it will aso be definablein RE. We will call thislanguage Lim. Lim has
the same primitive symbols as RE, plus a symbol for negation (~). The terms and atomic
formulae of Lim are just those of RE. Then the notion of formula of Lim is defined as
follows:

() Anatomicformulaof Limisaformulaof Lim;

(i) If Aand B areformulae of Lim, so are~A, (A A B) and (A v B);

(iii) If tisaterm not containing the variable x;, and A isaformulaof Lim, then (3x;<t))
A and (x; <t) A areformulae of Lim;

(iv) Only those things generated by the previous clauses are formulae.

Notice that in Lim we no longer have unbounded existential quantification, but only
bounded existential quantification. Thisis the price of having negation in Lim.

Lim isweaker than RE in the sense that any set or relation definable in Lim isaso
definablein RE. Thiswill mean that if we are careful to define arelation using only
bounded quantifiers, its complement will be definable in Lim, and hencein RE, and thiswill
show that the relation isrecursive. Call two formulae with the same free variables equivalent
just in case they define the same set or relation. (So closed formulag, i.e. sentences, are
equivalent just in case they have the sametruth value.) To show that Lim isweaker than RE,
we prove the following

Theorem: Any formulaof Lim isequivaent to some formulaof RE.

Proof: We show by induction on the complexity of formulae that if B isaformulaof Lim,
then both B and ~B are equivalent to formulae of RE. First, suppose B isatomic. B isthen
aformulaof RE, so obvioudly B is equivalent to some RE formula. Sinceinequality isan
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r.e. relation and the complement of the graph of any recursive functionisr.e., ~B is
equivaent to an RE formula. If B is~C, then by inductive hypothesis C is equivaent to an
RE formula C* and ~C is equivalent to an RE formula C**; then B isequivalent to C**
and ~B (i.e, ~~C) isequivaent to C*. If B is(C A D), then by the inductive hypothesis, C
and D are equivaent to RE formulae C* and D*, respectively, and ~C, ~D are equivalent to
RE formulae C** and D**, respectively. So B isequivalent to (C* A D*), and ~B is
equivaent to (C** v D**). Similarly, if B is(C v D), then B and ~B are equivalent to (C*
v D*) and (C** A D**), respectively. If B is(3x; <t) C, then B isequivalent to (3x;
)(Less(xj, t)AC*), and ~B isequivalent to (x; < t) ~C and thereforeto (x; <t) C**. Findly,
the case of bounded universal quantificationissimilar.

A set or relation definablein Lim isrecursive: if B definesaset or relation in Lim, then
~B isaformulaof Lim that defines its complement, and so by the foregoing theorem both it
and its complement arer.e. (Once we have shown that not all r.e. sets are recursive, it will
follow that Limis strictly weaker than RE, i.e. that not al sets and relations definablein RE
aredefinablein Lim.) Since negationisavailablein Lim, the conditional isalso available, as
indeed are al truth-functional connectives. Because of this, showing that a set or relation is
definablein Lim isaparticularly convenient way of showing that it isrecursive; in generdl, if
you want to show that a set or relation isrecursive, it isagood ideato show that it is
definablein Lim (if you can).

We can expand the language Lim by adding extra predicate letters and function letters
and interpreting them as recursive sets and relations and recursive functions. If we do so,
the resulting language will still be wesker than RE:

Theorem: Let Lim' be an expansion of Lim in which the extra predicates and function
letters are interpreted as recursive sets and relations and recursive functions. Then every
formulaof Lim' is equivalent to some formula of RE.

Proof: As before, we show by induction on the complexity of formulae that each formula
of Lim' and its negation are equivaent to RE formulae. The proof is analogous to the proof
of the previous theorem. Before we begin the proof, |et us note that every term of Lim'
stands for arecursive function; thisis simply because the function letters of Lim' define
recursive functions, and the recursive functions are closed under composition. Soif tisa
term of Lim', then both t =y and ~(t = y) define recursive relations and are therefore
equivaent to formulae of RE.

Suppose B isthe atomic formula P(ty, ..., tp), wherety, ..., t, aretermsof Lim' and Pisa
predicate of Lim' defining the recursive relation R. Using Russell'strick, we seethat B is
equivaent to (IXy)...(3AXn)(t1 = X1 A ... At =Xn A P(Xq, ..., Xp)), Where Xy, ..., Xp do not
occur in any of thetermsty, ..., tn. Letting C; be an RE formula which defines the relation
defined by t; = x;, and letting D be an RE formulawhich defines the relation that P defines,
we seethat B is equivaent to the RE formula (3Xy)...(3Xn)(C1(X1) A ... Cn(Xn) A D(Xq, ...,
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Xp)). To seethat ~B isaso equivalent to an RE formula, note that R isarecursive relation,
so its complement is definable in RE, and so the formula (3X1)...(3Xn) (t1 = X1 A ... A th =X,
A ~P(Xq, ..., Xn)), which isequivaent to ~B, is aso equivaent to an RE formula

The proof is the same as the proof of the previous theorem in the cases of conjunction,
digunction, and negation. In the cases of bounded quantification, we have to make a dight
adjustment, becausethetermtin (x; <t) B or (3x; <t) B might contain new function |etters.
Suppose B and ~B are equivaent to the RE formulae B* and B**, and lett =y be
equivaent to the RE formulaC(y). Then (x; <t) B isequivalent to the RE formula (3y)
(C(y) A (X <y) B*)), and ~(x; < t) B isequivdent to (Ix; <t) ~B, whichisinturn
equivalent to the RE formula (3y) (C(y) A (3x; <y) B**). The case of bounded existential
quantificationis similar.

Thisfact will be useful, sincein RE and Lim the only bounds we have for the bounded
quantifiers are terms of the forms o(M and x;". In expanded languages containing
function letters interpreted as recursive functions there will be other kinds of terms that can
serve as bounds for quantifiersin formulae of the language, without these formulae failing
to be expressiblein RE.

Thereisavariant of Lim that should be mentioned because it will be useful in future
proofs. Lim* isthe language which isjust like Lim except that it has function letters rather
than predicates for addition and multiplication. (So in particular, quantifiersin Lim* can be
bounded by terms containing + and -.) It follows amost immediately from the previous
theorem that every formulaof Lim* is equivalent to some formula of RE. We call aset or
relation limited if it is definable in the language Lim*. We call it strictly limited if it is
definablein Lim.

Pairing Functions

We will define a pairing function on the natural numbers to be a dominating total binary
recursive function ¢ such that for al my, my, Ny, Ny, if (Mg, My) = d(ng, N2) thenmy =ny
and my = ny, (that abinary function ¢ is dominating means that for all m, n, m<¢(m, n) and
n<dp(m, n)). Pairing functions allow usto code pairs of numbers asindividua numbers,
sinceif pisintherange of apairing function ¢, then thereis exactly one pair (m, n) such
that ¢(m, n) = p, so the constituents m and n of the pair that p codes are uniquely determined
by p aone.

We are interested in finding a pairing function. If we had one, that would show that the
theory of recursive functionsin two variables essentially reducesto the theory of recursive
functionsin one variable. Thiswill be becauseit is easily proved that for all binary relations
R, if ¢ isapairing function, Risrecursive (r.e.) iff the set { o(m, n): R(m, n)} isrecursive
(r.e). We are going to see that there are indeed pairing functions, so that thereisno
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essential difference between the theories of recursive binary relations and of recursive sets.

Thisisin contrast to the situation in the topologies of the real line and the plane. Cantor
discovered that there is a one-to-one function from the real line onto the plane. This result
was found to be surprising by Cantor himself and by others, since the difference between
the line and the plane seemed to lie in the fact that pointsin the plane could only be
specified or uniquely determined by means of pairs of real numbers, and Cantor’ s result
seemed to imply that every point in the plane could be identified by asingle real number.
But the real line and the plane are topologically distinct, that is, there is no homeomorphism
of thereal line onto the plane, which meansthat they are essentially different topol ogical
spaces. In fact, Brouwer proved a theorem from which the generd result follows that thereis
no homeomorphism between m-dimensional Euclidean space and n-dimensional Euclidean
space (for m#n).

The following will be our pairing function. Let usdefine[x, y] to be (x+y)2+x. This
function is evidently recursive, sinceit islimited, asit is defined by the Lim* formulaz = (x
+Yy)-(x +y) +x, andis clearly dominating. Let usshow that it isapairing function, that is,
that for al z, if z=[x, y] for somex andy, then x and y are uniquely determined. Letz =
(x+y)2+x. (x+y)2isuniquely determined, and it is the greatest perfect square< z: if it
weren't, thenwewould have (x +y + 1)2<z, but (x +y + 1)2= (X +y)2+2x + 2y + 1 >
(X +y)2 +x = z. Let s=x+y, s0 that s2=(x+y)2. Since z>s2, we can put x=z-s2, which is
uniquely determined, and y=s-x=s-(z-s2), which is uniquely determined. This completes the
proof that [x,y] isa pairing function. Note that it is not onto, i.e. some numbers do not code
pairs of numbers. For our purposes thiswill not matter.

(The earliest mention of this pairing function known to the author isin Goodstein's
Recursive Number Theory. Several years later, the same function was used by Quine, who
probably thought of it independently.)

Our pairing function can be extended to n-place relations. First, note that we can get a
recursive tripling function by letting [X, v, ] =[[X, Y], Z]. We can similarly get arecursive
n-tupling function, [m;y, ..., my], and we can prove an analogous result to the above in the
case of n-placereations: for al n-placerelationsR, if ¢ isarecursive n-tupling function, R
isrecursive (r.e.) iff the set { o(ma,...,mn): R(M1,...,mn)} isrecursive (r.e.).

Our pairing function has recursive inverses, i.e. there are recursive functions K1 and K,
such that K1([x, y]) =x and Kx([x, y]) =y for al x andy. When z does not code any pair,
we could let K1 and K5 be undefined on z; here, however, we let K, and K5 havethevalue 0
on z. (Sowe canregard z as coding the pair <0, 0>, though infact z# [0, 0].) Intuitively,
K, and K, are computable functions, and indeed they are recursive. To see this, note that
K1's graph isdefined by the formulaof Lim (Jy <2) (z=[x,y]) v X=0A ~(3y £ 2) (Iw
<2) z=[w,Y]); smilarly, Ky's graph is defined by the formulaof Lim (3x <2) (z=[X, y])
Vy=0A~3x<2) (3w<2) z=[x, w)).
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Coding Finite Sequences

We have seen that for any n, there is arecursive n-tupling function; or in other words,
we have away of coding finite sequences of fixed length. Furthermore, al these n-tupling
functions have recursive inverses. This does not, however, give usasingle, one-to-one
function for coding finite sequences of arbitrary length. One of the things Cantor showed is
that there is a one-to-one correspondence between the natural numbers and the set of finite
sequences of natural numbers, so a function with the relevant property does exist. What we
need to do, in addition, isto show that an effective way of assigning different numbersto
different sequences exists, and such that the decoding of the sequences from their codes can
be done also effectively.

A method of coding finite sequences of variable length, due to Godel, consistsin
assigning to an n-tuple <my, ..., my> the number k=2M1+1.3m2+1. . Mn*1 55 code
(where p1=2 and pj+1=the first prime greater than ;). Itisclear that k can be uniquely
decoded, since every number has a unique prime factorization, and intuitively the decoding
function is computable. If we had exponentiation as a primitive of RE, it would be quite
easy to seethat the decoding function is recursive; but we do not have it asaprimitive.
Although Godel did not take exponentiation as primitive, he found atrick, using the Chinese
Remainder Theorem, for carrying out the above coding with only addition, multiplication
and successor as primitive. We could easily have taken exponentiation as a primitive— it is
not essential to recursion theory that the language of RE have only successor, addition and
multiplication as primitive and other operations as defined. If we had taken it as primitive,
our proof of the easy half of Church'sthess, i.e. that all r.e. relations are semi-computable,
would still have gone through, since exponentiation is clearly a computable function.
Similarly, we could have added to RE new variables to range over finite sets of numbers, or
over finite sequences. In fact, doing so might have saved us some time at the beginning of
the course. However, it istraditional since Godel’ s work to take quantification over
numbers, and successor, addition, and multiplication as primitive and to show how to define
the other operations in terms of them.

Wewill use adifferent procedure for coding finite sequences, the basic idea of whichis
dueto Quine. If you want to code the sequence <5, 4, 7>, why not use the number 5477 In
general, a sequence of positive integers less than 10 can be coded by the number whose
decimal expansion isthe sequence. Unfortunately, if you want to code sequences
containing numbers larger than or equa to 10, thiswon't quite work. (Also, if thefirst
element of asequence <my, ..., m>is0, its code will be the same as the code for the
sequence <My, ..., My>; this problem isrelatively minor compared to the other). Of course, it
isaways possible to use alarger base; if you use anumber to code its base-100 expansion,
for example, then you can code sequences of numbers aslarge as 99. Still, this doesn't
provide a single method for coding sequences of arbitrary length.

To get around this, we shall use amodification of Quine'strick, due to the author. The
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main ideaisto use avariable base, so that a number may code a different sequenceto a
different base. It a'so proves convenient in this treatment to use only prime bases. Another
feature of our treatment isthat we will code finite setsfirst, rather than finite sequences; this
will mean that every finite set will have many different codes (thus, using base 10 only for
purposes of motivation, 547 and 745 would code the same set {4, 5, 7}). We will not alow
O asthefirst digit of acode (in abase p) of a set, because otherwise 0 would be classified as
amember of the set, whether it wasin it or not (of course, O will be alowed as an
intermediate or final digit).

Our basic ideaisto let anumber n code the set of all the numbersthat appear as digits
in n's base-p expansion, for appropriate prime p. No single p will do for al sets, since for
any prime p, thereis afinite set containing numbers larger than p, and which therefore
cannot be represented as a base-p numeral. However, in view of afamous theorem dueto
Euclid, we can get around this.

Theorem (Euclid): There areinfinitely many primes.

Proof. Let n beany number, and let's show that there are primes greater thann . n! + 1is
either prime or composite. If itisprime, itisaprime greater than n. If it is composite, then
it has some prime factor p; but then p must be greater than n, since n!+1 is not divisible by
any prime less than or equal to n. Either way, there is a prime number greater than n; and
since n was arbitrary, there are arbitrarily large primes.

So for any finite set S of numbers, we can find a prime p greater than any element of S, and
anumber n such that the digits of the base-p expansion of n are the elementsof S. (To give
an example, consider thefinite set { 1, 2}. Thiswill have as“codes’ in base 3 the numbers
denoted by '12' and '21' in base 3 notation, that is, 5 and 7; it will have as“codes’ in base 5
the numbers 7 and 11, etc.) We can then take [n, p] asacode of the set S (so, in the
example, [5,3], [7,3], [7,5] and [11,5] are dll codes of {1,2}). In thisfashion different finite
setswill never be assigned the same code. Further, from a code the numbersn and p are
uniquely determined and effectively recoverable, and from nand p the set Sis determined
uniquely.

Wewill now show how to carry out our coding schemein RE. To this effect, we will
show that a number of relations are definablein Lim or Lim* (and hence not only r.e, but
also recursive). Before we begin, let us note that the relation of nonidentity is definablein
Lim and in Lim*, for we can define aformula Less* (x,y) equivalent to the formula
Less(x,y) of RE with only bounded quantification: Less* (X,y) =q. (3z<y)(x+z'=y) (an even
simpler formula defining the less than relation in Lim and Lim™* would be (3z<y)(x=2)).
Now, let's put

Pr(X) =¢t. X£20AX#0" A (Y <X)(Z<X)(M(Y,zX)D(y=XvZ=X)).
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Pr(x) definesthe set of primesin Lim, asiseasily seen. We want next to define the relation
wisa power of p, for prime numbersp. Thisisdone by

Ppow (p, W) =g, Pr(p) A w # 0 A (x <w)(y <w)((M(x,y,w) A Pr(x)) > x = p).

Ppow (p, w) saysthat pisw's only prime factor, and that w = 0; this only holdsif w = pk
for somek and pisprime. Notethat if pisnot prime, then thistrick won't work.

Next, we want to define aformulaDigp (m, n, p), which holdsiff misadigitin the
base-p expansion of n and p isprime. How might we go about this? Let's use base 10
again for purposes of illustration. Suppose n > 0, and let d be any number < 10. If disthe
first digit of n's decimal expansion, then n=d-10k + y, for some k and somey < 10k, and
moreover d = 0. (For example, 4587 = 4-103 + 587.) Conversely, if n=d-10k +y for
somek and somey < 10k and if d = 0, then d istheinitial digit of the decimal expansion of
n. If disanintermediate or fina digit in n's decimal expansion, then n = x-10k*1 + d-10k +
y for somek, x and y withy < 10k and x # 0, and conversely. (Thisworksfor final digits
because we can dwaystakey =0.) Soifd<10andn=0, thendisadigitof niff dis
either aninitial digit or an intermediate or final digit, iff thereexist x, k, and y withy < 10k
and such that either d#0and n=d-10k +y, or x # 0 and n = x-10k*1 + d-10k +y. If 10<
d then disnot adigit of n's decima expansion, and we alow O to occur in its own decimal
expansion. Therestrictionsd # 0 and x # 0 are necessary, since otherwise 0 would occur in
the decimal expansion of every number: 457 = 0-103 + 457 = 0-104 + 0-103 + 457; and if
we want to code any finite setsthat do not have 0 as an element, we must prevent this.
Noting that none of this depends on the fact that the base 10 was used, and finding bounds
for our quantifiers, we can define aformula Digp* (m, n, p) in Lim*, which istrue of m,n,p
iff misadigit in the base-p expansion of nand p is prime:

Digp* (m, n, p) =¢t. { 20 AmM<pAn
[[m=0A (@Aw<n)(Fz<w)(n=mw + z A Ppow (p, w))] v
Ew<n@zr<nN)(@zo<wW)(z120ANn=z3Ww-p+ mw + 2,

A Ppow (p, w))l}

\
(m=0AnNn=0A Pr(p)).

This formula mirrors the justification given above. However, much of it turns out to be
redundant. Specifically, the less complicated formula

Digp (M, n, p) =¢. (20 AM<p A
@Aw<n)(dzr<n)@z <w)(N=zyW-p+mMw+ 2o A

Ppow (p, w))])
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v (Mm=0An=0x Pr(p)

isequivaent to Digp* (thisremark is due to John Barker). To seethis, suppose first that
Digp* (m,n,p), m<p and n=0. Then n = z,-pk*1 + m-pk + z, for somek, z; and some z, <
pK. Thisincludesinitial digits (et z; = 0) and fina digits (let z, = 0). So Digp (m, n, p)
holds. Conversdly, suppose Digp (m, n, p) holds, and assume that m<p and n0. Thenn =
Z1p**1 + m-pk + z, for somek, z; and some z, < pK, and moreover pk < n. If z; > 0, then
m must be an intermediate or final digit of n, so supposez; =0. Thenm>0: forif m=0,
then n = 0-pk*+1 + O-pk + z, = 2, but z, < pkand pk < n, and so n < n. So m must be the
first digit of n.

We can now define

x ey =g (An<y)@p<y)(y =[n, p] A Digp (x, n, p)).

X € y istrue of two numbersab if b codes afinite set Sand ais amember of S. Note that
Digp(m,n,p) and x € y are formulae of Lim*. We could have carried out the construction
in Lim, but it would have been more tedious, and would not have had any particular
advantage for the purposes of this course.

There are two special cases we should check to make sure our coding scheme works:
namely, we should make sure that the sets {0} and @ have codes. If y isnot in the range of
our pairing function, then x € y will befasefor all x; soy will code d. And since Digp(0,
0, p) holdsfor any p, [0, p] codes the set {0} .
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LecturelV

Let us now note afew bounding tricks that will be useful in the future. Thefunctionz =
[X, y] ismonotonein both variables: i.e. if x <x; andy <y then [X, y] < [X3, Y1)
Moreover, X,y <[x,y]. Findly, if ncodesaset S,andx € S, thenx <n: if ncodes S, then
nis[k, p] for somek and p, so k < n; and x isadigit in k's base-p expansion, so x < k. So
we can introduce some new bounded quantifiersinto Lim™*:

(xe y)B=q (X<Yy) (xe y>B);
(Ixe y) B=q. (AX<y) (xe y AB).

Noteadso that if ncodesaset Sand S ¢ S, thenthereisan m < nwhich codes S. (Thisis
because, if the elements of S are the digits of the base-p expansion of k, then thereisa
number j < k such that the digitsin j's base-p expansion are the elements of S; sincej <Kk,
[, pl £ [k, p] and [j, p] codesS.) We can therefore define

XCy=dg (ze X)zey,;

(xXcy)B=4¢ (x<y) (xcy>B);
(Ixcy) B=g. (IX<y) (X y A B).

Now that we can code finite sets of numbers, it is easy to code finite sequences. For a
sequence <mq, ..., my> issimply afunction ¢ with domain {1, ..., n} and with 6(i) = m;; we
can identify functions with their graphs, which arerelations, i.e. sets of ordered pairs, which
we can in turn identify with sets of numbers, since we can code up ordered pairs as
numbers. (So, for example, we can identify the sequence <7, 5, 10> with the set {[1, 7], [2,
5], [3, 10]}.) Finally, those sets can themselves be coded up as numbers. We define a
formula Segl (s, n) of Lim* which holdsjust in case s codes a sequence of length n:

Seql (s, n) =¢. (x € 9)(M1 < 5)(AMy < S)(X =[mMg, My] A Mg #0A M <N) A
(M < s)(m2 < s)(Mz < s)(([my, M2] € SA [Mg, Mg] € §) D Mz =my)
A (M N)(@my < s)(my = 0> [myg, my] € 9).

Thefirst conjunct smply saysthat every element of sisapair whose first member isa
positive integer < n; the second says that sis single valued, i.e. is (the graph of) afunction;
and the third says that every positive integer < nisin ssdomain.

We can aso define aformula Seq (s), which saysthat s codes afinite sequence of some
length or other:
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Seq(s) =q¢r. (An<'s) Seql (s, n).

We can bound theinitia quantifier, becauseif s codes a sequence of length n, then [n, X] €
sforsomex, andson<[n, x] £s. Also, if x isthe ith element of some sequence s, then x
<[i, X] £'s; we can use thisfact to find bounds for quantifiers.

The following formula holds of two numbersif the second codes a sequence and the
first occursin that sequence:

x on's =g Seq(s)a (Fy <) ([yX]e 9).

Godel Numbering

We can use our method of coding up finite sequences of numbersto code up finite strings
of symbols. Aslong aswe have a countable alphabet, we will be ableto find a1-1
correspondence between our primitive symbols and the natural numbers; we can thus code
up our primitive symbols as numbers. We can then identify strings of symbols with
sequences of numbers, which we then identify with individual numbers. A schemefor
coding strings of symbols numerically is called a Godel numbering, and anumerical code
for asymbol or expression is called a Godel number for it.

Exactly how we do thisis arbitrary. Oneway of doing itisthis: if S=s;...s,isastring
of symbols, and &, ..., &, are the numerical codesfor s, ..., S, then<ay, ..., ar> isa
sequence of numbers, and it therefore has a code number p; we can take p to be a Godel
number of S. (Note that, on our way of coding finite sequences, each sequence will have
many different code numbers, so we must say "a Gédel number" rather than "the Godel
number.") Call thisthe smple-minded coding scheme.

We shall adopt a dightly more complicated coding scheme, which will make things
easier later on. First, we code the terms of the language viathe s mple-minded scheme.
Then, when coding formulae, we again use as a code for a string of symbols a code for the
corresponding sequence of codes of symbols, except that now we treat terms as single
symbols. Soif a, b, ¢, d are the codes of the primitive symbols P% ff, X1, X2, then any code
p for <b, ¢, d>isacodefor theterm f%x1x2, and any code for <a, p> codes P%ffxlxz.

We want asingle coding scheme for al the languages we shall consider, namely, the
various first-order languages and the languages RE and Lim (and its variants). So we shall
need to take dl of the symbols(, ), o, ~, A, v, <, and 3 as primitive, and provide code
numbers for al of them. We also need code numbersfor the constants, variables,
predicates, and function letters. Our general scheme for doing thisisto code a symbol s by
apair [X, y], where x represents ss grammatical category, and y represents additional
information about s (e.g. its sub- and superscript). For definiteness, we make the following
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our official Godel numbering:

Individua symbols.  ( ) 3 < - ~ A v
[0,0]10,1] [0,2] [0,3] [0,4] [0,5] [0,6] [0,7]

Variables. [1, i] codes x;
Constants: [2,1] codes g

(Specia constants,

or “choice” constants: [3, i] codes by)
Function letters: [4, [n, i]] codesf!
Predicate |etters: [5, [n, i]] codes P!

(We do not have specia constants in the languages we have developed so far; but in case we
need them, we have codes for them.) Note that this coding scheme is open-ended; we could
add extraindividual symbols, or even extragrammatical categories (e.g. new styles of
variables), without disruption.

Identification

Strictly speaking, when we use an entity A to code an entity B, A and B are (in generd)
different entities. However, we often speak as though they were the same; for example, we
say that the number 105 =[5, [1, 1]] isthe symbol P% whereas gtrictly speaking we should
say that it codes Pi. (Similarly, we will say, for example, that a certain predicate is true of
exactly the formulag, or of exactly the terms, where we should say that it istrue of the codes
of formulae, or of the codes of terms). This has the problem that, since we have many
different codes for a single expression, many different numbers are identified with the same
expression. In order to avoid thistalk of identification, we might modify our coding scheme
S0 as to make the coding correspondence one-to-one, for example taking the least number
among the codesto be the real code.

According to Geach's doctrine of relative identity, thistalk of identification would be not
only harmless, but absolutely legitimate. For Geach, it does not make sense to say smply
that two objects are the same, this being only a disguised way of saying that they are the
same F, for some property F. In this sense there is no such thing as absolute identity,
according to Geach. His doctrine of relative identity would then allow us to say that
although two objects are different numbers, they are the same formula. The author does not
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share Geach's views on this point, but it is useful to think in terms of relative identity in our
context. Geach has applied his doctrine in other contexts.

The Generated Sets Theorem.

We shall now use our coding of finite sequences to show that some intuitively computable
functionswhich are not obvioudly recursive are in fact recursive. Let's start with the
factorial functiony = x!. Notethat 0! = 1 and (n+1)! = (n+1)-n! for al n, and that thisisan
inductive definition that specifies the function uniquely. The sequence<0!, ..., nI>is
therefore the unique sequence <Xy, ..., Xp+1> Such that x; = 0 and for all k < n, Xg+1 =
(k+1)-xk. Thus,y =x! justincasey isthe x+1st member of some such sequence. So the
following formula of RE defines the graph of the factorial function:

(@9)(Seql (s, x) A[0,[0,0]] € sA(z< 9@ <xX)([i", [I", Z]] € s Fz1=s) ([1'[i,21]] €
sAz=z11") A X, [X Y]] € 9).

(Note that we could have written 0' € sinstead of [0', [0, O']] € s, since[1, [0, 1]] = (1+
((0+1)2+0))2 + 1 = 5. Note also that, while o is not definable in RE, its use in this formula
is permissible, since its antecedent, [i", [i', Z]] € S, expresses arelation whose complement is
r.e. Also, the part of the formulafollowing theinitial unbounded quantifier (3s) isa
formulaof Lim* (in which o is definable), and is therefore equivalent to aformula of RE,
and so the entire formulaisaformula of RE.)

The above definition of y = x! isan example of adefinition by primitive recursion; we
have abase clause

o=1
inwhich the function's value at zero is specified, and an induction clause
(n+1)! = (n+1)(n!)

inwhich thevalue at n+1is specified in terms of itsvalue at n. Another example of this
kind of definition is that of the exponentiation function z = x¥: we stipulate that x° = 1 and
xY*1 = x¥.x. Here, theinduction is carried out on the variable y; however the value of the
function also depends on x, which iskept fixed whiley varies. x iscalled a parameter; the
primitive recursive definition of exponentiation is called a primitive recursive definition with
parameters, and that of the factorial function is said to be parameter free. We can show
that the exponentiation function is recursive, using a similar argument to the above.

In generd, if hisan n-1-place function and g is an n+1-place function, then the n-place
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function f is said to come from g and h by primitive recursion if f is the unique function
such that

f(O, X2, ..., Xn) = h(X, ... Xp)
and
f(X1+1, X2, ..., Xn) = (X2, ..., Xn, X1, F(X1, X2, ..., Xn))

for dl x4, ..., Xn. (Herewe take O-place functions to be constants, i.e. whenn =1, welet h
be anumber and let f(0) = h.) We define the class of primitive recursive functions
inductively, asfollows. (i) The basic primitive recursive functions are the zero function z(x)
= 0, the successor function s(x) = x+1, and the identity functionsid(x, ..., Xn) = X;j (Where
i <n). (ii) The composition of primitive recursive functionsis primitive recursive (that is, if
y(mg,...,mk) isaprimitive recursive function in k variables, and $1(0(1,1,.-..d1,n1) -+
Ok(Ok, 1,---,0k, i) arek primitive recursive functionsin ny,...,nk variables, respectively, then
so isthe function in np+...+nk variables y($1(91,1,---,01.n1)---» Pk(Ak, 1---,0k,nw)))- (1i1) A
function that comes from primitive recursive functions by primitive recursion is primitive
recursive. (iv) And the primitive recursive functions are only those things required to be so
by the preceding. Using the same sort of argument given in the case of the exponentiation
function, we can show that all primitive recursive functions are recursive. (That the recursive
functions are closed under primitive recursion is called the primitive recursion theorem.)
The converse, however, does not hold. Consider the sequence of functions

yi(X,y) =x+y
ya(X, y) =Xy
y3(X, y) =xY

This sequence can be extended in anatural way. Just as multiplication isiterated addition
and exponentiation isiterated multiplication, we can iterate exponentiation: let yy(x, 0) =X,
ya(X, 1) = XX, yu(X, 2) = x*¥*, etc. Thisfunction is called superexponentiation. We can aso
iterate superexponentiation, giving us a super-superexponentiation function, and soon. In
generd, for n> 2, we define

Wnea(X, 0) =X
Wn+1(X, Y*+1) = Wn(X, Wne1(X, Y))

We can turn this sequence of 2-place functions into a single 3-place function by letting y(n,
X, ¥Y) = wn(X, y); x is called the Ackermann function. Ackermann showed that this function

isnot primitive recursive, though it is clearly computable. (Thisisthe function that we
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referred to earlier.) Infact, it can be shown that for any 1-place primitive recursive function
0, O(X) <x(X, X, x) for al but finitely many x.

We shall next prove atheorem from which it follows that awide range of functions,
including both the primitive recursive functions and the Ackermann function, are recursive.
This theorem will aso be useful in showing that various interesting sets and relations are
r.e. The theorem will further provide away of making rigorous the extremal clausesin our
earlier inductive definitions of term and formula of the different languages that we have
introduced.

The basic idea that motivates the theorem is best illustrated by means of a definition
formally similar to those of formulaor term, that of atheorem of aformal system. Ina
formal system, certain strings of formulae are called axioms, and from them the theorems of
the formal system are generated by means of certain rules of inference (for example, modus
ponens, according to which if formulae A and (A>B) are theorems, then B is atheorem).
The notion of atheorem is defined inductively, specifying that all the axioms are theorems
(basis clauses), that if aformula A follows from theorems By, ..., B, by one of the inference
rules, then A isaso atheorem (closure conditions, or generating clauses), and that the
theorems are only those things generated in thisway (extremal clause).

Inaformal system aformulaisatheoremiif it has aproof. And a proof isafinite
sequence of formulae each of which is either an axiom or aformulawhich comes from
previous formulae in the sequence via one of the generating clauses (the inference rules).
Sequences which are proofs are called proof sequences. We can generalize the notion of a
proof sequence so asto apply it to the case of terms or formulae. Something isaformulaif
it occurs on a sequence each element of which is either an atomic formula or comes from
previous formulae in the sequence via one of the generating clauses (the rulesfor the
formation of complex formulae out of simpler ones). One such sequence can be seen asa
proof that a string of symbolsisaformula, which justifies using the phrase ‘ proof
sequence’ in this case aswell. (Similar remarks could be made about the notion of aterm).

Generalizing this, we introduce the following

Definition: A proof sequence for aset B, and relations Ry, ..., Rk (ny+1-place,..., ng+1-
place, respectively) is afinite sequence <xj, ..., Xp> such that, for al i =1, ..., p, either x; € B
or thereexistj <k and my, ..., Mp; < i such that Rj(xmy, ..., X, Xi)-

Our extremal clauses will be understood as formulated with the help of the notion of a proof
sequence determined by the appropriate sets and relations. And our proofs by induction on
the complexity of terms or formulae would proceed rigoroudly speaking by induction on the
length of the appropriate proof sequences.

If we have aset B and somerdations Ry, ..., Rk, where each R; is an nj+1-place relation,
the set generated by B and Ry, ..., R isthe set of those objects which occur in some proof
sequence for B and Ry, ..., Rk. If Sisthe set generated by B and Ry, ..., Rk, wecall B the
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basis set for Sand Ry, ..., R¢ the generating relations for S.

Generated SetsTheorem: If Bisanr.e setand Ry, ..., R¢ arer.e. rdations, then the set
generated by B and Ry, ..., R¢ isitself r.e.

Proof. Let C beaformulaof RE that definesthe set B, and let Fy, ..., F¢ be formulae of RE
that define Ry, ..., Rx. Wefirst define

PESeq(s) =ar. Seq(s) A (mss)(x<s)([m.x]e sOC(x) v
(clausel) v ... v (clausek)),

where (clause ) isthe formula

(@1 <9)...(3xny < 9@ix <i)...Giny <0)([i1, X1 € SA . A [ing, Xy] € S A Fi(xXe, .
anl yl)

PfSeq(s) thus defines the set {s. s codes a proof sequencefor B and Ry, ..., Rg}. Wecan
therefore define the set G generated by B and Ry, ..., Rk by means of the formula of RE

(d9)(PfSeq(s) A (Am < s)([m, X] € 9).
This completes the proof.

The generated sets theorem appliesin the first instance to sets of numbers; but it also
applies derivatively to things that can be coded up as sets of numbers, e.g. sets of formulae.
Suppose some set G of formulae is the set generated by a basis set B of formulae and
generating rules Ry, ..., Rx among formulae. To show that the set G' of Gddel numbers of
elementsof Gisr.e., smply show that the set B' of Godel numbers of elements of B isr.e.
and that the relations R;" among Godel numbers for formulae related by thereations R; are
r.e. (Of course, whether G'isin fact r.e. will depend on what therelations B and Ry, ..., Rk
are.) Inthisway, itiseasy to show that the set of formulae of RE isitself r.e.

The Generated Sets Theorem is known to dl logicians, dthough it israrely stated
explicitly. It provides asimpler method of proving that some sets or relations arer.e. (and
hence that some total functions are recursive) than primitive recursion. Of course, it does not
provide ageneral method of proving recursiveness, but it isinfrequent in mathematical
arguments to have the need to show that a set or relation is recursive besides being
recursively enumerable. It is usually emphasized as a basic requirement of logic that the set
of formulae of a given language must be decidable, but it is not clear what the theoretical
importance of such arequirement is. Chomsky’s approach to natural language, for example,
does not presuppose such arequirement. In Chomsky's view, agrammar for alanguageis
specified by some set of rules for generating the grammatically correct sentences of a
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language, rather than by a decision procedure for grammatical correctness.

However, we will eventually state a theorem an application of which will be to show that
the set of codes of formulae or terms of alanguageisrecursive.

We can use the generated sets theorem to show that afunction isrecursive. For
example, the functiony = x! isrecursive iff the set {[x, X!] : x € N} isr.e., and this set can
be generated asfollows: let the basis set be{[0, 1]}, and |et the generating relation be { <[x,
y], [X+1, y-(x+1)]>: X,y € N}. Itiseasy to seethat the basis set and generating relation are
r.e (and indeed recursive), and that they generate the desired set. In fact, the result that all
primitive recursive functions are recursive follows directly from the generated sets theorem
inthisway. Moreover, the generated sets theorem can be used to show that the Ackermann
functionisrecursive. Thisisthe virtue of the generated sets theorem: it is more powerful
than the theorem about primitive recursiveness, and indeed it is easier to prove that theorem
viathe generated sets theorem than directly.

We may sometimes want to know that a set G is recursive, or even limited, in addition to
being r.e. While the generated sets theorem only showsthat Gisr.e., in particular cases we
can sometimes sharpen the result. For one thing, if the basis set and generating relations are
recursive (or limited), then the formula PfSeq(s) defines arecursive (limited) relation. This
does not itself show that G isrecursive (limited), since the formula used to define G in the
proof of the Generated Sets Theorem begins with the unbounded quantifier (3s). If we can
find some way of bounding this quantifier, then we can show that G isrecursive (or
limited). However, it is not ways possible to bound this quantifier, for not all sets
generated from arecursive basis set viarecursive generating relations are recursive. For
example, the set of Godel numbers of valid sentences of the first-order language of
arithmeticisr.e, but not recursive; and yet that set is clearly generated from arecursive
basis set (the axioms) and recursive generating relations (the inference rules).

Exercises

1. a) Prove that every k-place constant function is recursive. Prove that the successor
function isrecursive.

b) Prove that if afunction ¢(m1,...,mk) in k variables is recursive (partial recursive), sois
any k-1 place function obtained from ¢ by identifying two variables.

2. a) Prove that the composition of two 1-place total (partial) recursive functions is total

(partid) recursive.

b) More generaly, provethat if y(ma,...,mk) isatotal (partial) recursive function in k
variables, and ¢1(d1.1,--,91,n1)---» Ok(Ok, 1.---,0k k) are k total (partial) recursive functionsin
ny,...,Nk variables, respectively, then so isthe function in ny+...+ny variables
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W(02(01,15+-,91,n1) -+ DKk, 1,-+-:0lK,NK)) -

3. Show that if ¢ isarecursive pairing function whose range is recursive, then a binary
relation R isrecursiveiff the set { o(m,n): R(m,n)} isrecursive. Prove that a sufficient
condition for the range of arecursive pairing function ¢ to be recursive is that m,n<¢p(m,n).
(This condition is satisfied by the pairing function we have been using and by nearly all the
pairing functions used in practice). Where does the argument go wrong if we do not assume
that the rangeis recursive? (a counterexample will be given later.)

4. For arbitrary n> 1, define an n-tupling function, verifying that it isindeed an n-tupling
function. Generalize exercise 3 to arbitrary n-place relations accordingly.
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LectureV

Truth and Satisfaction in RE.

Remember that the satisfaction relation is a relation in two variables, S(A,s), which holds
between a formula A and an assignment s sufficient for A just in case s satisfies A (in the
case of RE, s assigns non-negative integers to the variables, since the intended interpretation
of RE is the arithmetical interpretation). Since truth can be defined in terms of satisfaction, if
RE could define its own satisfaction relation, RE would have its own truth predicate.

Some assignments related to formulae by the satisfaction relation are sequences of
infinite length: the sequence {<x1,0>, <x2,1>, ...} is an assignment of the value i-1 to the
variable x;; this assignment is naturally sufficient for any formula, and satisfies, e.g., all
formulae of the form xj=x;. However, as Cantor showed, we could not code all infinite
sequences of numbers by means of numbers, so the satisfaction relation for formulae of RE
cannot be represented as a relation between numbers. However, for our purposes it is really
unnecessary to contemplate the full satisfaction relation. It will be enough to be able to
define within RE the satisfaction relation restricted to finite assignments, or even a relation
Sat(a,s), which holds between a (code of a) formula A and a (code of a) finite function s
which assigns non-negative integers to all the (codes of) variables appearing free in A and
satisfies A in the obvious sense (thus, if Sat(a,s), s need not be a sequence, for its domain
need not be an initial segment of the non-negative integers -nor an initial segment of the
codes of variables-, and s need not be an assignment, for it can assign values to things other
than codes of variables). Sat(a,s) will be the relation that we will show how to define in RE.
In fact, we shall show, equivalently, that the set of Gdel numbers of pairs in Satisr.e.,
using the Generated Sets Theorem. One way in which we can begin to see that this will be
enough for our purposes is to note that if Sat can be defined in RE, then the truth predicate
for RE can be defined in RE, since a sentence of RE is true just in case it is satisfied by
some finite function.

We shall now undertake the proof of the following

Theorem: The satisfaction relation Sat(a,s) for formulae of RE is definable in RE, or, in
other words, RE has its own satisfaction predicate.

We shall devote to this proof this lecture and the next one.

As we just said, in showing that the satisfaction relation for RE is r.e., we shall use the
Generated Sets Theorem. What we shall show is that the set of (numbers coding) pairs
G={[a, s]: s codes a function which is sufficient for and satisfies the formula whose Gddel
number is a} is generated from an r.e. set by means of r.e. relations.
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In order to prove our theorem it would be perhaps most natural to generate separately
the set of formulae, then define in some way the notion of a function being sufficient for a
formula, and finally generate the set of pairs <A,s> where s is sufficient for and satisfies the
formula A, going through the clauses in the inductive definition of satisfaction for RE.
However, we will generate this set in one fell swoop, so to speak, without having first to
define the set of formulae and the relation of being a function sufficient for a formula.

We will now begin our specification of the basis set, and later we will define the
generating relations. In order to show that the set that we will take as basis set is r.e., we will
show first that the set of terms and the relation of denotation are r.e.

It is important to stress at this stage a delicate point in our coding scheme. Remember
that in our coding scheme, in order to code formulae we code terms first, by coding the
sequence of numbers that code the individual symbols appearing in a term (in the same
order). Thus, a term f%f%xi will be coded by any code of the sequence {[1,[4,[1,1]]],
[2,[4,[1,1]1], [3.[1,i]]}, and, asa term, x; will be coded by any code of the sequence
{[1,[1,i]]}. Then we code formulae using the same procedure, but now taking each term as if
it was an individual symbol, a code for it being a code of the appropriate sequence. Thus, a
formula Pfxixi will be coded by any code of the sequence {[1,[5,[2,1]1], [2.[1,[1,1]]],
[3,[1,[1,i11}-

We now exhibit a formula Funct(s) which is true of a number if it codes a finite
function:

Funct(s)=gs. (xe s)(AM1<x)(AM2<x)(x=[m1,m2]) A
(n1=2X)(N2=x)(M<s)(([m,n1]e sA[m,n2]e s)o>n1=n2).

With the help of Funct(s), we can give an alternative formula that shows that the relation
holding between a sequence and its length is r.e.:

Seql(s,n)=gs. Funct(s) A (i<n)(0'<i o @j)([i,jle s))-

We now specify a formula Num(m,n) which is true of a pair of numbers p,q ifpis a
code of a numeral that denotes number q:

Num(m,n)=¢¢. Segl(m,n’) A [n',[0(2),0(D]]e m A (i<n)(0'<i o [i,[0(4),[0(D),0)]]1e m).

The first conjunct “says” that m is a sequence of length n+1; the second that the last pair
of the sequence has as second element the code of the constant O, which, remember, is [2,1];
and the third conjunct “says” that all the other second elements of the sequence are codes
of the symbol for successor, which is [4,[1,1]]. We can now give a formula Numeral(m) that
defines the set of codes of numerals:
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Numeral(m)=4¢. (In<m)(Num(m,n)).

The formula Vblt(m,v) will be true of two numbers p,q if p is a code of a term of the
form fi...f%xi, for a certain i, and v is the code of x; (in this case we say that p is (a code of)

a variable term ending in variable q):

Vblt(m,v)=g. (In<m)(Seql(m,n’) A Fi<m)(v=[0D),i]) A [n',v]lem A (j<n)(0'Sj o
[j,[04),[0(D),0D]]]e m)).

The first conjunct “says” that m is a sequence of length n+1; the second that v is the code
of a variable; the third that the last value of the sequence is v; the fourth that all the values
preceding v are codes of the symbol for successor. A formula similar to Numeral(m) then
defines the set of codes of terms of the form f1...fix;:

Vblterm(m)=gs. (Av<m)(Vblt(m,v)).

It will be useful to introduce a formula Vbl(v) which is true of a number if it is the code of a
variable:

Vbl(v)=gt. Fi<v)(v=[0D),i]).
Finally, we can give a formula that defines the set of codes of terms:

Term(m)=4¢. Numeral(m) v Vblterm(m)

(remember that in RE the only terms are numerals (in official notation) and variables
preceded by a number of occurrences of the function letter fll. If we had taken + and - as
primitive function letters, there would have been more complicated terms. As itis, since ' is
our only function symbol, things are much simpler).

We are now ready to define denotation. The formula Den(m,n,s) is true of a triple of
numbers p,q,r if p is a term that denotes g with respect to assignment r:

Den(m,n,s)=4¢. Funct(s) A (Num(m,n) v
(Fv=m)(Vblt(m,v)A(Fp<m)(Seql(m,p))AFgss)([v,q]e sag+p=n)).

The second disjunct of the second conjunct “says” that there is a variable v such that m is a
variable term ending in v, m has length p+1 for a certain p and s assigns to v a number q
such that, if you add to it 1 p times, you get n.

The formula Atf=(s) is true of a number if it codes an atomic formula of the form
P§t1t2, where t1 and t2 are terms of RE:
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AtF=()=gr. (AM1<5)(IM<s)(Seql(s,003)) A Term(my) A Term(my) A
[0, [06),[0),00]]]e s A [0@,m1]es A [0@),myles).

The formula AtfA(s) is true of a number if it codes an atomic formula of the form
Pftltztg, where t1, t2 and t3 are terms of RE:

AtFA(S)=¢r (3M1<s)(IM2<s)(IM3<s)(Seql(s,04)) A Term(mz) A Term(ma) A
Term(msz) A [0(D,[06),[03),0(D]]]e s A [0, m1]es A [0B),my]es A [04) ms]es).

The formula AtfM(s) is true of a number if it codes an atomic formula of the form
P§t1t2t3, where t1, t2 and t3 are terms of RE:

AttM(s)=4s (Im1<5)(Ima<s)(Im3<s)(Seql(s,04)) A Term(m1) A Term(my) A
Term(msz) A [0(D,[06),[03),02)]]]e s A [02),m1]es A [0B),my]es A [04) ms]es).

Then the formula Atfmla(s) is true of a number if it codes an atomic formula:

Atfmla(s)=gr AtF=(s) v AtFAS) v AtfM(s).
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Lecture VI

Truth and Satisfaction in RE (Continued).

We are getting closer to specifying the basis set. This set (let's call it B) will include the set
of numbers [a,s] where a is a code of an atomic formula A and s is a function that is
sufficient for A and satisfies A. B will include other (numbers coding) pairs of formulae
and functions as well, as we will see later, but we can now start the construction of the
formula that defines B by exhibiting the disjuncts of that formula that “correspond” to the
cases in which the number a in [a,s] codes an atomic formula.

The first disjunct will be a formula true of two numbers a,s if a is an atomic formula of
the form Pftltz and s is sufficient for and satisfies a:

D1(a,s)=g. (3m1<a)(Imy<a)(Seql(a,0(3) A Term(my) A Term(my) A
[0(D),[06),[0(2),0(D]]]e a A [0),m1]e a A [0B),mp]ea A (Fy1<a)(Tyo<a)(Den(my,y1,8) A
Den(mz,y2,5) A y1=Y2).

Notice that we use the identity predicate of RE to define the relation of satisfaction restricted
to codes of equalities and functions that satisfy them. Below, the predicates of addition and
multiplication of RE are used analogously, and so will be the connectives and quantifiers in
our definitions of the generating relations for complex formulae. This procedure for
defining satisfaction, and hence truth, was first used by Tarski. In the case of a sentence, like
0=0, Tarski’s definition of truth comes down to the biconditional: 0=0 is true iff 0=0.
Tarski's definition appeared when some logical positivists had expressed doubts about the
possibility of a scientifically acceptable definition or theory of truth. Tarski showed that this
way of defining satisfaction and hence truth existed, and that it had important uses in logic
and mathematics.

The second disjunct will be a formula true of two numbers a,s if a is an atomic formula
of the form Pftltztg, where t1, t2 and t3 are terms of RE, and s is sufficient for and satisfies
a

D2(a,5)=gf. (AM1<a)(Imy<a)(Imsz<a)(Seql(s,04) A Term(m1) A Term(my) A
Term(m3) A [0(D),[06),[0(3),0(0]]]e s A [0D),mq]es A [0B),mo]es A [04),m3les A
(Jy1=<a)(Jyz<a)(dyz<a)(Den(my,y1,s) A Den(mz,y2,s) A Den(mz,y3,s) A A(y1,Y2,Y3))-

The third disjunct will be a formula true of two numbers a,s if a is an atomic formula of
the form P§t1t2t3, where t1, t2 and t3 are terms of RE, and s is sufficient for and satisfies a:

D3(a,5)=gf. (AM1<s)(M2<s)(IM3<s)(Seql(s,04) A Term(my) A Term(my) A
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Term(m3) A [0(1),[0(),[0(3),01]]e s A [02),m1]es A [0B),mz]es A [04),m3]les A
(Jy1<a)(dy2<a)(Jyz<a)(Den(mzy1,s) A Den(my,y2,5) A Den(ms,y3,s) A M(y1,y2,y3))-

Besides these three kinds of pairs [a,s], the basis set B will contain a fourth kind of
pairs. The reason for this is that we are trying to avoid having to define the set of formulae
of RE and the relation of a function being sufficient for a formula of RE. We are going to
give generating relations that will generate the set {[a,s]: Sat(a,s)} in one fell swoop, as we
said. But in order to do this, we need some way of dealing with the natural generating rule
for disjunctions: if s satisfies A, B is a formula and s is sufficient for B, then s satisfies
(AvB). How are we going to define the relation corresponding to this rule without having
defined the notions of being a formula and of being a function sufficient for a formula? We
can appeal only to the notion of satisfaction as holding between less complex formulae and
functions sufficient for them. Clearly, defining the relation corresponding to the following
rule will not do: if s satisfies A and s satisfies B, then s satisfies (AvB). It will not do
because B may be unsatisfiable, in which case (AvB) will not be generated.

To get around this we will use the following observation. All formulae of the form
(xj<O)B are satisfied by all functions sufficient for them, since there is no number less than
0, so all pairs [a,s] where a is a formula of that form and s is sufficient for B must be in our
final set. But if we have already generated the pairs consisting of a formula of the form
(xj<0)B and all the functions s that satisfy it, (which we have to do in any case), then it must
be the case that both B is a formula and s is sufficient for it. So the rule: if s satisfies A and
s satisfies (xj<O)B then s satisfies (AvB), will be appropriate to generate all the pairs of
disjunctions and sequences that satisfy them, provided we have taken care of generating all
the pairs [a,s] where a is a formula of the form (x;<0)B and s is sufficient for B. In fact we
will take care of generating all the pairs [a,s] where a is a formula of the form (x;<t)B, tis a
term of RE not containing X;, s is sufficient for (xj<t)B and the denotation of t with respect
to s is O (for the same reason as above, all these pairs are in the relation of satisfaction).This
is the reason for having a fourth kind of pairs in the basis set B: they are the pairs [a,s]
where a is a formula of the form (xj<t)B, B is atomic, s is sufficient for (xj<t)B and the
denotation of t with respect to s is 0.

In order to give a formula that defines this relation, let's introduce the following
formulae:

s(i)=m =gf. [i,m]es;
this is simply a convenient abbreviation. The formula OcAtfmla(v,a) is true of v,a if v codes
a variable, a is an atomic formula and the variable coded by v appears in the formula coded

by a (notice that, in this case, the variable coded by v must appear free, since a has no
quantifiers):
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OcAtfmla(v,a)=gs. Atfmla(a) A Vbl(v) A (Im<a)(Ji<a)(Term(m) A [i,m]ea A
Eism)([j,v]e m)).

We now give a formula that defines the useful relation of concatenation between
sequences: Cxyz will be true of m,n,p if they code sequences and p codes the sequence that
results from concatenating the sequence coded by m and the sequence coded by n, in this
order:

Cxyz=gf. (Am=x)(In<y)(Seql(x,m) A Seql(y,n) A Seqgl(z, m+n) A Xcz A
(i=n)(wsy)([i;wle yo[j+n,w]e 2)).

We can naturally define iterations of this relation, e.g.,
C3wxyz=g¢¢. (IM=<z)(Cwxm A Cmyz).

Now we give a formula D4(a,s) which is true of a,s if a is a formula of the form (xj<t)B
(where, therefore, x;j does not occur in t), B is atomic, s is sufficient for (xj<t)B and the
denotation of t with respect to s is 0:

D4(a,s)=gf, (Am1<a)(@m<a)(3v<a)[ Term(m) A Term(my) A Vbl(v) A [0 v]emy A
(=m)(w<m)([j,w]e mow=v) A
(3b<a)(3bp<a)(Cbyba A Atfmla(by) A Seql(b1,08)) A by(O)=[0,0] A b1 (0@)=m; A
b1(0@)=[0,03)] A by (0@)=m A b(0E))=[0,0D]) A
(v1=a)((Vbl(vq) A v2v1 A (JJ<a)([j,v1]le m)) v OcAtfmla(v1,a)) o (Fk<a)([v1.K]€S)) A
Den(m,0,s)].

Finally, our basis set B is defined by the following formula of Re:
Basis(X)=gf. (da<x)(ds<x)(x=[a,s] A (D1(a,s) v D2(a,s) v D3(a,s) v D4(a,s))).

Hence, Bisr.e.

We turn now to defining the relations that will generate the set G from the basis set B.
These will correspond fairly closely to the clauses in the inductive definition of satisfaction
for assignments and formulae of RE. But we also have to take care of generating the more
and more complex formulae of the form (xj<t)B where s is sufficient for (xj<t)B and the
denotation of t with respect to s is 0.

We will define first the relations corresponding to the clauses in the inductive definition
of satisfaction. First we consider the rule corresponding to the clause for conjunction: if s
satisfies A and s satisfies B, then s satisfies (AAB), or schematically:
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Sat (A, s), Sat (B,s)

Sat ((A A B), s).

All we need to define an appropriate generating relation is a formula that defines the relation
{<<A s> <B, s>, <(A AB),s>>. A, B are sequences}; or, to be exact, a formula that defines
the relation Rc={<[m,s], [n,s], [p,S]>: p codes the conjunction of the sequences that m and n
code} (notice that if two pairs [a,], [b,s] have been already generated, there is no further
need to require that a and b be formulae and s be a finite function sufficient for a and b).
Now, the formula Conj(x,y,z) is true of m,n,p if p is the conjunction of m and n:

Conj(x,y,2)=g. (31<z)(Fc<z)(3r<z)(Seql(w,0() A Seql(c,0(D) A Seql(r,0)A 1(0D)=[0,0]
A ¢(01))=[0,0)] A r(0()=[0,0(1] A CSIxcyrz).

Given this, the RE formula with free variables x,y,z
(Fs=x)(@m=X)(In<y) (Fp<z)(x=[m,s] A y=[n,s] A z=[p,s] A Conj (m,n,p))

defines the generating relation we need.
For disjunction, we have two rules; schematically:

Sat (A,s), B is a formula of RE and s is sufficient for B

Sat ((A v B),s)
and

Sat (B,s), A is a formula of RE and s is sufficient for A

Sat ((A v B),s).

We could define the corresponding relation in a way analogous to the case of disjunction if
we had defined the notion of formula of RE and the notion of being a function sufficient for
a formula, but this is what we set ourselves to avoid. It is here that we will appeal to the trick
explained above. For example, the first rule becomes:
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Sat (A,s), Sat((xj<0)B,s)

Sat (A v B),s).

Now we need a formula that defines the relation {<<A, s>, <(xj<0)B, s>, <(A v B),s>>: A,B
are sequences}; or, to be exact, a formula that defines the relation Rp1={<]r,s], [n,s], [p.s]>:
n is a concatenation of (xj<0) (for some i) and some sequence g, and p codes the disjunction
of the sequences that r and g code}. Now, a formula Disj(x,y,z) true of r,n,p if p is the
disjunction of m and n is easily definable as in the case of conjunction. Assuming this, the
RE formula with free variables x,y,z

(Fs=X)(Ar<x)(In<y)(Fg=y) (Fp<z) (x=[r,s] A y=[n,s] A z=[p,s] A
(@m1<n)@v<n)[Term(my) A VbI(V) A [0D),v]lemy A
(3b<n)(Cbgn A Seql(b,00)) A b(0(1)=[0,0] A b(0(@))=m1 A b(03))=[0,03)] A
b(0(4))=[0(2),0(1)] A b(05))=[0,0(11] A
Disj(r,a,p))
defines the generating relation we need. The second rule for disjunction corresponds to
another generating relation, Rpp, that can be defined analogously.

The rule for existential quantification is a bit more complicated:

Sat (A,s), s1 differs from s at most in what it assigns to X;

Sat ((@x)A,51)

In order to define the appropriate generating relation we need a formula that defines the
relation {<<A, s>, <(3Ix;)A, s1>>: A'is a sequence and s; differs from s (if at all) in what it

assigns to x;}; or, to be exact, a formula that defines the relation Reg={<[m,s], [n,s1]>: n
codes the concatenation of (3x;) (for some i) and m, and s; differs from s (if at all) in what

it assigns to x;}. Now, a formula ExQu(m,y,p) true of x,i,z if p is a Godel number of the

concatenation of (3x;) and m, is easily definable as in the above cases (remembering our

special way of coding terms when they appear in formulae). We also need to have an RE

formula Diff(s,s1,v) that says that s and s; assign the same to variables other than v. This
can be done as follows:

Diff(s,s1,V) =4s. Funct(s) A Funct(sy) A Vbl(v) A (w<s)(p<s)(q<s1)((Vbl(w) A wzv A
[w.ples A [w,q]es1)op=0q).
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Then Req is definable by the following formula of RE with free variables x,y:
(Fs=x)(Fs1<y) Fi<y) (AmMLy) (Ap<y) (X=[m,s] A ExQu(m,i,p) A y=[p,s1] A Diff(s,s4,i)).

Finally, we come to bounded universal quantification, which is a bit subtler than the
preceding cases. We have the rule

Sat ((xi<OM)A,s), Sat (A,s1), s; differs from s only in that s; assigns n to x;, t denotes n+1
with respect to s, xj does not occur in t

Sat ((xj <t)A,s)

This says, roughly, that if s satisfies both (x;<O0(M)A and A(0(M), then s satisfies any
formula of the form (xj<t)A where t denotes n+1 with respect to s. The corresponding
relation is Ryg={<[m,s], [n,s1], [p,s]>: for some term t and some variable x; not occurring
in t, p codes the concatenation of (x; < t) and n, s; differs from s at most in that it assigns a
number g to x;, and m is the concatenation of (x;<0(®) and n}. Now, a formula
UnQu(m,i,t,p) which “says” that p is the GAdel number of (xj<t)A, where A is the formula
whose Godel number is m, is easily definable as in the above cases (taking care of
remembering that we are not using the simple-minded coding scheme). Then we can define
Rug by means of the following formula with free variables x,y,z:

(Fs=x)(Fs1=y)(AM=X)(In<y) (Fp<z) (Fi<x) (At<z) (g=x) (Ir<x)(Term(t) A VbI(i) A
(=t (wst)([j,wle tow=i) A UnQu(n,i,t,p) A Diff (s,51,1) A Num(q,r) A Den(i,r,s1) A
UnQu(n,i,g,m) A x=[m,s] A y=[n,s1] A z=[p,s]).

We are now done in our job of defining the generating relations corresponding to the
clauses in the inductive definition of satisfaction for RE. We now have to make sure that we
can define the relations that generate more and more complex formulae of the form (xj<t)A.

For conjunction, we have the rule

Sat ((xi<t)A, s), Sat ((xj<t)B,s), t denotes 0 with respect to s

Sat ((xi<t)(A A B), s).

The corresponding relation is Rc*={<[m,s], [n,s], [p,s]>: for some q,r,x;,t such that x; is a
variable, t is a term, m codes the concatenation of (xj<t) and g, n codes the concatenation of
(xj<t) and r, the denotation of t with respect to s is 0 and p is the concatenation of (x;<t) and
the conjunction of g and r}. R~ is definable by the following formula with free variables
XY.Z:
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(35<X)(@mx)@Ensy) (Fp<2)Ag=x)@r<y) Gism) Gm)(x=[m.s] A y=[ns] » 2=[p,5] A
VbI(i) A Term(t) A UnQu(g,i.tm) A UnQu(r.i.t;n) A Den(t,05) A (Bwsp)(Conj(q.r,w) A
UnQu(witp))).

For disjunction, we have the rule

Sat ((xi<t)A, s), Sat ((xj<t)B,s), t denotes 0 with respect to s

Sat ((xi<t)(A v B), s),

whose corresponding generating relation Rp= is definable similarly.
For existential quantification we have the rule

Sat ((xj<t)A, s1), t denotes 0 with respect to s, and s; differs from s at most in what it
assigns to X;

Sat ((xi<t)(@x)A, s),

whose corresponding relation Rgg~ is easily definable by means of the formulae that we
already have.

The same is true for the relation Ryg+ corresponding to the relevant rule for bounded
universal quantification:

Sat ((xj<t)A, s1), t denotes 0 with respect to s, and sz differs from s at most in what it
assigns to x;, t1 is a term and x; is a variable not appearing in ty

Sat ((xi<t)(xj<tp)A, s).

Thus we finish our specification of the generating relations. It can be proved (by induction
on the complexity of the formulae) that for every formula A and function s, if a codes A and
s is a function that satisfies A, then [a,s] is generated from B by the relations Rc, Rp1, Rp2,
ReqQ, Ru@, Rc* Rp*, Reg+*, Rug*. So G is indeed the set generated from B, which isr.e.,
by these relations, which are r.e. Using the Generated Sets Theorem, we then reach the
result that G is r.e., which is what we had set out to prove.
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Given that RE contains its own satisfaction predicate, it also contains its own truth
predicate, that is, there is a formula of RE Tr(m) with one free variable which is true of a
(Godel number of a) formula if and only if the formula is true in the intended interpretation
of RE. Noting that a formula is true iff it is satisfied by a Godel number of the empty
sequence, we can define

Tr(m) =4¢. Sat(m,0(3)).

(3 codes the empty sequence, for it is not in the range of our pairing function.)

If we had shown that RE contains its own truth predicate Tr(x), we could then have
defined satisfaction with its help, using a remark due to Tarski: a number m satisfies a
formula A(x1) with one free variable just in case the sentence (3x;)(x1 = 0M A A(X1)) is
true, so easily, since the concatenation function is definable in RE, we can define satisfaction
in terms of truth within RE.

Exercises

1. Define the characteristic function of a set S to be the function which, for every natural
number X, takes value 1 if xe S, and value 0 if x¢ S. Similarly, the characteristic function of
an n-place relation R is the function that for every n-tuple <x1,...,xn>, takes value 1 if
<X1,....Xp>€ R, and value 0 if <x1,...,.xn>¢ R. The weak characteristic function of a set S (or
n-place relation R) takes value 1 on a number x (or n-tuple <x1,...,Xxp>) if X (<X1,...,.Xn>)
belongs to S (R). (a) Show that a set or relation is recursive iff its characteristic function is.
(b) Show that a set or relation is r.e. iff its weak characteristic function is partial recursive.
(c) Show that the range and domain of any recursive function in one variable is r.e.

2. Show that the relation z=xY is r.e., and therefore that the exponentiation function is
recursive by both the method of primitive recursion and the method of generated sets. How

do the two defining formulae in RE differ from each other?

3. Use the Generated Sets Theorem to show that the Ackermann function is recursive.
Where would an argument that the Ackermann function is primitive recursive break down?

47



Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

4. Show that the set of Gddel numbers of formulae of the first order language of arithmetic
is r.e., using the Generated Sets Theorem. Do the problem explicitly as follows. Write the
basis clauses and generating clauses for the formulae themselves, and also show how they
are then translated into basis clauses and generating clauses for codes. Then indicate what
formula of RE results if we apply the argument in the proof of the Generated Sets Theorem
to this case. Do the same for the set of formulae obeying the nested quantifier restriction.
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LectureVII

The Enumeration Theorem. A Recursively Enumerable Set which is Not Recursive

Now that we have shown how to define satisfaction for RE within RE itself, we are ready to
prove what may be considered the fundamental theorem of recursion theory. First, let us
define a variant on the notion of satisfaction we defined above. If B is a formula whose
only free variable is x4, then we say the number n satisfies; B just in case the unit sequence
<n> satisfies B. We may thus define

Sat; (M, n) =qr. (3s) (Sat (M, s) A (ye s)(y=[[0D,0D],n]) A [[0D),0D],n]es).

One could in general define Satk, satisfaction for formulae with k free variables, either
directly in a similar manner or by using the k-tupling function to reduce it to the case k=1.

We also use the notation W(e,n) for the relation that holds just in case Sat;(e,n) holds.
We now have the

Enumeration Theorem: There is a 2-place r.e. relation W such that for every r.e. set S,
there is an e such that S = {n: W(e,n)}.

Proof: Let We={x: W(e,x)}. Each set W, is defined by Sat; (0(),x) and is therefore r.e. If,
on the other hand, S is an r.e. set, then it is defined by some RE formula B with one free
variable. We may assume that B's free variable is X;; letting e be a Gddel number of B, we
see that S = W,.

The Enumeration Theorem is so called because W enumerates the r.e. sets. This theorem is
a standard theorem of recursion theory, though our presentation of it is not standard. When
recursion theory is presented in terms of Turing machines, for example, W(g, x) is usually
the relation e codes a Turing machine which gives output "yes' on input x for some fixed
method of coding up Turing machines, and is shown to be r.e. by constructing a Turing
machine which decodes the instructions given in e and applies them to the input x. In each
formalism for developing recursion theory, the relation W(e, x) will be a different relation.
(The notation “W’ originates in Kleene.)

In general, we can define a k+1-place relation WK+1 which holds of a k+1-tuple
<e,ni,....nk> if W(e, [n1,...,nk]) holds. This can be used to prove that WK+1 enumerates the
k-place r.e. relations.

A very famous corollary of the Enumeration Theorem is the following:
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Theorem. There is an r.e. set whose complement is not r.e. (thus, an r.e. set which is not
recursive).

Proof: Let K be the set {x: W(x, X)}. K is clearly r.e., since it is defined by the formula
Saty (X1, X1). However, -K is not r.e., and so K is not recursive. To see this, suppose -K
were r.e. Then we would have -K = W, for some e. By the definition of K, we see that x €
-Kiff x ¢ Wy, so in particulare € -K iffe ¢ We. But We =-K,soe e -Kiffe ¢ -K,
contradiction.

(This shows that negation is not definable in RE: if it were, the complement of any r.e. set
would be definable in RE, so in particular -K would be definable in RE.) This proof uses an
idea due to Cantor. As we will see, once we have this theorem, Gédel’s first incompleteness
theorem is just around the corner.

The fact (if it is one) about the intuitive notion of computability corresponding to the
enumeration theorem is that there is a semi-computable relation that enumerates all the semi-
computable sets. It follows from this that there is a semi-computable set that is not
computable. However, to prove the enumeration theorem for semi-computability, and thus
to prove that not all semi-computable sets are computable, it seems necessary to use
Church's Thesis. If there were a single language in which all computation procedures could
be written out, then the enumeration theorem would follow: simply find some way of
coding up this language numerically, and some effective way of decoding coded instructions
and applying them to arguments. However, if we do not assume Church's Thesis, then it is
by no means obvious that there is such a language. At first glance it might appear that the
lesson of Godel's work is that there is no single language in which all computation can be
represented, just as there is no single fully classical language in which everything can be
expressed. Every language will have some sort of Godel-type limitation; it is a peculiarity
of the language RE that the limitation is not that it cannot express its own semantic notions
(as is the case with full first-order languages), but that it cannot express negation. But if it
turns out that there are some semi-computable sets and relations that are not expressible in
RE, then it is quite conceivable that all semi-computable sets and relations are computable
and that the enumeration theorem for semi-computability fails.

The fact that the enumeration theorem is so fundamental to recursion theory, and that its
proof for semi-computability requires Church's Thesis, indicates a limitation to how much
recursion theory can be developed for the informal notion of computability by starting with
intuitively true axioms about computability. Shoenfield tries this approach in his book on
recursion theory; he winds up assuming the enumeration theorem, and does not give a fully
convincing intuitive justification for it, since he in effect assumes that there is a single
language in which all computation procedures can be represented.
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The Road from the Inconsistency of the Unrestricted Comprehension Principle to the
Godel-Tarski Theorems

The result that RE contains its own truth and satisfaction predicates may seem surprising,
since it is commonly said that Godel and Tarski showed that no language can contain its
own truth or satisfaction predicates. This is true for a wide range of languages, but the
language RE is not among them. We shall now look at their result and at is historical roots.

Early on in the 20th century, it was discovered, to the surprise of many, that a certain set-
theoretic principle is self-contradictory. The principle is called the unrestricted
comprehension scheme:

(21)--(z)EY)X) (X € y = AX, Z4, ..., Zn))

where A is any formula in the language of set theory whose free variables are among x and
Z1, ..., Zn (in particular, A does not contain y free). zy, ..., z, are called parameters. In the
case n = 0, we have the parameter-free unrestricted comprehension scheme:

@Ay)X)(x e y=A(x)

It is important to note that A may itself contain the predicate 'e".
Russell showed that the unrestricted comprehension scheme, even in its parameter-free
version, is self-contradictory: simply take A(x) to be the formula ~x € x. We then have

X)(xe y=~xe Xx)
for some y, from which it follows that

yey=-yey

which is directly self-contradictory. This observation is called Russall's paradox.

Russell got the idea of his paradox by analyzing Cantor's proof via diagonalization that
there is no function mapping a set onto its powerset, and applying it to a more complicated
paradox that embedded his. The Russell paradox is not the only set-theoretic paradox.
Other paradoxes were discovered at the very time of the formation of set theory itself. For
example, there is the Burali-Forti paradox, and the paradox of the greatest cardinal. In
general, these paradoxes, like the Russell paradox, can be used to show that the unrestricted
comprehension scheme is inconsistent, or at least, that it leads to an inconsistency in
conjunction with the axiom of extensionality.

If the unrestricted comprehension scheme is logically self-contradictory, this cannot
depend in any way on the interpretation of 'e'. From a purely formal point of view, it doesn't
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matter whether '€ means 'is a member of' or 'is satisfied by'. In fact, if you knew somehow
that the unrestricted comprehension scheme is inconsistent but didn't know why, you would
be able to see immediately that no first-order language can contain its own satisfaction
predicate. Consider the following interpretation of a first-order language with ‘e’ as its only
predicate: let the variables range over the formulae with one free variable of the language,
and assume that the language contains its own expressions in its own domain. Suppose that
we interpret ‘e’ by means of the 2-place relation S(y,x) which holds just in case y is a
formula with one free variable and x satisfies y. Then suppose that the language could
define its own satisfaction for formulae of one free variable. Then we would have a model
that would make the comprehension scheme true, because a formula A(x) can be taken to be
the object y, and then the principle says that x satisfies y if and only if A(x), which is of
course true. So any proof of the inconsistency of the comprehension principle proves that a
first order language cannot contain its own satisfaction predicate for formulae with one free
variable. Often, the results of Godel and Tarski are presented as if they involved all kinds of
sophisticated ideas very different from these, but the inconsistency of the unrestricted
comprehension scheme is essentially what proves those results.

(Now, suppose that in the derivation of a paradox we used the unrestricted
comprehension axiom with n parameters. How are we going to interpret 'x € y' in this case?
One way will be analogous to the reduction of satisfaction to truth that we saw for the case
of RE. We take y to range over the formulae with one free variable, or their codes, and 'x €
y' to be defined by "x satisfies y", where y will be, or code, the formula with one free
variable

(3z1)...(32)(21=0M) A...A 2,=0(MN) A A(X, 21, ..., Zp)),

where my,...,mp are the parameters. We could also use a relation of substitution of terms for
free variables in formulae to specify how y will be, in a way indicated below. Or we could
define 'x e y' with the help of the pairing function, as holding between a number and a pair
composed of (the code of) the formula A(X, z3, ..., Z,) and a finite function assigning values
to all of the variables z, ..., z,.)

We can use what we have learned about satisfaction to state some very general results
about the indefinability of truth. As long as the language L contains a name 'a’ for each
object a in its domain, we can (in the metalanguage) define satisfaction for L in terms of
truth for L: an object a satisfies a formula A(x;) just in case the sentence A('a) is true
(where A('a") is got from A(X1) by replacing all free occurrences of x; with 'a’). We can
turn this into a definition in L of satisfaction in terms of truth as long as L possesses certain
syntactic notions. Suppose, for example, L has function symbols Q and S denoting
functions g and s, where q(a) = 'a' for all a in L's domain, and s(A(xy), t) = A(t) for all
formulae A(x1) and terms t. Then s(A(X1), g(a)) = A(‘a") for all A(x;) and a, and so the
formula Tr(S(y,Q(x))) of L will define satisfaction in L if Tr defines truth in L. Since
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satisfaction for L is not definable in L, it follows that truth is not definable either. So in
general we see that, for fully classical L, the following conditions cannot jointly obtain:

1. Truth for L is definable in L.

The relation of substitution of terms for free variables is definable in L.

3. Every object in L's domain has a name, and moreover the function from an object to
its name is definable in L.

no

In fact, somewhat weaker conditions than 2 and 3 are also incompatible with 1. For
example, 3 may be replaced with: every object in L's domain is denoted by some term of L
and the relation t denotes x is definable in L. For suppose Den(t, x) defined that relation;
then the formula (3z)(Den(z, x) A Tr(S(y, z))) would define satisfaction in L in terms of
truth. (We could further weaken 3 by assuming only that every object a of L's domain has a
definite description D in L, and that we can specify D in terms of a within L.) Also, we can
use the trick remarked on by Tarski to avoid using the substitution function. An object a
will satisfy A(x1) just in case the sentence (Ix1)(X1 ='a" A A(X1)) is true (or (Ix)(X1 =t A
A(X1)) is true for some term t denoting a, or (Ix1)(D(x1) A A(Xy) is true for some definite
description D of a), so as long as the function F(t, A(X1)) = (3@X1)(X1 = t A A(X1)) is
definable in L, and 3 obtains, we can define satisfaction in terms of truth within L.
Moreover, F is itself easily definable in terms of concatenation (as long as terms for the
primitive symbols of L exist in L), and is anyway simpler than the substitution function,
which has to distinguish between free and bound occurrences of variables. To putitina
succinct form, we see that a language cannot both define all the devices that can be used to
reduce truth to satisfaction and contain its own truth predicate.

So far, we have been concentrating on interpreted languages whose domains include all
the expressions of the language itself. However, we can generalize the discussion by
considering languages that can talk about their own expressions indirectly, via coding. Let
L be a language with a countable vocabulary and with an infinite domain D. Suppose we
had a function f mapping the elements of some subset D1 of D onto the formulae, or at least
onto the formulae with one free variable. Call this a coding function. Given any coding
function f for L, the relation {<y,x>: xis in D1 and f(y) is satisfied by x} of "coded
satisfaction” between elements of L's domain is not itself definable in L: if S(y,x) defined i,
then the unrestricted comprehension scheme, with 'x € y' replaced by 'S(y,x)', would be true
in L, which we know to be impossible. Note that none of this depends on any particular
facts about f; any coding function will do, and we know that such a mapping will exist
whenever L has an infinite domain.

As before, this is related to the question of the definability of truth in L. Let us say that
a formula Tr(x) of L defines truth in L (relative to f) if Tr(x) defines {y: f(y) is true in L}.
We can always find a function f such that some formula of L defines truth in L relative to f
(for practically any L). For example, let L be the language of arithmetic, and let f "assign"
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Godel numbers to sentences of L so that the Godel numbers of the true sentences of L are
0, 2, 4, ... and the Godel numbers of false sentences of L are 1, 3, 5, ... (Or if arbitrary
formulae are to be coded rather than just sentences, we can let 0, 3, 6, ... code the true
sentences, let 1, 4, 7, ... code the false sentences, and let 2, 5, 8, ... code the rest of the
formulae.) Relative to such a Godel numbering, truth in L is obviously definable in L.
However, for any coding f, conditions 1-3 above will still not be jointly satisfiable, and so
for this particular Godel numbering, the basic syntactic notions will not be definable in L.
For any ordinary Godel numbering (e.g. our own numbering), the syntactic notions will be
definable, and so truth will be undefinable. But again, satisfaction will be undefinable for
any f, and for any L.

Now, as we have seen, if we drop the requirement that L be fully classical, these
indefinability results will no longer hold, since the language RE has its own satisfaction
predicate. However, RE does not have its own unsatisfaction predicate, i.e. there is no
formula U(y,x) of RE that obtains just in case x fails to satisfy y. (If there were, then we
could define -K in RE by U(x1, X1).) More generally, if L is a language with classical
semantics, but not necessarily with all classical connectives, then unsatisfaction is not
definable in L. To see this, suppose we had an unsatisfaction predicate U(y,x). Then letting
u be the formula U(y,y), we would have that U(u,y) obtains iff y does not satisfy U(y,y), and
so U(u, u) obtains iff u does not satisfy U(y,y); but to say that U(u, u) obtains is just to say
that u satisfies U(y, y), so this is impossible. Similarly, given suitable restrictionson L, a
language cannot have its own untruth predicate. Similar remarks apply when we allow
languages to talk about their formulae indirectly via codes.

The enumeration theorem is really a form of the naive comprehension scheme for RE,
since the content of the theorem is that for every RE formula A(xz) there is an e such that

(x1)(A(x1) = W(e, x1))

We cannot derive a contradiction by letting A be the formula ~W(x1, X1), since negation is
not definable in RE. This shows that it is essential to use either negation or unbounded
universal quantification in showing that scheme to be inconsistent for classical languages,
since RE lacks both negation and unbounded universal quantification. In fact, however,
there are languages which have unbounded universal quantification, as well as the other
logical symbols of RE, but which lack negation, and which have their own satisfaction
predicates; so only the use of negation is really essential.

From all of this it follows that, given our Godel numbering, the language of arithmetic
does not have its own truth predicate. This was originally shown by Tarski as an
application of the work of Goédel. However, there it was presented in a more complicated
way as an application of the liar paradox. First, GOdel's self-reference theorem was used to
obtain, for any formula T(x;) of the language of arithmetic, a sentence A such that
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A= ~T(0(n))

is true, where n is the Godel number of A. If T(x1) defined the set of truths of arithmetic,
then we would also have

A= T(O(n))

from which T(0(M) = ~T(0(M) follows, which is self-contradictory. Intuitively, if T(x,)
means "X is true", then the sentence A says of itself that it is not true; so the Tarski-Godel
proof can be seen as an application of the liar paradox. However, the construction of the
sentence A is rather tricky, and leaves one with the impression that something much more
subtle is going on here than actually is. In fact, when one takes the Tarski-Godel proof
apart, one sees that it really boils down to the observation that arithmetic lacks its own
satisfaction predicate, which in turn is a direct consequence of the Russell paradox, as we
saw above.

Under the interpretation of 'e " as the relation of satisfaction, Russell's paradox is known
as 'the paradox of 'heterological”. Grelling was the discoverer of this paradox, and he
obtained it by reflecting on Russell's paradox. Call a predicate of English autological if it is
true of itself, and heterological otherwise. (For example, 'polysyllabic' is autological and
'monosyllabic’ is heterological.) A problem arises when we ask whether 'heterological’ is
itself heterological. 'heterological' is heterological iff 'heterological’ is not true of
‘heterological’, iff 'heterological' is not heterological—a contradiction. If we interpret 'x € y'
to mean 'y is true of X', then the formula 'x ¢ x' means that x is heterological, and the
derivation of the Grelling paradox is formally identical to the above derivation of the Russell
paradox.

Godel mentions the liar paradox (and the paradox of Richard) as sources for the
reasoning leading to his theorems. He does not mention Russell's paradox, or the paradox
of 'heterological’, although the Tarski-Gddel results are more naturally motivated by appeal
to them, as we have seen. That Russell's paradox and Grelling's paradox can be most
naturally put to this use is perhaps a fact known to some logicians, but to the author's
knowledge, it is not mentioned in the printed literature.

In fact, some logicians have probably misunderstood the relation between the liar
paradox on the one hand and Russell's and Grelling's paradoxes on the other. That the
Godel-Tarski results can be motivated in the two ways is no surprise, for, in fact, on one
way of stating the liar paradox it just is the Grelling paradox. The liar paradox is
traditionally stated in terms of sentences like "This sentence is false’. One way to get a liar
sentence without using locutions like 'this sentence’ is via the sentence "Yields a falsehood
when appended to its own quotation’ yields a falsehood when appended to its own
quotation'. Since the result of appending the phrase mentioned in the sentence to its own
quotation is the sentence itself, the sentence says of itself that it is false. (A briefer way of
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writing the sentence is as follows: "Is not true of itself' is not true of itself'.) Quine gives
this version of the liar paradox in "The Ways of Paradox". But he goes on to say that this
antinomy is "on a par with the one about 'heterological™ (*The Ways of Paradox", in The
Ways of Paradox, New York, Random House, 1966; p. 9). This is at best misleading,
especially in this context, for the paradox simply isthe Grelling paradox, since 'is
heterological' means the same as 'yields a falsehood when appended to its own quotation'.
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Lecture VIl

Many-one and One-one Reducibility.

Given that not all sets are recursive, and indeed that some r.e. sets are not recursive, we may
want to ask of some nonrecursive set A whether the problem of deciding membership in it
can be reduced to that of deciding membership in some other set B. This idea gives rise to a
number of reducibility notions in recursion theory; in this section, we shall discuss two of
the simplest such notions.

We say that a set A is many-one reducibleto B (in symbols, A <, B) if there is a total
recursive function ¢ such that for all m, m e A iff ¢(m) € B. (We also say m-reducible for
many-one reducible.) We also write ¢: A <, B when ¢ is a total recursive function
satisfying this condition. If ¢: A <, B and ¢ is 1-1, then we say that A is 1-1 reducible (or
1-reducible) to B (in symbols, A <; B).

One way to think of this informally is in terms of oracles. Suppose there were an
oracle that could tell you, for an arbitrary number, whether it is an element of B. Then if A
<m B, you will have a way to use the oracle to find out whether an arbitrary number is an
element of A: to see whether m € A, simple compute ¢(m) and consult the oracle. If the
oracle tells you that ¢(m) € B, then you know that m € A, and if it tells you that ¢(m) ¢ B,
then you know that m ¢ A.

Here's a simple example of 1-1 reducibility. Let A be an arbitrary set, and let B = {2m:
m e A}. Then we see that A <; B by letting ¢(m) = 2m. And intuitively, we can effectively
determine whether m € A by consulting the oracle about whether 2m e B.

It can readily be shown that the relations <; and <y, are reflexive and transitive. Let us
write A =p, B for A <, B & B <y A, and similarly for =q; it then follows that =, and =; are
equivalence relations. The =y-equivalence classes are called many-one degrees or m-
degrees; similarly, the =1-equivalence classes are called 1-1 degrees or 1-degrees.

The relations <, and <1 do not coincide. To see this, let A = {even numbers}, and let
o(m) =0ifmiseven, 1if misodd. Then we see that ¢: A <, {0}. However, there is
clearly no 1-1 function ¢ such that x € A iff ¢(x) € {0}, so A is not 1-reducible to {0}.

A set is many-one completer.e. (1-1 completer.e) iff it isr.e. and every r.e. set is
many-one reducible (1-1 reducible) to it. If S is many-one complete r.e., then every r.e. set
is of the form {x: &(x) € S} for some total recursive ¢. One example of a many-one
complete set (which is also 1-1 complete) is the set S = {[e, X]: X € W¢}. ToseethatSis
1-1 complete, let S; be any r.e. set. Sy is W, for some e, so let ¢(x) = [e, X]; x e Sy iffx €
W, iff §(X) € S. ¢ is clearly as required; in particular, ¢ is recursive, since its graph is
defined by the formula y = [0(), x]. Another 1-1 complete set is the set T of Godel
numbers of true RE sentences. To see this, note that if A(x1) defines a set Sy, thenn e S;
iff A(0(M) is true; so if ¢(n) is a recursive function that picks a Godel number of A(0(M) (for
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example, the smallest one), then x € Sy iff ¢(x) € T. The set K can also be shown to be 1-1
complete, but the proof is a bit trickier.

If S;1 <m Spand Sy is r.e. (recursive), then Sy is also r.e. (recursive). An r.e. m-complete
set cannot be recursive: if S were an m-complete recursive set, then K <, S, and this would
imply that K is recursive, which it is not.

Some questions about reducibility naturally arise. First, is there an r.e. set which is
neither recursive nor many-one complete? Emil Post answered this question in the
affirmative, and we shall prove his result later on in the course. Second, are there any many-
one complete sets that are not 1-1 complete? The answer is no; this result is surprising, and
the proof is nontrivial; we shall give the proof later on. (The notion of being 1-complete and
of being m-complete are also equivalent to the notion of being creative, which we shall
define later on.)

Despite Post's result, all (or practically all) naturally arising r.e. sets are either 1-1
complete or recursive. That is, while r.e. sets that are neither 1-1 complete nor recursive
exist in great abundance, they tend to arise as cooked-up counterexamples rather than sets
which are interesting for separate reasons. A common way to prove that an r.e. set is
nonrecursive is to show that some 1-1 complete set reduces to it, which implies that it is 1-1
complete.

Another way to put this is in terms of degrees. Among the r.e. 1-1 degrees (i.e. =;-
equivalence classes containing r.e. sets), there is a degree on top (the degree of 1-1 complete
sets), and, excluding the degrees containing finite and cofinite sets, a degree on the bottom
(the degree of recursive sets with infinite complements), and many degrees in between.
However, all the naturally occurring r.e. sets are to be found on top or on the bottom.

Besides <, and <4, there are coarser-grained reducibility relations, all of which give an
intuitive notion of the idea that given an oracle for a set B, we can decide A. Post, who
originally formulated the notions of many-one and 1-1 reducibilities, gave a variety of
reducibility notions, still studied today. One of his notions, the broadest of all, was
supposed to capture the intuitive notion of being able to decide A given an oracle that will
answer all questions about set membership in B. He called this notion Turing-reducibility’;
it has also been called 'relative recursiveness' and 'recursiveness in'. As we said above, Post
found an r.e. set that was not many-one complete (and therefore not 1-1 complete).
However, he was able to define another reducibility relation with respect to which this set
was still complete. In general, he found broader and broader reducibility relations, and more
complicated r.e. but not recursive sets that failed to be complete with respect to them.
However, he could not solve this problem for the basic notion of Turing-reducibility, and it
was a long-standing question whether there are any r.e. sets which are neither recursive nor
Turing-complete. This was answered in the affirmative in 1956 by Friedberg and Mucnik.

Two sets A and B are called recursively isomorphic (in symbols, A = B) if there isa 1-1
total recursive function ¢ which maps N onto N, and such that B = {¢(x): x € A}. (It
follows that ¢1 is also such a function and that A = {¢-1(x): x e B}.) If A=B, thenitis
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easy to see that A =; B, since ¢: A <; B and ¢'1: B <; A. The converse is also true, and is
highly nontrivial. It was once proposed that recursion theory be regarded as the study of
those properties of sets of natural numbers which are invariant under recursive
isomorphism. In fact, nearly all the properties studied by recursion theory are of this
nature; however, there are some exceptions.

The Relation of Substitution

In several occasions we have mentioned the relation of substitution of a term for all the free
occurrences of a variable in a formula, noting that we could use it to give alternative proofs
of some results. For example, we could have given an alternative proof that RE defines its
own satisfaction using definitions of the notion of formula and of the relation of
substitution. Also, we could have defined truth in RE by means of satisfaction in RE using
substitution, instead of Tarski's trick. We will now show how a certain notion of “naive
substitution” is definable within RE, leaving as an exercise showing how to define the
notion of proper substitution.

First, we will define a relation that we will call “term substitution”: specifically, we
shall define the relation {<ty, t,, v, t>: the term t, comes from the term t; by replacing all
occurrences of the variable v, if any, by the term t; if v does not occur in t1, then t;=t,}. This
is defined by the following formula of RE:

TSubst(ty, t, v, t) =¢;. VbI(V) A Term(t;) A Term(ty) A Term(t) A [((jSt)~([j,v]ety) A t1=t)
v (@Gjt)([[+1,vle ty A @I (Seql(t,1+1) A Seql(ty,j+1+1) A (y<t)([I+1,y]et D [j+l,y]ety)
A (i<j+)([i, [0@, [0M),00]11e )]

(Recall that all terms of RE are either of the form f1...f10 or of the form fi...fix;, for some
i)

We now show how to define the notion of “naive substitution”, that is the relation
{<m1, my, v, m>: the sequence m, comes from the sequence m; by replacing all
occurrences of the variable v by the term m}. We call this “naive” substitution because the
result of a substitution of this kind may not be a formula, even if the expression operated
upon was one (note, for example, that even occurrences of the variable to be replaced within
quantifiers will be replaced, so if the replacing term is not a variable, substitution may
transform a quantifier into an expression that cannot form part of a formula.) Naive
substitution is definable by the following formula of RE:

NSubst(my,mj,v,m)=g¢. (F1I<my)(Seql(my,l) A Seql(my,1) A (<D (y<D[(([i,y]le m1 A

~(Fi<y)(l.vley)) = [iylem2) A (([iyle mi A Gjsy)([ivley))  (zsmz)(TSubst(y,z,v,m)
> [i,z]lem)))).
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This simply “says” that if y is a part of my in which v does not occur, it's left untouched in
my, and if it is a term in which v occurs, v is replaced by m in y to obtain a term z which is
then part of the result m,.

The result of a naive substitution will not in general be a formula. It will be a formula,
however, if the variable to be replaced never occurs bound in the initial formula (and also if
the term replacing the variable in a formula is another variable). The utility of naive
substitution can be seen from the fact that it is sufficient for showing that the set of logical
axioms (of a given language) in the deductive system of the next section is r.e. Notice, in
particular, that axiom schema 4 only invokes naive substitution. In standard systems, in
place of axiom schemata 4 and 5 we find schemata 4' and 5', and the natural way of coding
these is more complicated. It involves proper substitution, that is, the relation {<my, my, v,
m>: the sequence m, comes from the sequence m; by replacing all free occurrences of the
variable v by the term t; and no variable occurring in m becomes bound in my}. The
definition of proper substitution in RE is left as an exercise.

Deductive Systems.

We want, for a given language L, a deductive system in which all and only the valid
sentences of L are provable. When L does not contain function symbols, the following is
such a system.

The axioms are all of the instances (in L) of the following schemata:

1. Ao(BoA);

2. Ao(B>2C)o((A>B)o(AD0Q));

3. FA>~B)> (B> A);

4. (xj)A o A', where A'is got from A by substituting all occurrences of x; in A by a
fixed term t, and neither (x;) nor (x;) occurs in A, where X; is any variable occurring in t;

5. A D (xj)A, where x; does not occur in A,
6. (xi)(A > B) > ((x)A > (xi)B).
There are also two inference rules:

modus ponens (MP): A>B,A universal generalization (UG): A
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B (XA

A proof in L is a finite sequence of formulae of L such that each formula is either an axiom
or follows from earlier formulae by one of the inference rules. A sentence is a theorem just
in case it occurs in a proof. More generally, a proof from T", where T is a set of sentences of
L, is a finite sequence of formulae in which each formula is either an axiom or an element of
T, or follows from earlier formulae by the inference rules. A sentence is a theorem of I" just
in case it occurs in a proof from I'. We write fi A to mean that A is a theorem, and I" fi A to
mean that A is a theorem of T..

Remarks. The axiom schemata 1-3, along with MP, are sufficient to prove all tautologies.
We could have simply taken all tautologies (of L) as axioms, but the present approach will
prove more convenient later.

The present system differs from standard systems in that axiom schemata 4 and 5 are
usually formulated as follows:

4'. (x;)A > A', where A'is got from A by replacing all free occurrences of x; in A by a
fixed term t, where either t is a constant, or tis a variable x; and no free occurrence
of x; in A falls within the scope of a quantifier (x;).

5. A D (XA, where x; does not occur freein A.

All instances of 4' and 5' that are not also instances of 4 and 5 prove to be derivable and
hence redundant. As we said, 4 and 5 are simpler to represent in our coding of syntax than
4'and 5'.

(In any deductive system which contains a version of universal instantiation, some
restriction like that in 4 or 4' must be made, for the prima facie more natural scheme

(x)A> A, where A’ comes from A by replacing all free occurrences of x; in A by
afixed term t

is invalid. To see this, consider the instance (X)(3y) x#y > (dy) y#y. Inany
interpretation whose domain has more than one element and in which = is interpreted as
identity, this sentence is false. The problem is that the instantial term, y, becomes bound
once it is substituted for x; as long as we prevent this sort of thing, the restricted scheme will
be valid.)

We say that a system is sound just in case every theorem is valid, and every theorem of
I"is a consequence of T, for any I". A system is complete if every valid sentence is a
theorem, and strongly complete if for all ", every consequence of I is a theorem of I". The
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proof that our system is sound is fairly easy by induction on the length of a proof of any
given theorem. We will sketch later the argument for completeness (and strong
completeness), with more discussion of variant formulations, and in particular of the
comprehensive virtues and drawbacks of 4 and 5 as opposed to 4' and 5'. In particular, how
to derive 4' and 5' from 4 and 5 will be sketched later.

The Narrow and Broad L anguages of Arithmetic.

By the narrow language of arithmetic, we mean the language as given in lecture I. Recall
that the primitive connectives of that language are > and ~ and that (x;) is the only primitive
quantifier; so, perversely, the logical vocabulary of the narrow language is disjoint from that
of RE. By the broad language of arithmetic we mean the language which has all the
vocabulary of the narrow language, and in addition the primitive connectives A and v and the
quantifiers (3x;), (xj <t), and (Ix; < t) (with the usual restrictions on t). So the broad
language of arithmetic literally contains the languages RE and Lim (but not Lim*). We
shall use L ambiguously to refer to both the broad and the narrow language of arithmetic;
when we wish to refer to them unambiguously, we shall use L" to refer to the narrow
language and L™ to refer to the broad language. Note that L~ and L* are equal in
expressive power, since the extra connectives of L* are already definable in L-.

The language L™ has redundancies, as its extra connectives and quantifiers are already
definable in L~. L- also has redundancies. For example, the negation sign is superfluous in
L-, as ~Aisequivalentto A> 0=0". If we had included the function symbols + and -, then
all the connectives would have been superfluous, since they could be eliminated in the
manner indicated in an exercise. Even in L™, we can eliminate all of the connectives except
for A. To see this, let A be any formula of L*, and let A* be an equivalent formula in which
A and M are replaced by + and -. Let A** be an equivalent formula in which no
connectives appear, constructed in the way indicated in lecture Il. Finally, let A*** be a
formula of L+ got from A** by Russell's trick. Since the only connective that Russell's
trick introduces is A, A is the only connective A*** contains; and A*** is equivalent to A.

Note that our deductive system only has axioms and rules for the connectives ~ and o
and the quantifier (x;); when we are considering the broad language of arithmetic, we want
our system to prove all the valid formulae that contain the new logical vocabulary as well as
the old. This can be achieved by adding the following equivalence axiom schemes when we
are working in L*:

(AvB)=(~A>B)
(AAB)=~(AD>~B)

(Fx)A = ~(xi)~A

(xi < )A = (xj)(Less(xj, t) o A)

62



Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke
(Axi < A = (3x;)(Less(xi, t) A A)

(Note that = is a defined rather than a primitive symbol, even in L*.) It can be shown
(though we will not show it here) that when these schemes are taken as axioms, every
formula of L™ is provably equivalent to a formula of L-, i.e. for every formula A of L* there
is a formula A" of L~ such that A = A' is provable. Thus, the completeness of the system of
L* follows from that for L-.

It is easy to show that the set of logical axioms for L (either L* or L-) is r.e. We can
then prove, using the Generated Sets Theorem, that the set of provable formulae is r.e., and
that if " is an r.e. set of sentences of L, then the set of theorems of T"is r.e. We can
generalize this to languages other than L. If K is a first order language such that the set of
formulae of K is r.e., then the set of provable formulae in Kis r.e., and if I" is an r.e. set of
sentences of K, then the set of theorems of " is r.e. For the set of formulae of K to be r.e.,
it is necessary and sufficient that the set {i: aj € K} and the relations {<n, i>: Pje K} and
{<n, i>: fle K} ber.e.

The Theories Q and PA.

There are two theories in the language L that are traditionally given special attention. One is
the theory Q, also called Robinson's Arithmetic (after its inventor Raphael Robinson). Q is
usually given in the language with + and -, so our version of it is slightly nonstandard. In
the usual version, the axioms of Q are

(x1) 0#xy'

(X1)(X2) (X1' = X2' D X1 = X2)
(X1) (X1 =0 v (@x2) X1 = X2)
(1) X1 +0=xg

(X1)(X2) X1 + X' = (X + X2)'
(X1) Xx10=0

(X1)(X2) X1:(X2") = X1:X2 + X1

No ok~ wdE

(Axioms 4-7 are usually called the recursion axioms.) To adapt this to our language, we
rewrite the axioms as follows:

1. (X1) 0#xyq'

2. (X1)(X2) (X1' = X2' D X1 = X2)
3. (1) (x1 =0V (3x2) X1 = X2)
4. (x1) A(X1, 0, X1)

ol

. (X1)(X2)(X3) (A(X1, X2, X3) D A(X1, X2, X3"))
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6. (X1) M(xq, O, 0)
7. (X1)(X2)(X3)(Xa) ((M(X1, X2, X3) A A(X3, X1, X4) D M(X1, X2', X4))

(Note that axioms 1-3 are unchanged.) In addition, we need existence and uniqueness
axioms for addition and multiplication:

(X1)(x2)(3x3) (A(X1, X2, X3) A (Xa)(A(X1, X2, Xa) D X4 = X3))
(X1)(X2)(3X3) (M(X1, X2, X3) A (X4)(M(X1, X2, X4) D X4 = X3))

(These are unnecessary for Q as it is usually stated, because their analogs in the language
with function symbols + and - rather than predicates A and M are logical truths.) Finally,
we did not include axioms for identity in our deductive system for the predicate calculus, so
we must include them here. The usual identity axioms are the reflexivity axiom (x;) X3=X1
and the axiom scheme (X1)(X2) (X1 = X2 > A= A"), where A is any formula with at most X1
and x» free and A' comes from A by replacing one or more free occurrences of X1 by x,. In
fact, we can get away with taking only finitely many instances of this scheme as axioms, and
the rest will be deducible. Specifically, we can take as our identity axioms the reflexivity
axiom and those instances of the above scheme in which A is an atomic formula not
containing the function symbol . Since there are only finitely many predicates in L, there
are only finitely many such instances. Q, then, is the theory in L whose axioms are 1-7
above along with the existence and uniqueness clauses and the identity axioms just
specified.

PA, or Peano Arithmetic, comes from Q by deleting axiom 3 and adding all those
sentences which are instances in L of the induction scheme:

[AQ) A (x1)(A(x1) 2 A(x1))] 2 (X1)AXw).

(Axiom 3 is a theorem of the resulting system, so we need not take it as an axiom.)

The intuitive idea behind the induction scheme is that if zero has a property, and if
whenever a number n has that property n' does too, then every number has that property.
This was the intuition that Peano, and Dedekind before him, intended to capture, through an
induction axiom, that we could formalize

(PYIP(0) A (x1)(P(x1)  P(x1))] 2 (x1)P(x)).

However, since in our languages we do not have quantification over arbitrary sets of natural
numbers, the induction axiom cannot be formalized in them. Unlike Dedekind's and Peano's
axiom, the induction scheme of the system we call 'Peano Arithmetic' only guarantees that
when zero has a property definable in L and when a number n has it n' does too, then every
number has it. So the induction scheme is really weaker than the intuitive idea behind it, that
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Dedekind and Peano had in mind. In this respect, the name 'Peano Arithmetic' is somewhat
misleading.

The theory PA is adequate for elementary number theory, in the sense that all of
elementary number theory can be carried out within PA. This is not obvious, however, and
requires proof. Notice, for example, that before the work of Gddel, it was not obvious that
such simple functions as exponentiation could even be defined in the language in which PA
is given, and exponentiation should certainly be regarded as a part of elementary number
theory. This illustrates another respect in which the name 'Peano Arithmetic' is misleading,
since it suggests that elementary arithmetic can be developed in that system in a
straightforward, obvious manner.

Exercises

1. Consider a language REEXP which has the same terms, connectives and quantifiers as RE
but has only one predicate letter Pf. Pfxyz is interpreted as xY=z (it doesn't matter what to
say about the case 00; you can call Pfxyz always false in that case, or give it the value 0 or
1). Prove that RE€XP defines the same sets and relations as RE. Prove also that in REEXP
(for the same reason as in RE) disjunction is superfluous. (Remark: half of this exercise has
been done. To do the other direction, that is, defining the notions of RE in RE®XP, it is best
to proceed in the opposite order from what appears to be natural.)

2. Cantor proved that there can be no function ¢ mapping a set onto the set of all of its
subsets. Show directly that if there were such a mapping, then we would have an
interpretation of 'e ' which makes true the unrestricted comprehension schema, including the
version with parameters. Remark: hence, any set-theoretical paradox that proves the
inconsistency of the schema also proves the theorem of Cantor in question. The case Cantor
actually used was once again the analog of Russell's paradox. Historically, this went the
other way around, since Russell discovered his paradox by analyzing Cantor's proof.

3. Show that the relations <, and <; are reflexive and transitive.
4. Show that if A <, B and B isr.e. (recursive), then A is r.e. (recursive).

5. For the language of arithmetic, prove using the Generated Sets Theorem that if a set of
axioms is r.e., then the set of theorems logically provable from itisr.e.
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Lecturel X

Cantor's Diagonal Principle

A relation is called arithmetical if it is definable in L, the language of arithmetic. Since L
contains RE, it follows that all r.e. relations are arithmetical. Also, since L contains negation,
it follows that all complements of r.e. relations are arithmetical. That L contains negation
also implies that the enumeration theorem fails for arithmetical sets, i.e. there is no
arithmetical relation that enumerates all the arithmetical relations; similarly, there is no
recursive relation that enumerates all the recursive relations.

The best way to see this is by proving a general theorem. As in the enumeration
theorem for r.e. sets, if R is a two-place relation, we write Ry for {y: R(X, y)}. We give the
following

Definition: Let X be a set, F be a family of subsets of X, and R a two place relation
defined on X. R is said to supernumerate F iff for any S € F, there is an x € X such that
S =Ry Riissaid to enumerate F iff R supernumerates F and for all x e X, Ry € F.

The content of the enumeration theorem is thus that there is an r.e. relation which
enumerates the r.e. sets. Next we have

Cantor'sDiagonal Principle: The following two conditions are incompatible:

(i) R supernumerates F
(if) The complement of theDiagonal Set is in F (the Diagonal Set is {x € X: R(X, X)}).

Proof: Suppose (i)-(ii) hold. Then by (ii) X-{x e X: R(X,X)} ={xe X: ~R(X,X)} € F.
By (i), {x € X: ~R(X, x)} = Ry for some y. But then R(y, x) iff ~R(x, x) for all x € X, so
in particular R(y, y) iff ~R(y, y), contradiction.

Cantor applied this lemma in the case F = power set of X to show that a set is never in
1-1 correspondence with its own power set. We can apply it to formal languages by letting
F be the family of sets definable in a given language and letting R be a relation definable in
the language. Unless the language is very strange indeed, (ii) will be satisfied, so (i) will be
false. In the case of RE, we know from the enumeration theorem that (i) is satisfied, so it
follows that (ii) fails, and therefore that negation is not definable in RE. In the case of L, on
the other hand, (ii) holds, so (i) must fail. The same applies to the language Lim. Finally, if
we let F be the family of recursive sets and R be an arbitrary recursive relation, (ii) clearly
holds, so (i) fails and no recursive relation enumerates the recursive relations. (To see that
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(ii) holds in this case, let R be a recursive relation, and let A(x, y) and B(x, y) define R and

-R, respectively, in RE. Then the diagonal set is defined in RE by A(x, X), and its
complement is defined by B(x, X).)

A First Version of Gddel's Theorem.

We now know enough to prove a version of Godel's first incompleteness theorem. A
sentence is said to be undecidable in an axiom system I" if neither it nor its negation is a
theorem of T", and I" is said to be incomplete if some sentence is undecidable in it. We
normally use the same letter to denote a set of axioms and its set of theorems. If a set of
axioms is r.e., so is its set of theorems (by the Generated Sets Theorem). Similarly, if a set
of axioms is arithmetical, so is its set of theorems. We have the following

Theorem: Every arithmetical set I" of true sentences of the language L is incomplete.
Proof: Since I" consists of true sentences, if I" were complete, then the true sentences of L
would be precisely the theorems of I". But as I is arithmetical, the set of theorems of I is
also arithmetical, i.e. definable in L. And as we have seen earlier, the set of true sentences of
L is not definable in L.

The theorem implies that every r.e. set of true sentences of L is incomplete.

In Godel's original result the assumption that I" is a set of true sentences was weakened,
and hence Gdodel's original result is stronger. An axiom system T in the language L is said
to be w-consistent if there is no formula A(x) such that T fi (3x)A(x) but T" fi ~A(0(M) for
all n. Obviously, an axiom system consisting of true sentences of L is w-consistent. An
axiom system can be consistent without being w-inconsistent, however. Godel showed (in
effect) that if " is an r.e. w-consistent extension of Q, then T" is incomplete. We shall not
prove the full result this time, though we shall prove some related results. Rosser later
showed that the assumption of w-consistency can be weakened still further, and that no
consistent r.e. extension of Q is complete.

One of Gddel's main intents was to prove the theorem we just gave. The reason he gave
a stronger result must be understood in the light of the fact that, in the discovery and
presentation of his results, he was oriented by Hilbert's program. In a nutshell, Hilbert's
program demanded a proof of the consistency of the formal systems that codified the
theories of classical mathematics, a proof in which, roughly, no appeal to notions or
principles involving infinities was made: only so called 'finitistic' principles and methods of
proof were to be employed in proofs about the properties of formal systems. The notion of
truth in the standard interpretation of the language of arithmetic is a typically non-finitistic
one, and hence not usable within the context of Hilbert's program. However, the notions of
w-consistency and consistency are finitistic.
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More Versions of Gddel's Theorem

If B(x;) is a formula of L that defines a set S, let us say that a system I" is correct for B if I"
fi B(0(M) implies that n € S, and complete for B if n € S implies that T fi B(0(M).

Theorem: If T is r.e. and B defines a set which is not r.e., then I" is not both correct and
complete for B. That is, the set S' = {n: T fi B(0O("M)} is different from S.

Proof: This is simply because S'is r.e., since it is defined by the formula
(@x)(@m)(Num(m,n) A NSubst(0(k),x,[0(1),0(0],m) A Th(x)) where Th(x) is an RE formula
defining the set of theorems of " and k is the Gddel number of B(x;) (we can use naive
substitution because we may assume that B does not contain bound occurrences of x;).

So when S is not recursively enumerable there's a difference between being an element of S
and being provably an element of S. If " is a true set of axioms, and thus correct, there will
be an instance B(0(M) that is true but unprovable from T,

This is a slight generalization of a result due to Kleene. Kleene's result was that no r.e.
axiom system can be complete and correct for any formula that defines -K, and thus in
particular for the formula ~W(x, x). In fact, this holds for formulae defining -S whenever S
iS a nonrecursive r.e. set.

Thus the interest of the theorem depends on the previous proof that there arer.e.
nonrecursive sets (which in turn depends on the Enumeration Theorem). We can, however,
state a theorem which does not depend on this fact (or on any important fact of recursion
theory), and which says that any formal system must be incomplete for any formula
defining the complement of somer.e. set:

Theorem: If I is an r.e. set of true axioms, then there is an r.e. set S such that if A(xy)
defines -S, some instance A(0(M) is true but unprovable.

Proof: Suppose, for a contradiction, that for every r.e. set S at least one formula A(x1)
defining -S is such that T is complete for A. Then the following relation would be a
supernumeration of the complements of the r.e. sets: R(m,n)={<m,n>: m is a Gdel number
of a formula A(x1) and m is provable of n}; this relation is clearly r.e., using the same
reasoning as in the proof above. But now we can use Cantor's Diagonal Principle, and
conclude that the complement of the diagonal set {n:R(n,n)} cannot be the complement of
an r.e. set. But this is absurd, since {n:R(n,n)} is an r.e. set (if B(X,y) is an RE formula that
defines R, then B(x,Xx) defines {n:R(n,n)}).

Q is RE-Complete
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Call a set I" RE-complete if every true sentence of RE is a theorem of I', and RE-correct
if every theorem of " which is a sentence of RE is true. Whenever I fi A(OM) iff n e S for
all n, A(x) is said to weakly represent S in T", and S is said to be weakly representablein T’
if some formula weakly represents it in I". (We also say that S is numerablein T".) Thus,
any r.e. set is weakly representable in any RE-complete and correct axiom system.
Moreover, if T"is an r.e. set which is RE-complete and correct, then the sets weakly
representable in T" are precisely the r.e. sets, since any set weakly representable in anr.e.
axiom system I"is r.e. (To see this, recall that if A(x;) weakly represents SinT’, kisa
Godel number of A(x;), and Th(x) is an RE formula that defines the set of theorems of T,
then the RE formula (3x)(3m)(Num(m,n) A NSubst(0X),x,[0(1),0()],m) A Th(x)) defines S.)

It turns out that Q is RE-complete and correct. Q is obviously RE-correct, because all
of its axioms are true; it takes a bit more work to show that Q is RE-complete. The main
fact we need to show this is

(Fact 1) Q fi (x))(x1 <0M = (x; =0v ... v x; = 00-1))) for all n > 0, and
Qfi (x1) ~(x1 <0)

Another useful fact is
(Fact 2) For all n, Q fi (x1)(xy = 0(M v x; < 0N v 0() < x7)

Fact 2 is not necessary to prove that Q is RE-complete, however. We shall not prove either
fact, but we shall give a proof that Q is RE-complete.

It is also worth noting that a natural strengthening of Fact 2, namely that Q fi (X1)(x2)
(X1 =X2 v X1 <Xp VvV Xp <Xj), is false. We can show this by constructing an interpretation
in which the axioms of Q are true but the statement (X1)(X2) (X1 = X2 v X1 <Xo vV Xp < X1)
is false. The domain of this interpretation is N U {a, B}, where o and 3 are two new
elements not in N. The constant O still denotes 0, and successor, addition and multiplication
have the same interpretations as before when restricted to the natural numbers. When the
arguments include o or 3, we make the following stipulations:

Successor: o=o,p=p

Addition: n+oa=a+n=o;n+PB=R+n=R;a+oa=0+PB=0;P+P=P+a
=B

Multiplication: o-0=B-0=0;an=0o,B-n=B(n>0); n-a=0, n-P=P (all n); a-o.=
B-oa=o;pPp=0P=P

(where n ranges over the natural numbers) We leave it to the reader to verify that the
axioms of Q are true in this interpretation, but that neither o, < 3 nor < o holds.
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We are now ready to prove our theorem about Q.

Theorem: Q is RE-complete.
Proof: We show by induction on the complexity of sentences that every true sentence of
RE is a theorem of Q.

(1) Atomic sentences. First, note that every true atomic sentence involving = is
provable, since any such sentence is of the form 0(" = 0(N) and therefore follows from the
identity axioms. Next, we show by induction on n that A(0(M), 0(n), 0(P)) is provable for all
m, where p =m + n. A(0(M), 0, 0(M) follows from axiom 4 of Q and is therefore provable.
If Q fi A(0(M), oM, 0(P)), then by axiom 5 we see that Q fi A(0(M), 0(n+1), o(P+1)). So Q
proves all the true atomic sentences involving A; that Q proves all the true atomic sentences
involving M follows similarly from the recursion axioms for multiplication.

(2) Conjunctions. Suppose A and B are theorems of Q if true. If their conjunction is
true, both of them are true, so both are provable, and so is their conjunction.

(3) Disjunctions. Similar to the preceding case.

(4) Existential quantification. Suppose any statement less complex than (Ix)A(x) is a
theorem of Q if true. If (IX)A(X) is true, so must be one of its instances A(0(N)), which is
then provable. But then so is (IX)A(X).

(5) Bounded universal quantification. Suppose (x; < (M)A is a true RE sentence.
Then all of A(0), ... A(0(™-1)) are true, and hence provable by the inductive hypothesis.
Therefore Q fi (x;)((xi =0 v ... v xj = 00-1)) 5 A), and so by Fact 1, Q fi (x;)(x; <n > A).

It follows, as we have seen, that the sets representable in Q are precisely the r.e. ones.
We have a related result about Lim:

Theorem: Q proves, among the sentences of Lim, exactly the true ones.
Proof: This time, we show by induction on the complexity of sentences that for all
sentences A of Lim, Q fi A if Ais true and Q fi ~A if A is false.

(1) Atomic sentences. We have already proved half our result; we only need to show
that all false atomic sentences are refutable in Q. Moreover, if we can show this for
sentences involving =, the result will follow for those involving A and M: if p = m + n, then
Q fi A(0(M), o), 0(k)) (where k = m + n) and Q fi 0K)  0(%), so by the uniqueness axiom
for A, Q fi ~A(0(M), oM, 0(P)); and similarly for multiplication.

First, observe that by axiom 1 of Q, Q fi 0 = 0(n) when n > 0 (since then 0(" is a term of
the form t'). Next, note that axiom 2 is equivalent to (X1)(X2) (X1 # X2 D X1" # X2'), SO we
can show by induction on k that Q fi 0(") = 0(P) where p = n + k. It follows that whenever n
<m, Q fi 0(M = 0(M). Finally, by the identity axioms we have that Q fi 0(M)z 0(n),

(2) Negation. Suppose A is the sentence ~B. If A is true, then B is false and by the
inductive hypothesis Q fi ~B, i.e. Q fi A. If A is false, then B is true, so by the inductive
hypothesis Q fi B, so Q fi ~~B (= ~A).
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(3) Conjunction and disjunction. These are straightforward, and we shall only do the
case of conjunction. Suppose A= (B A C). If Alistrue, thensoare Band C, so Q fi B, Q fi
C,andso Q fi (B A C). If Ais false, then either B or C is false; suppose B is. Then Q fi
~B,s0Q fi (~B v ~C),and so Q fi ~(B A C).

(4) Bounded universal and existential quantification. Again, we only do universal
quantification, as the other case is similar. If (x; < 0M)A is true, then A(0), ..., A(0(™-1) are
true, so Q fi A(Q), ..., Q fi A(0(-1)), and by Fact 1, Q fi (x; < 0M)A. If (x; < (M)A is false,
then A(0(K)) is false for some k < n, so Q fi ~A(0(K)): Less(0(K), 0(M) is a true sentence of
RE, so Q fi Less(0(K), 0(M), and so Q fi (Ix;)(Less(x;, 0M) A ~A) and Q fi ~(x; < 0M)A.

A formula A(x) is said to binumeratea set S in a system I' iff foralln,ne Siff " fi
AOM) and n ¢ Siff I fi ~A(n). If some formula binumerates S in T, then we say that S is
binumerable in T" (or numeralwise expressible, or strongly representable, or even simply
representable). Clearly, if a set is binumerable in I" then both it and its complement are
numerable, so in particular if T"is r.e., then any set binumerable in T" is recursive. So not all
r.e. sets are binumerable in Q. The converse, that all recursive sets are binumerable in Q, is
true but not evident at this point: if S is recursive, then we have some formula A which
numerates S in Q and some formula B which numerates -S, but we don't yet have a single
formula which numerates both S and -S. The theorem we just proved shows that all sets
definable in Lim are binumerable in Q, since if A(X) is a formula of Lim that defines S, then
A(X) binumerates S.

The facts about weak representability in Q just given also hold for arbitrary r.e.
extensions of Q that have true axioms. However, they do not hold for arbitrary extensions
of Q, or even arbitrary r.e. extensions. For example, let " be an inconsistent set. Then I"
clearly extends Q, but only one set is weakly representable in I', namely N itself (since for
any A and any n, A(0M) is a theorem of I"). Also, no set is strongly representable in T’
(since we will always have I" fi A(0(M) and T fi ~A(0(M)). However, they do hold for
arbitrary consistent r.e. extensions of Q. That is, if I' is a consistent r.e. extension of Q,
then the sets weakly representable in I" are precisely the r.e. ones. (Again, it is easy to show
that all sets weakly representable in I" are r.e.; the hard part is showing that all r.e. sets are
representable in I".) Moreover, as Shepherdson has shown, every r.e. set is weakly
represented in " by some formula that actually defines it, though it is not necessarily the
case that every formula that defines it weakly represents it in I'. The proof of this result is
tricky, however. It is easier to prove if we only require I" to be w-consistent; we will prove
this later.

Let I" be any consistent extension of Q whatsoever, and let A(x) be a formula of RE that
defines a set S. Then whenever I" fi ~A(0(M), n ¢ S. To see this, suppose I" fi ~A(0(M) and
ne S. Then A(0(M) is a true sentence of RE, and so Q fi A(0(M); since I extends Q, I fi
A(0(M). But then both A(0(M) and ~A(0(M) are theorems of T", contradicting our
assumption that I" is consistent. We thus have the following
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Theorem: Any consistent extension of Q is correct for negations of formulae of RE.
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Lecture X

True Theories are 1-1 Complete.

Theorem: IfT"is anr.e. set which is RE-complete and correct, then the theorems of T" form
a 1-1 complete set.

Proof: Suppose I'is such a set. Let S be any r.e. set, and let A(x;) be a formula of RE that
defines it; we can assume A to contain no bound occurrences of x;. We define ¢(n) to be the
least among the Gédel numbers of A(O(M). ¢ is recursive: its graph {<n,y>: ¢(n)=y} is
defined in RE by the formula (3m<y)(Num(m,n) A NSubst(0(K),y,[0(1),00],m) A Th(x) A
(w<y)(~NSubst(0(),w,[0(1),0()],m))) (where Th(x) is an RE formula defining the set of
theorems of I" and k is the GAdel number of B(X;)); notice that the use of negation in the
last conjunct is legitimate, since the formula it affects is equivalent to a formula of Lim™.
Clearly ¢ is 1-1, and for any n, n € S iff A(O(M) is true, iff T fi A(OM), iff ¢(n) belongs to
the set of Godel numbers of theorems of I'. So ¢: S <4 {theorems of I'}. Finally, the set of
theorems of " is r.e., and therefore is 1-1 complete.

It follows that the theorems of Q form a 1-1 complete set, and hence a nonrecursive set. In
fact, we can prove the stronger result that if " is any r.e. set of true axioms, the set of
theorems of T"is 1-1 complete, as we will see shortly.

Let us say that a formula A(x) of the language of arithmetic nicely weakly represents a
set S in a theory I' if it weakly represents S in I" and also defines S. We may similarly
define "nicely strongly represents”. Similarly, a formula A(xq, ..., X,) nicely weakly
(strongly) represents an n-place relation R in I" if it both weakly (strongly) represents R in
I" and also defines R.

It follows from our results of the last lecture that any r.e. set is nicely weakly
representable in I" whenever I is true and extends Q. We shall now see that the latter
requirement, that I" extend Q, is unnecessary: any r.e. set is nicely weakly representable in
any set I" of true axioms of the language of arithmetic. Before proving this, we shall need
the following theorem:

Deduction Theorem: For any set I" and any sentences A and B (of any first-order
language), if I, AfiBthen "' fi Ao B. (Here, I', AfiBmeansT" U {A}fi B.)

Proof: Suppose I', A fi B, and let M be a model of T" (i.e. an interpretation in which every
element of T"is true). If A is true in M, then M is a model of I" U {A}, and so by the
soundness of the predicate calculus B is true in M, so A o B is true in M. If Ais false in
M, then again A > B is true in M. So A o B is true in all models of T", and therefore by the
completeness theorem I" fi A o B.
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The proof we just gave is model-theoretic; however, it is possible to establish the
deduction theorem proof-theoretically, by showing how to transform any proof of B from "
w {A} into a proof of A > B from I". Such a proof-theoretic argument might be more
satisfying, since the model-theoretic argument merely shows that whenever a proof of A
from T" U {A} exists, then a proof of A © B from I" exists, and leaves it an open question
whether there is any direct way to transform the former into the latter.

Now let A(x;) be any sentence of RE that defines a set S; we claim that the formula Q o
A(x1) nicely weakly represents S in any system I" with true axioms. (By Q we mean here
some conjunction of the axioms of Q; such a conjunction exists because Q's axioms are
finite in number.) Clearly, Q > A(x1) defines S; we must show that Q > A(0(M) is a
theorem of " iff n € S. First, suppose thatn € S. Since Q is RE-complete, Q fi A(0(M).
Clearly, T, Q fi A(0(M). By the deduction theorem, I" fi Q > A(0(). Conversely, suppose I"
fi Q o A(0(M). Then since T is true, Q o A(0() is also true. But Q is true, so A(0(M) is
true. But A(0(M) is a sentence of RE, and is true iff ne S. Son e S, and we are done.
Therefore we have established this

Theorem: If T"is a set of true sentences of L, then every r.e. set is nicely weakly
representable in T,

Corollary: Forsuch aT, the set of all theorems of T" is a set to which all r.e. sets are 1-1
reducible. If T"isr.e., then I''s theorems form a 1-1 complete set.

Note that, while every r.e. set is nicely weakly representable in such a I', we have not
shown that every r.e. set is nicely representable by every formula that defines it, or even
every RE formula that defines it. If we require I" to extend Q, on the other hand, then every
RE formula that defines S represents it in T", because any such I' is RE-complete and
correct.

Church's Theorem

Note that the empty set @ is trivially a set of true axioms; it follows from our theorem that
every r.e. set is nicely weakly representable in &, and therefore that @'s theorems, i.e. the
valid formulae of L, form a 1-1 complete set (since @ isr.e.). So the set of valid formulae
of L is not recursive (when the set of theorems of a theory is not recursive, the theory is
called undecidable; this use of the term 'undecidable’ must not be confused with the use we
are familiar with, in which the term applies to sentences). This is called Church's Theorem.
Note that whether a formula is valid does not depend on the interpretation of the nonlogical
vocabulary, and therefore that Church's theorem does not depend on the interpretation of the
predicates and function symbols of L: for any language with two 3-place predicates, one 2-
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place predicate, a constant, and a 1-place function symbol, the set of valid formulae of that
language is undecidable, and indeed 1-1 complete.

(Actually, there are two versions of Church's theorem, depending on whether the identity
predicate is regarded as a logical symbol. We have been regarding it as nonlogical; when it
is regarded as logical, so that the identity axioms are taken as logical axioms, Church's
Theorem states that the set of valid formulae (in the present sense of "valid") of a language
with two 3-place predicates, a constant and a 1-place function symbol is an undecidable set.
The proof is exactly the same.)

Clearly, this result also applies to first-order languages extending L. In fact, we can use
a few tricks to show that it also applies to some languages smaller than L. We already
know that the constant O is redundant in L, since the formula x = O is equivalent to (y)A(X, Y,
X). We can also eliminate the successor function sign, since the graph of the successor
function is defined by (3z)[(W)M(w, z, w) A A(X, z, y)]. Reasoning in this way, we can
show that Church's theorem applies to any language with two 3-place predicates. Using a
trick that we saw in an exercise, we can eliminate these predicates in favor of a single 3-place
predicate defining the graph of the exponentiation function plus a constant for 0 and a 1-
place function letter for successor. Using still more devious tricks, we can show that
Church's theorem applies to a language which contains only a single 2-place predicate.
However, we cannot go any further: the set of valid formulae of a language with only 1-
place predicates (with or without identity) is recursive.

(The reasoning we have given is not wholly rigorous. For one thing, while we can find a
language K which is properly included in L and which has the same expressive power, we
must also show that the above remarks about Q hold for some translation of Q into K. We
shall not enter into these considerations here; they will be addressed when we prove the
Tarski-Mostowski-Robinson theorem.)

The name "Church's Theorem", though traditional, does not make full justice to its
discoverers, since Turing proved the same theorem in his famous original paper on
computability; "the Church-Turing theorem™ would be a more appropriate name. Also
Godel, in his paper on the incompleteness theorems, stated a very closely related result
which, from our vantage point, establishes Church's theorem; but Godel may not have
realized that this was a consequence of his result. Gddel's result is that for any formal
system with a primitive recursive set of axioms we can always find a sentence which is not
quantificationally valid, but such that the statement that it is not quantificationally valid is not
provable in the system.

Complete Theories are Decidable

Theorem: Consider a language in which the set of all sentences is recursive, and let T" be a
set of axioms in this language. If T"is r.e. and the set of closed theorems of T" is not
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recursive (i.e., undecidable), T" is incomplete.

Proof: We first give an informal proof using Church's Thesis. We can assume that T" is
consistent, for otherwise the set of theorems of I" is simply the set of all sentences, which by
hypothesis is recursive. Suppose I' is complete, and let A be any expression. We shall
show that either A or ~A is a theorem of I". Since the set of sentences of the language of I
is recursive, we can tell effectively whether A is a sentence. If A is a sentence, then since I"
is complete, either A or ~A is a theorem of I'. So to see whether A is a theorem of I" or not,
simply run through all the proofs from I". If you encounter a proof of A, then Aisa
theorem; if you encounter a proof of ~A, then A is not a theorem; and since I" is complete,
you will eventually encounter a proof of A or of ~A, so this procedure will eventually
terminate. So we can effectively tell whether an arbitrary expression is a theorem of I, and
so the set of theorems of T"is recursive.

We now reason more formally. Suppose I" is complete; again, we may suppose that I"
is consistent. Since I"is r.e., the set of theorems of I" is defined in RE by some formula
Th(x). Since I' is complete, an expression A is a nontheorem of I" just in case either A'is a
nonsentence or ~A is a theorem. Thus the set of nontheorems of I" is defined by an RE
formula N(x) v (Fy)(Neg(x, ¥) A Th(y)), where N(x) defines the set of nonsentences of the
language of T" and Neg(X, y) defines the relation y is the negation of x. We know that such
an RE formula N(x) exists because by hypothesis the set of sentences of the language of I
is recursive, and Neg(X, y) is easily defined using concatenation. It follows that the set of
theorems of T is recursive.

It was a while before logicians realized this fact, despite the simplicity of its proof. This
may be because the decision procedure given is not intuitively a "direct” one, i.e. a
procedure which determines whether A is a theorem of I" or not by examining A itself.
Note that the requirement that T" be r.e. is essential here, as is seen by letting I" equal the
set of true sentences of the language of arithmetic: the set of theorems of T, i.e. I" itself, is
certainly not recursive, but it is complete, and the set of sentences of L is recursive.

Replacing Truth by m-Consistency

Let us now state some incompleteness results about w-consistent, but not necessarily true
formal systems. School is the set of (consequences of) true atomic sentences of the
language of arithmetic and of true negations of atomic sentences.

Theorem: If T"is arithmetical, w-consistent and contains School, I" is incomplete.

Proof: Suppose I" was complete. Since I is arithmetical, it does not coincide with the set of
truths, so there must be a sentence A which is either true but unprovable or false but
provable from I". If A is false but provable, since the system is complete, ~A must be true
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but unprovable (w-consistency implies consistency), and so is any prenex version of it.
Take the shortest example B of a true but unprovable sentence: among the prenex true
unprovable sentences, take one with the shortest number of quantifiers. This sentence must
have some quantifiers, since if I" contains School, all sentences made up from atomic
sentences by use of connectives are decidable in I'. The first quantifier in B will not be
existential, because if it were, some instance of it would be true, and thus a shorter true but
unprovable statement (unprovable, because if it were provable so would be its existential
generalization). So the first quantifier in B must be universal, which means that all its
instances must be true and provable, since they are shorter. Since I' is complete, ~B must
also be provable. But this contradicts the hypothesis that I" is w-consistent.

The theorem does not hold if we replace w-consistency by consistency. There are consistent
arithmetical, even recursive, sets of sentences containing School (and extensions of School)
which are complete. An example is the set of truths in the structure of the real numbers with
a constant for 0 and function letters for successor, addition and multiplication. This is
naturally a complete set, which, by a celebrated result of Tarski, is recursive.

On the other hand, if T"is r.e. and contains Q (not just School), the hypothesis of -
consistency in the theorem can be weakened to consistency. We will prove this later. Now
we can establish the following

Theorem: If T"is r.e., m-consistent and contains Q, then I" is incomplete.

Proof: We know that if I" contains Q, it is RE-complete and hence that it is correct for
negations of RE sentences. Let A(X1) be an RE-formula that defines K. Then ~A(X1)
defines -K. Since T"is r.e., the set {n: ~A(0(M) is a theorem of I'} is r.e. and thus it does not
coincide with -K. Since I is correct for negations of RE sentences, there is no false provable
statement of the form ~A(0(M), so there must be a statement of that form which is true but
unprovable. This does not yet tell us that A(0(N) is also unprovable, since I' need not be a
set of true sentences. Let's take again, from among the prenex true unprovable sentences of
the form ~A(0("), one with the shortest number of quantifiers. This sentence must have
some quantifiers, for the same reason as before. And it cannot begin with an existential,
again for the same reason. So the sentence must be of the form (x)C(x), and such that all of
its instances are provable. Now, A(0(N) cannot be provable, since it is equivalent to ~(X)C(x)
and that would contradict w-consistency.

The Normal Form Theorem for RE.

Although our incompleteness results are quite powerful, it is a bit unsatisfying that we have
not been able to construct effectively examples of undecidable sentences. One way to do
this uses a result that we will prove now.
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Normal Form Theorem for RE: Every r.e. relation is definable by a formula of the form
(Jy)B, where B is a formula of Lim in which there are no occurrences of negation.

This is a version of a theorem of Kleene, though what he showed was something weaker,
namely that every r.e. formula is defined by (Jy)B for some formula B that defines a
primitive recursive relation.

To prove it, we prove by induction on the complexity of formulae that every RE formula
A is equivalent to a formula (3y)B, with B a formula of Lim without negation.

(1) Aisatomic. Then A is already in Lim without negation, and is equivalent to (3y)A,
where y is a variable that does not occur in A. (That is, we get a formula of the required
form by adding a vacuous existential quantifier. Note that A is also equivalent to (Iy)(y =y
A A), so the use of vacuous quantifiers is not really necessary.)

(2) Ais A1 v Ay, By the inductive hypothesis, A; and A, are equivalent to formulae
(3y)B1 and (Jy)B,, where B; and B, are formulae of Lim without negation; so A is
equivalent to (3y)B1 v (3y)B,, which is equivalent to (3y)(B; v B»), which is of the
required form.

(3) Alis A A Ay Again, Aj and A, are equivalent to (3y)B; and (3y)B,, with B, and
B, formulae of Lim without negation, so A is equivalent to (3y)B1 A (dy)B,. By rewriting
bound variables, we see that A is equivalent to (3z)B1' A (3w)B,', where B,' and B,' come
from B; and B5 by changing bound occurrences of y to z (or w) throughout. This is in turn
equivalent to (3z)(3w)(B1' A BY'). This is not yet in the required form, since we have two
unbounded quantifiers. However, this is equivalent to (Ay)(3z < y)(Iw < y)(B1' A By,
which is of the required form.

[The usual way to reduce this pair of unbounded quantifiers to a single quantifier uses
the pairing function; however, the present approach is simpler.]

(4) Ais(dz)A1. Then Ag is equivalent to (3w)B; for some formula B, of Lim without
negation, and so A is itself equivalent to (3z)(3w)B;. As in (3), this is equivalent to (3y)(3z
<y)(@w <y)B1.

(5) Alis(z<t)A:1. Thisis the trickiest case. Let A; be equivalent to (3w)B1, with By in
Lim without negation. A is equivalent to (z < t)(3w)B;. We claim that this is equivalent to
(@y)(z < t)(Iw <y)B;. To see this, first fix an assignment of values to the free variables.
Suppose (Fy)(z < t)(Iw < y)B; holds; then (z < t)(3w < n)B; holds for some n, so a fortiori
(z <t)(3w)B7 holds. Conversely, suppose (z < t)(3w)B; holds, and let n be the denotation
of t. Then for each m <n, (3w)B1(w, m) holds, so B1(k, m) holds for some particular k.
For each m < n, pick a k, such that B(km, m) holds. Since there are only finitely many kp,'s,
there is a number p such that p > k, for all m < n. So for all m < n, there is a k < p (namely
Km) such that B1(k, m) holds. Therefore, (z < t)(3w < p)B holds, and so (Fy)(z < t)(Fw <
y)B1 holds. This completes the proof.

The normal form theorem yields very strong results when combined with the
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enumeration theorem. From the normal form theorem, we see that the relation W(e, x) is
defined by some formula (3y)T(e, X, y), where T is a formula of Lim without negation. T is
a particular formula, and therefore has a fixed number of bounded quantifiers and no
unbounded quantifiers. It follows that there is a single fixed n such that every r.e. set is
defined by some formula with at most n bounded quantifiers and only one unbounded
quantifier. This leaves open the possibility that n must be very large; in fact, however, it is
known that n can be made rather small.

Whenever we have a normal form theorem, we can combine it with the enumeration
theorem to get an analogous result. The most spectacular enumeration theorem we have
mentioned is that proved by Matijasevic (building on earlier work by Davis, Putnam and
Julia Robinson), that every r.e. set or relation is definable by a formula of the form
(3x1)...(3x) t1 = t, where t; and t, are terms involving only the function symbols ', + and -
(and the constant O and the variables). Note that the formula t; = t; is simply a polynomial
equation. Thus the decision problem for any r.e. set is equivalent to the decision problem
for some polynomial equation with integer coefficients. The Matijasevic theorem alone
does not give us an indication of how large the degree of such equations can be, or of how
many variables they may contain. If we apply the enumeration theorem, however, we see
that the relation W(e, x) is defined by some particular formula (3x1)...(3xp) t; = tp, whose
free variables are e and x. Let us indicate the free variable e by writing this formula as
(Tx1)...(3xn) t2(e) = t2(e). Every r.e. setis therefore defined by the formula (3x1)...(3x;)
t1(0(8)) = t,(0(8)), for some particular e. So not only is the decision problem for every r.e.
set equivalent to the problem of solving some polynomial equation; we can also
simultaneously bound the number of variables and the degree of the polynomial.

An immediate application of the normal form theorem is in the proof of the following
result:

Theorem: If T is r.e., m-consistent and contains Q, then I" is complete and correct for the
set of all formulae of the form (3y)B, where B is a formula of Lim without negation.
Proof: Completeness: If (3y)B is true, then B(0(M) is true, for some n. So B(0(M) will be
provable, since Q proves all the true sentences of Lim, and I" contains Q. Therefore, (Jy)B
will be provable too. Correctness: Suppose (3y)B is provable but false. Then all the
negations of its instances will be true: ~A(0), ~A(0')... So these are all provable, again
because Q is complete for the true sentences of Lim. But this contradicts m-consistency.

Corollary: If Tis r.e., m-consistent and contains Q, then every r.e. set is nicely weakly
representable in T".

Corollary: If T"isr.e., w-consistent and contains Q, then the theorems of I" form a 1-1
complete set.
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The hypothesis of w-consistency in these results could have been replaced by that of
consistency, but the corresponding proof is much trickier.

Exercises
1. Prove that if an r.e. set S1 is 1-1 complete, there is an infinite r.e. set S2 disjoint from S1.

2. Prove that a nonempty set is r.e. iff it is the range of a total recursive function.
Note: this result is the origin of the term 'recursively enumerable'. That is, a nonempty set S
is r.e. iff there is a recursive function ¢ that enumerates it, i.e. S={¢(0), ¢(1),...}.

3. The Goldbach conjecture is the statement that every even integer greater than 2 is the sum
of two primes. Show that this conjecture can be written in the form (X)A, where A is in Lim.
Suppose that the conjecture, written in this form, is undecidable in the system we have called
Peano Arithmetic. What, if anything, would follow regarding the truth of the Goldbach
conjecture itself? (Explain your answer; if nothing follows, explain why, or if something
does follow, explain what follows and why.)

4. Proper substitution, as opposed to what we have called 'naive substitution’, is the
substitution of a term for a variable, subject to the following restrictions. Only free
occurrences of the variable X are to be replaced by the term t; and the substitution is
improper if any variable occurring in t becomes bound in the result. Define proper
substitution in RE, that is, PSubst(m1,m2,v,m). where m2 is the result of a proper
substitution of the term m for free occurrences of the variable v in m1. Use the following
fact: an occurrence of a variable xj within a term is bound in a formula iff the formula is a
concatenation of three sequences m, n and p, where the occurrence in question is in the part
corresponding to n, and n is (the Gddel number of) a formula beginning with (xj). m and/or
p are allowed to be empty. (This is a form of the usual definition.) Another treatment of
proper substitution, which is perhaps more elegant, will be sketched later. It should be clear
from the preceding why naive substitution is simpler, at least if this is the treatment adopted.
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Lecture Xl

An Effective Form of Gddel's Theorem

Recall that T" is w-consistent if we never have T" fi (3x)A(x) and " fi ~A(n) for all n. T'is
said to be w-complete if whenever I fi A(n) for all n, T" fi (X)A(x). T"is w-inconsistent iff it
IS not m-consistent, and similarly for m-incomplete.

Let us call a formula A X3 if A is of the form (dy)B, where B is a formula of Lim, and
I, if it is of the form (y)B for B a formula of Lim. Note that a negation ~(3y)B of a X3
formula is equivalent to (y)~B, which is ITy, and that each IT; formula (y)B is equivalent to a
negation ~(3y)~B of a X, formula (and these equivalences are provable). We sometimes
use the terms X, and IT; loosely to refer to formulae that are equivalent to formulae that are
X1 or Iy in the strict sense; we also refer to a set or relation as X4 (or ITy) if it is defined by
some X, (or ITy) formula. It follows from the normal form theorem for RE that the r.e. sets
are precisely the X, sets and the complements of r.e. sets are precisely the IT; sets.

We sometimes write X for X1 and IT3 for ITy. The superscript zero indicates that the
unbounded quantifier ranges over numbers. Other superscripts are possible; in general,
when we talk about a =7 or I formula, m indicates the type of the variables in the
unbounded quantifiers, and the n indicates the number of alterations between unbounded
universal and unbounded existential quantifiers. This will be made more precise later on in
the course.

Suppose I'" extends Q. If B is a sentence of Lim, then as we saw in Lecture IX, if B is
true, then B is a theorem of G. So let (3y)B(y) be a true X; sentence. Since it is true,
B(O(n)) is true for some n and therefore is a theorem of I"; but B(O(n)) logically implies
(3y)B(y), so (Iy)B(y) is also a theorem of I". So every true Z; sentence is a theorem of T;
in short, T"is X-complete. If I"is also consistent, then it is I1;-correct, i.e. every Iy
sentence provable in T"is true. To see this, let A be a I1; sentence provable inT". If Ais
false, then ~A is true; but ~A, being the negation of a I'l; sentence, is provably equivalent to
a X sentence, and is therefore provable in T', since I" is £;-complete. But then both A and
~A are theorems of T", and so I" is incomplete. So a consistent extension of Q is both ;-
complete and IT;-correct.

Moreover, as we saw in the last lecture, every m-consistent system extending Q is X;-
correct. Recall the argument: suppose I" is such a system, and suppose it proves a false X;
sentence (3y)B(y). Since that sentence is false, B(O(n)) is false for all n, and therefore,
since I" extends Q, I" fi ~B(O(”)) for all n, contradicting I"'s w-consistency. So any ®-
consistent extension of Q is X;-complete and correct.

We can now prove an effective version of Godel's theorem.

Effective Form of Godel's Theorem: Let I" be an r.e. extension of Q. Then we can find
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effectively a I'l; formula A such that

(1) If T"is consistent, then A is true but unprovable in T’
and

(2) If T is w-consistent, then ~A is also unprovable in T..
Proof: Since W(e,x) isr.e., it is definable by a ¥, formula (3y)L(e,x,y) which can be
effectively found from the original RE formula and through the (effective) proof of the
normal form theorem for RE. So K is r.e., and it is definable by (3y)L(x,Xx,y), which is X;.
-K is then defined by the IT; formula (y)~L(x,x,y). The set {n: (y)~L(0(M),0(N) y) is
provable from I'} is r.e. (for the known reasons), and an RE formula that defines it can be
found effectively; therefore also its Godel number e can be found effectively. Then for all n,
@y)L(0(e),0(N) y) is true iff (y)~L(0M,0(N),y) is provable. So (Fy)L(0(),0(8),y) is true iff
(y)~L(0(8),0(8),y) is provable. Then the IT; formula (y)~L(0(€),0(€),y) cannot be provable
from I, because given that I" is a consistent extension of Q, I" is I'l;-correct, so
(y)~L(0(€),0(e) y) would be true and so would be the equivalent formula
~(3y)L(0(€),0(8),y), and on the other hand if (y)~L(0(€),0(€).y) were provable
(3y)L(0(8),0(8),y) would be true. We therefore may take A to be (y)~L(0(€),0(€),y). A is
not provable, and therefore ~(3y)L(0(€),0(€),y) and A itself are true.

Now suppose that I" is w-consistent. Then I' is X;1-correct. ~A is logically equivalent to
a false X; sentence, and is therefore not a theorem of T.

This is an informal argument in the sense that it appeals to the intuitive notion of
computability or effectiveness. We could now give a more formal proof without making
this appeal. It will be easier to give such a proof later, once we have some more results. We
can note here that the effectiveness of the construction of A depends on the fact that we use
K, for which the number e with appropriate properties can be effectively found from every
I". Not every r.e. nonrecursive set would have served the purpose of effectiveness, since as
we will show later, for some such sets the corresponding Godel sentences cannot be
effectively found..

The hypothesis of our effective form of Godel's theorem is already quite weak; in fact,
we can weaken it a bit more. In particular, the condition that I" extends Q can be weakened.
The only fact about Q needed in proving that Q is RE-complete and correct for negations of
RE sentences is Fact 1, along with the fact that all sentences of School are provable in Q.
So these are the only facts needed to show, using the normal form theorem, that Q is X;-
complete and IT;-correct. So the theorem will still hold if Q is replaced by any theory
containing School for which Fact 1 holds.

Godel's Original Proof.

The following is, nearly enough, Godel's own presentation of the first incompleteness
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theorem. Let I" be an r.e. system containing Q. Consider the relation Prov(x, y) which
holds if y is provable of X, i.e. if the result of replacing all (free) occurrences of x; in the
formula (coded by) y by the numeral for x is provable. We can take Prov to be X4, since it
can be written out in RE; so it is of the form (3z)L(X, y, z) for some formula L(X, y, z) of
Lim. Consider the formula ~Prov(xy, X1); it has some Godel number m. Let G be the
sentence ~Prov(0(M), 0M)), i.e. ~(3z)L(0(M), 0(M), z). Suppose G is provable; that is,
suppose the formula ~Prov(xy, X1) is provable of m. Then L(0(M), o(m), 0(k)) holds for
some k; since this is a true sentence of Lim, it is provable, and so (3z)L(0(M), 0(M), z) is
provable. But G, which we are supposing to be provable, is just the sentence ~(3z)L(0(M),
0(m), ). So if our system is consistent, G is not provable after all, i.e. ~Prov(x1, X1) is not
provable of m. But what G says is that the formula with Godel number m, namely
~Prov(xs, X1), is not provable of m; so G is true. Therefore G is true but unprovable. As
long as the system is Zj-correct, its negation is not provable either, and as we have seen, it
suffices for this that the system be w-consistent.

Presented in this way, the proof seems rather tricky, and the undecidable sentence is
produced in a very devious way. As we have previously presented it, Godel's theorem
should seem more like the inevitable outcome of the Russell paradox. In fact, there is a way
of viewing Godel's original proof which makes it look this way.

Recall the proof that any fully classical language lacks its own satisfaction predicate. If
L, for example, has a predicate Sat(y,x) which defines the relation {<x, y>: y codes a
formula which x satisfies}, then L has a predicate Het(x) = ~Sat(x, x), which defines the set
of (Godel numbers of) heterological formulae. But then if we ask whether Het(x) is itself
heterological, we can derive a contradiction. (Indeed, that there is no formula defining the
set of heterological formulae follows directly from the inconsistency of the instance
(Fy)(¥)(x € y =x ¢ x) of the unrestricted comprehension scheme, as we saw before.) It
follows from the indefinability of satisfaction that the formula Prov does not define
satisfaction.

We can show directly that the Gddel sentence G is true but unprovable, in a way that
imitates the reasoning of the last paragraph. Call a formula Godel heterological if is not
provable of itself; the formula ~Prov(xy, X1) defines the set of Goédel heterological formulae.
Let us write this formula as GHet(x1). Now we ask, is "Godel heterological™ Godel
heterological? The statement that "Gddel heterological™ is GAdel heterological is simply the
statement GHet(0(M)), where m is the Gédel number of GHet(x;). Rather than leading to a
contradiction, our question has a definite answer "yes". Suppose "Godel heterological”
were not Godel heterological, i.e. that GHet(x;) were provable of m. If GHet(xy) is
provable of m, then Prov(0(M), 0(M)) is a theorem of Q and therefore of any system
extending Q; note that GHet(0(™) is simply the negation of Prov(0(M), 0(M)). So if
GHet(xy) is provable of itself, then our system is inconsistent, since both Prov(0(m), 0(m))
and its negation are provable; so if our system is consistent, then GHet(x;) is not provable
of itself, i.e. is Godel heterological. This is simply to say that GHet(0(™) is true but not
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provable. A similar argument shows that ~GHet(0(M) is also unprovable, provided that the
system is w-consistent. Finally, note that GHet(0(M) is simply the sentence G of the last
paragraph. So we have really presented Godel's own proof, but with a different exposition
than is usual.

An analogy is often drawn between the unprovability of the Godel sentence and the liar
paradox. From the present exposition, we see that the analogy with the heterological
paradox is even closer. In fact, all we really need in order to see that ~Prov(0(m), 0(M)) is
true but unprovable is to notice that ~Prov(0(M),0(M)) says "'Is not provable of itself" is not
provable of itself', i.e. "Godel heterological™ is Godel heterological': it is not essential to
our proof (though we may observe this afterwards) that it says "I am not provable".

That there is an analogy both to the heterological paradox and to the liar paradox is no
accident, since the heterological paradox is really a special case of the liar paradox. The
heterological paradox involves the sentence "'Is not true of itself" is not true of itself'. To
say that "is not true of itself" is not true of itself is simply to say that the sentence ™'Is not
true of itself" is not true of itself' is not true, so this sentence says of itself that it is not true
— that is, it is a liar sentence.

The Uniformization Theorem for r.e. Relations.

Definition: A uniformization of a binary relation R is a relation S such that:

(h)ScR

(if) S and R have the same domain, i.e. for any X, there is a y such that R(x, y) iff there isay
such that S(x, y)

(iii) Sis single valued, i.e. every x bears S to at most one y (i.e. S is the graph of a partial
function).

We can think of a relation R(x, y) as a many valued function, with x as the argument
and any y such that R(x, y) as one of the values for the argument x. Then, for example, an
r.e. relation is a partial recursive many-valued function. A uniformization of a many valued
function is a single valued function with the same domain.

S can be regarded as a choice function, i.e. S chooses, for each x, something that x bears
R to. This definition can be extended to n+1-place relations in an obvious way.

A uniformization theorem in general says that any relation in a particular class C can be
uniformized by a relation in C. If this is so, then C is said to have the uniformization
property. Note that the class of all relations on the natural numbers has the uniformization
property. Taking the 2-place case for simplicity, any relation R(x, y) is uniformized by the
relation R(X, y) A (z <y)~R(X, z) (i.e. the relation y = uzR(x, z)). This also shows that the
class of recursive relations has the uniformization property, since the relation y = uzR(x, z)
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is recursive if R is; the same applies to the class of relations definable in Lim and to the
arithmetical relations. And this argument can easily be generalized to relations of more than
two places.

A trickier case is the class of r.e. relations. The above argument will not show that this
class has the uniformization property, since y = uzR(x, z) will not in general be r.e. when R
is. To see this, let X be any r.e. set which is not recursive, and let R be the r.e. relation {<x,
y> (y=0Axe X)vy=1} LetS betherelationy =puzR(X, z). If xe X, then S(x) =0,
butif x ¢ X, then S(x) = 1. Soif Sisr.e., then -X can be defined in RE by S(x, 0'). But by
hypothesis X is nonrecursive, so S is not r.e.

However, we can use a somewhat trickier proof to show that uniformization holds for
the r.e. relations. Let R be any 2-place r.e. relation, and let F(x, y) be some formula of RE
that defines it. By the normal form theorem, we can take F to be (3z)L(X, y, z) for some
formula L of Lim. (3z)L(X, y, z) is equivalent to (Fw)(y = K1(w) A L(X, Ki(w), Ka(w))).
We can now define a uniformizing relation S by (Fw)(y = Ky(w) A L(X, K1(w), Ka(w)) A (u
<w)~L(X, K1(u), Ko(u))) (intuitively, w is the smallest code of a pair [y,z] for which L(X,y,z)
holds). Since L is a formula of Lim, the formula defining the uniformizing relation is a X,
formula and so S is an r.e. relation. This can be generalized to n+1-place r.e. relations in a
fairly obvious way. So we have proved the

Uniformization Theorem for r.e. Relations: The class of r.e. relations has the
uniformization property.

Corollary: Every r.e. relation can be uniformized by a partial recursive function with the
same domain.

The Normal Form Theorem for Partial Recursive Functions.

An application of the proof of the uniformization theorem for r.e. relations is a normal form
theorem for partial recursive functions, due to Kleene. Let ¢ be any partial recursive
function, and let R be its graph. R is defined by some X; formula (3z)L(X, y, z). As in the
proof of the uniformization theorem, we see that R is defined by y = Ky (uwL(X, K1(w),
Ko(w))). Since L(x, Ki(w), Ky(w)) is a formula of Lim, and K is a function whose graph
is definable in Lim, we have the following:

Normal Form Theorem for Partial Recursive Functions: Every n-place partial
recursive function is of the form U(uwR(X4, ..., Xn, W)) for some relation R definable in Lim
and some function U whose graph is definable in Lim.

Proof: The case n =1 was just proved, and the general case is proved similarly.
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This is not exactly what Kleene originally proved; he only required R and U to be primitive
recursive.

It is important not to forget the U; it is not true that every partial recursive function is of
the form pwR(X1, ..., Xn, W) for some R definable in Lim. Even if we allow R to be an
arbitrary recursive relation, this is still wrong. If, on the other hand, we require the function
¢ to be total, then ¢(Xq, ..., Xn) IS Py (0(X1, ..., Xn) =Y), SO We can drop the U by taking R to
be ¢'s graph; but then we cannot require R to be definable in Lim.
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Lecture Xl

An Enumeration Theorem for Partial Recursive Functions

We can use the uniformization theorem for r.e. relations to prove an enumeration theorem
for partial recursive functions. First we recall that we have a general version of the
Enumeration Theorem for n-place r.e. relations. That is, there is an n+1-place relation
Wn+l(e, mq, . .., my,) that enumerates the n-place r.e. relations. (So W2(e, m,) is just our
previous relation W(e, y). We will usually omit the superscript when the context makes it
clear which one is intended.) The easiest way to prove this is by defining Wn+l(e,mg,...,my)
as W2(e, [m4, ..., my]). Itis clear that this enumerates the n-place r.e. relations. We now
have:

Theorem: For all n, there is an n+1-place partial recursive function ®n+1 which enumerates
the n-place partial recursive functions, i.e. for each n-place partial recursive function ¢ there
is a number e such that ®"+1(e, Xy, ..., Xn) = 0(X1, ..., Xp) for all Xy, ..., X, for which ¢ is
defined, and is undefined on e, X1, ..., X, when ¢ is undefined on xj, ..., Xp.

Proof: We only prove the theorem in the case n = 1. (The general case can be proved
either by imitation of this case, or via the pairing function.) Consider the relation W3 which
enumerates the 2-place r.e. relations. Being an r.e. relation itself, it is uniformized by some
2-place partial recursive function ®. Now let ¢ be any 1-place partial recursive function, and
let R be ¢'s graph. R is wg for some e, i.e. for some e, W3(g, X, y) holds iff ¢(x) =y. Since
® uniformizes W3, ®(e, x) =y iff o(x) = y; moreover, if ¢(x) is undefined, then W3(e, X, y)
does not hold for any y, and so ®(e, x) is undefined.

The number e is called an index of the function ¢. Kleene's notation for ®(e, x) is {e}(x);
so {e} denotes the partial recursive function with index e.

Just as no recursive relation enumerates the recursive sets, no total recursive function
enumerates the total recursive functions. To see this, suppose ¥ did enumerate the total
recursive functions. Let ¢ be the total recursive function W(x, x) + 1; then there is an e such
that ¢(x) = W(e, x) for all e. So in particular, d(e) = P'(e, €). But ¢(e) = ¥(e, e) + 1, so we
have W(e, e) = ¥(e, ) + 1, which is impossible.

Why doesn't this show that an enumeration of the partial recursive functions is
impossible? Let ¢(x) = P(x, X) + 1. ¢ is a partial recursive function, so it has an index e; so
D(e, X) = D(x, X) + 1 for all x, and in particular ®(e, e) = d(e, €) + 1. But this is nota
contradiction, for it only shows that ®(e, €) is undefined. It is this fact about partial
recursive functions, that they can be undefined, that allows there to be an enumeration
theorem for partial recursive functions, and indeed this was the point of studying partial
recursive functions (as opposed to just total recursive functions) in the first place.
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(In some presentations, a new "number” u is introduced to represent an undefined value,
i.e. we declare that ¢(x) = u when ¢(x) is undefined. Then every function we care to deal
with has a value, of sorts, for every argument. The argument of the last paragraph shows
that we must have u = u + 1: we showed that ®(e, e) = ®(e, e) + 1, from which it follows
that ®(e, e) = u (n = n + 1 for all n other than u), and therefore that u =u + 1. A similar
argument shows that ¢(u) = u for all partial recursive functions ¢, i.e. u is a fixed point of all
partial recursive functions. We will not use u in this course, however.)

This also provides an example of a partial recursive function which is not totally
extendible, i.e. which is not extended by any total recursive function. Specifically, ® is such
a function. For suppose YW is a total recursive function extending ®, and let y(x) = ¥(x, X)
+ 1. yis atotal recursive function with some index e. Then ®(e, x) = y(x) = P(x, X) + 1
for all x on which y is defined, which is all x, since y is total. So d(e, €) =y(e) = ¥(e, e) +
1. Since ¥ extends @, and therefore agrees on ® whenever @ is defined, W(e, €) = y(e) =
Y(e, e) + 1, which is impossible.

Given a 2-place partial recursive function which is not totally extendible, we can find a
1-place partial recursive function which is not totally extendible via the pairing function: if
d(X, y) is such a 2-place partial function, let y be a partial recursive 1-place function such
that w([X, y]) = ¢(x, y) whenever o(x, y) is defined. If y were totally extendible to some
function v, then we could let ¢'(x, y) = w'([X, ¥]), and ¢' would be a total recursive function
extending ¢. Alternatively, we could simply observe that the function ¢(x) = d(x, x) + 1 is
not totally extendible, using the argument of the last paragraph.

Reduction and Separation.

Let C be any class of sets. C is said to have the separation property if for any disjoint S;
and S, € C, thereisanSe Csuchthat-Se C,S; < S,and S, < -S. Sis said to separate
S; and S,.

Separation fails for the r.e. sets. A pair of r.e. sets which is not separated by any
recursive set is called a recursively inseparable pair. The proof that there are recursively
inseparable pairs of r.e. sets is due to Kleene, using ®@. Let S; = {m: ®(m, m) =0}, and let
Sy ={m: ®(m, m) is defined and > 0}. Clearly, S; and S, are disjoint r.e. sets. If
separation held for the r.e. sets, then there would be a recursive S with S; c Sand S, < -S.
But we can easily derive a contradiction by considering the characteristic function of S, y. If
®(m, m) =0 then y(m)=1; if ®(m, m) > 0 then y(m)=0. Since S is recursive, v is recursive,
and so partial recursive, and therefore, for all m, y(m)=d(e, m) for some e. Then if ®(e, ) =
0, y(e)=1=d(e, e); and if d(e, €)>0, y(e)=0=P(e, e). Contradiction.

Let C be any class of sets. C is said to have the reduction property if for any S, Sy €
C, there are disjoint sets S;" and Sy' € C such that S;" < S1, Sy’ € Sp, S1'U Sy’ =S U S,

The class of r.e. sets has the reduction property. This can be seen by an application of
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the uniformization theorem. Specifically, let S; and S, be r.e. sets, and let R be the many-
valued function that takes the value 1 on S; and 0 on S, (and therefore takes both values on
S1 N Sy); apply uniformization to shrink R to a single-valued function R' with the same
domain. Then we let S;'={m: R'(m,1)} and Sy'={m: R'(m,0)}. S;" and S,' obviously have
the desired properties.

If a class C has the reduction property, the corresponding class C1={-X: Xe C} has the
separation property. For suppose we have two disjoint sets S; and S, in C1. Then -S; U
-S>=N. Applying to -S; and -S, the reduction property of C, we know that there are S;" and
S,'in C such that -(S1") < -S1, -(S2') < -S>, and such that -(S1") U -(S2') =-S1 U -Sy =N,
and -(S;") and -(Sy") are disjoint. So S;" U Sy'=N and S;" and S,' are disjoint and therefore
S»'=-(S1); and moreover S; < S;'and S, < Sy'. So Sy separates S; and S,.

This fact can be used to prove that separation holds for the IT; sets (which are the co-r.e.
sets). On the other hand, they cannot have the reduction property, because that would imply
that the X, sets (i.e., the r.e. sets) have the separation property, and they don't. We may also
note that the Iy relations do not have, unlike the %, relations, the uniformization propety: if
they did, we could imitate the proof we gave for the r.e. sets to prove that the IT; sets have
the reduction property.

Functional Representability.

We have said what it is for a relation to be weakly or strongly representable in a theory; we
now define a notion of representability in a theory for partial functions.

Definition: A partial function ¢ is represented in a theory T" by a formula A(xy, ..., Xp, Y)
iff whenever ¢(ay, ..., an) = b, T fi A0(@1), ..., 0@n), 0(d)) A (y)(A(0(D), .., 0(@n), y) 5y =
O(b)). o is representable in T" iff some formula represents it in T.

Notice that in our definition we do not say what happens when o(ay, ..., ap) is undefined. In
particular, we do not require that A(0(@1), ..., 0(an), (b)) not be a theorem. So whenever a
formula A represents a function ¢ in ", A also represents each subfunction of ¢; in
particular, every formula represents the completely undefined function in every theory.
Also, if A represents ¢ in T" and ¢ has an infinite domain, then ¢ has 2®o subfunctions, and
so A represents 2¥o functions in T". It follows that not every function that A represents is
partial recursive, since there are only X partial recursive functions. Notice also that in an
inconsistent theory, every formula represents every function.

Notice that representability is different from definability: a formula can represent a
function without defining it, and vice versa. Notice also that if A extends T, then every
function representable in T"is representable in A, since if A(0@1), ..., 0(an), o(b)) A
(y)(A(0(@1), ..., 0(@n), y) >y = 0(b)) is a theorem of T, then it is also a theorem of A.
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We now set out to prove the theorem that every partial recursive function is
representable in Q. To this effect we prove the following two lemmas.

Lemma 1: If two partial 1-place functions ¢; and ¢, are both representable in a theory I" so
is their composition ¢a(d1(x)).

Proof: Let R1(X,y) and Ra(y,z) represent 1 and ¢, respectively. Then it is not difficult to
verify that the formula (3y)(R1(X,y) A Ra(y,z)) represents their composition.

Lemma 2. Any partial function whose graph is definable in Lim is representable in Q.
Proof: Let ¢ be any 1-place partial function whose graph is defined by the formula A(X, y)
of Lim. Let B(x, y) be the formula A(X, y) » (z <y)~A(X, z). We claim that B represents ¢
in Q. Suppose ¢(a) = b. We have to verify two things: namely, that B(0(@), 0(0)) is a
theorem of Q, and that (y)(B(0(8), y) > y = 0(0)) is a theorem of Q. Clearly, A(0(2), 0(b))
is a theorem of Q, since A(0(8), 0(b)) is a true RE sentence. To show that Q fi B(0(2), 0(b)),
we must also show that Q fi (z < O(b))~A(O(a), z). Butagain, this is a true sentence of RE,
and is therefore a theorem of Q.

Next, we must show that Q fi (y)(B(0(8), y) o>y = 0(b)). Here we use Fact 2 about Q
from Lecture IX, i.e. for all n, Q fi (x)(x1 = 0(M v x; < 0(N) v 0(N) < x;). Using this fact,
we establish (y)(B(0(@), y) > y = 0(b)) by reasoning within Q. Suppose B(0(a), y), i.e.
A(0@), y) and (z < y)~A(0(®), z). We want to show that y = 0(b). By Fact 2, there are three
possibilities: y =0(0), ory <o), or 0b) <y. If o) <y, then ~A(0(2), 0(b)), since
~A(0(®), 7) for all z < 0(b). So suppose y < 0(b). We know that B(0(8), 0(b)), and so (z <
0(d)~A(0(@), z). So in particular ~A(0(@), y), contradiction. So neither 0(0) <y nory <
0(b) holds, and so y = 0(b). This reasoning can be carried out formally in Q, as can easily
be verified, and so Q fi (y)B(0(@®), y) >y = 0(0)). This completes the proof that B
represents ¢ in Q.

We can now prove the desired

Theorem: Every partial recursive function is representable in Q (and therefore in any
axiom system extending Q).

Proof: For simplicity we only prove the theorem for 1-place functions. Let ¢ be a partial
recursive function. Then by the normal form theorem for partial recursive functions, ¢(x) =
U(uyR(X, y)) for some relation R definable in Lim and some U whose graph is definable in
Lim. (In fact, of course, we can take U to be K1.) Then the functions U and pyR(X, y) both
have graphs definable in Lim, so by Lemma 2, both are representable in Q; by Lemma 1,
their composition, which is ¢, is representable in Q.

Corollary: Every recursive set is strongly representable in every consistent extension of Q.
Proof: Let I" be some consistent extension of Q, and let S be any recursive set. Let ¢ be S's
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characteristic function, and let R(X, y) be some formula which represents ¢ in Q, and
therefore inT". (Such an R exists by the preceding theorem.) Let B(x) be the formula R(x,
0). Ifne S, then o(n) = 1, so T fi RO, 0'). If, on the other hand, n ¢ S, then ¢(n) =0,
soI fi (y)(R(O(”), y)oy=0),soTfi ~R(O(”), 0') (since 0=0' is a theorem of Q). So R(X,
0') strongly represents Sin T

This corollary extends our previous result: before, we only knew that every set definable in
Lim is strongly representable in Q (and therefore in any consistent extension of Q).
We can use our results to prove Rosser's form of Godel's theorem:

Rosser's Theorem: If ' is a consistent r.e. extension of Q, then I" is incomplete.
Proof: We can give two different proofs using results we have proved. The first, closer in
spirit to Rosser's is this. Consider the function ®d(x, x). We know that the sets S;={m:
@®(m, m) =0}, and Sp={m: ®(m, m) is defined and > 0} are recursively inseparable. Let
A(X, y) be a formula that represents the function d(x, x) inI". So we have that if ®(m, m) =
0 then T fi A(0(M), 0) A (y)(AO(M), y) >y = 0); and if &(m, m) is defined and =n> 0 then
T fi AM), 0N) A (y)(AOM), y) >y = 0(N)). By the second conjunct in the last formula,
if ®(m, m) is defined and > 0, T fi ~A(0(M), 0). Since T is consistent, it is not the case that T
fi A(0(M), 0) and T fi ~A(0(M), 0). Let Ry={m: T fi A(0(M), 0)} and R,={m: T fi ~A(0(M),
0)}. These are disjoint (since I" is consistent) and, if I" were complete, they would be the
complement of each other (and so exhaust N). They are r.e., for the usual reasons. So if
they were the complement of each other, they would be recursive, and then R; would be a
recursive set that would separate S; and Sy, and we prove that no set does that. So we can
conclude that T" is not complete.

A second way of proving the theorem is the following. Suppose, for a contradiction, that
I" is a consistent r.e. extension of Q that is complete. Since I'" is complete, the set of
theorems of T" is recursive. Consider the relation R = {<e, m>: e is a Gddel number of a
formula A(xy), and A(0(M)) is a theorem of T'}. T being recursive, R is a recursive relation.
Moreover, R enumerates the recursive sets, in the sense that each recursive set is R, for
some e. To see this, let S be a recursive set, and let A(x1) be a formula that strongly
represents it in T"; then if e is a Gddel number of A(xy), S = {m: I" fi A(O(m))} =Re. SOR
is a recursive enumeration of the recursive sets. But as we saw in Lecture 1X, this is
impossible. Therefore, no such I can exist, and so any r.e. consistent I" extending Q is
incomplete.

Exercises

1. (a) Prove that an infinite set S of natural numbers is r.e. iff it is the range of a 1-1 total
recursive function.
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(b) Prove that an infinite set S of natural numbers is recursive iff it is the range of a 1-1
monotone increasing total recursive function.
(c) Prove that every infinite r.e. set has an infinite recursive subset.

2. Reduction property within Q. (a) If S1 and S are two r.e. sets, prove that there are two
r.e. sets S1'and S2' such that S1'cS1, S2'cS2, and S1'US2'=S1US2, such that S1' is
weakly represented by a formula A(x) and S2' by a formula B(x) and (X)~(A(X)AB(X)) is a
theorem of Q.

(b) Hence, if two r.e. sets S1 and S are in fact disjoint, they can be weakly represented
by two formulae A(x) and B(x) such that (X)~(A(X)AB(x)) is a theorem of Q.

3. (a) Show that the following instance of the naive comprehension scheme is
inconsistent: (Ay)(X)(x e y=~Ew)(X e W A W € X)).

(b) Analogous to the construction of K using Russell's paradox, use the result in (a) to
obtain a corresponding r.e. set which is not recursive.

(c) Given anr.e. axiom system I" extending Q, define a number n to be Godel-
unreciprocated if m is a Godel number of a formula A(x1) and there is no n such that n is
the Gadel number of a formula B(x;) with A(0(N)) and B(0(M)) both provable in T.
(Otherwise, m is Godel-reciprocated.) Show, analogously to the treatment of 'Gddel-
heterological’, that the sentence "'G0odel-unreciprocated” is GOdel-unreciprocated' has the
properties of the Godel statement, i.e. it is a I'1; statement that is true but unprovable if T"is
consistent and not disprovable if I is w-consistent. (Note: this is the Godelian analog of
the paradox of part (a), and is meant to illustrate the theme that set-theoretic paradoxes can
be turned into proofs of Godel's theorem.)

4. (a) Show that there is a recursive function y(m,n) such that y(m,n) is a code of the n-
term sequence all of whose terms are m.

(b) The Upwards Generated Sets Theorem says that if G is a set generated by a
recursive basis set and some recursive generating relations such that for each generating
relation R, the conclusion of R is greater than or equal to all of the premises, then G is
recursive. Prove this theorem. [Hint: prove that every element m of G occurs in a proof
sequence for G such that all elements preceding m in the sequence are strictly less than m.
Then use (a).]

(c) Use (b) to prove that the set of Godel numbers of formulae of the narrow first order
language of arithmetic is recursive.

(d) Extend this result to any first order language (in the narrow formulation) with
finitely many function letters and primitive predicate letters and constants.

5. Godel's Theorem via a language with self-reference and extra constants.
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The following is a method of proving the Gédel theorem that directly captures the idea that
the Gddel sentence says "l am not provable”. It goes by adding additional constants to the
narrow first order language of arithmetic; as we have formulated that language, it has only a
single constant a; standing for zero. We now add all of the others (ay, as, ...) which will
denote various numbers. Call the expanded language L*. If we have a set " of axioms in L,
once we know what we want the extra constants to denote, I'* will be obtained by adding to
T all axioms of the form a,.; = 0(Mn), where my, is the number we want an. to denote.
(We may not care what certain of the a,+1's denote, in which case we do not add any axiom
involving an+1 to I'*.) Notice that the language L* and the axiom system I'* are a mere
variant of L and T, since all we've done is to add special names for various particular
numbers, and nothing can be expressed or proved that couldn't be expressed or proved
already.

(a) Use the last remark to prove that if I" is expanded to an axiom set I'* with at most
one axiom of the given form for each constant, then any proof in I'* can be transformed
into a proof in I" by replacing each constant by the corresponding numeral and using the
axiom (x)(x=x).

(b) Hence, show that every theorem of I'* becomes a theorem of I" when constants in
the theorem, if any, are replaced by the corresponding numerals. Also show that I'™* is
consistent iff " is, and that the same holds for w-consistency.

Now let us make a particular choice of my, as follows: if n is a Godel number of a
formula A of L in which x; does not occur bound (but in which variables other than x; may
occur free), let my, be the least Godel number of the formula A(a,+1) obtained from A by
naive substitution of x; by ap+1 throughout, and include the sentence an+1 = o(mn) jn T
(Notice that intuitively, if A says something A(x1), then under our interpretation of the
meaning of an+1, A(an+1) says "l have property A(x;)". Observe that what numbers are the
Godel numbers of a given formula is independent of which interpretation we give to the
extra symbols.)

(c) Show that if I r.e., then so is I'* and therefore so is the set of theorems of I'™*.

(d) Show that there is therefore a IT; formula (x2)B(X1, X2), where B(X1, X2) is a
formula of Lim, and which is satisfied by precisely those numbers that are not Godel
numbers of theorems of I'. We may assume that in this formula x; does not occur bound.
Let n be the smallest Gddel number of this formula. Assume that I" extends Q. Prove that
if I" is consistent, then (x»)B(an+1, X2) is true but not provable from I'*, and therefore that
(x2)B(0(Mn), x,) is also true but unprovable from T.

(e) Show that if I'* is m-consistent, then ~(x2)B(an+1, X2) is not provable from T™* and
that if " is w-consistent, ~(x2)B(0(mn), Xp) is not provable from T

Remark: (d) and (e) prove Godel's theorem both for T™* and for the original system I'. The

point of this exercise is to show that the use of "self-reference” in Godelian arguments,
usually obtained by a rather indirect method, can be obtained by directly constructing a
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formula of the form "a is not provable™, where a is a name of the formula itself. Godel
himself may have been under a certain amount of misapprehension about this point. See his
Collected Works, vol. I (Oxford, 1986), p. 151, n. 15: "Contrary to appearances, such a
proposition involves no faulty circularity, for initially it [only] asserts that a certain well-
defined formula (namely, the one obtained from the gth formula in the lexicographic order
by a certain substitution) is unprovable. Only subsequently (and so to speak by chance)
doesit turn out that this formula is precisely the one by which the proposition itself was
expressed.” (Emphasis added) In the present construction, this is not at all "by chance".
On the contrary, we have deliberately set up the denotation so that the formula refers to
itself. Nonetheless, there is no "faulty circularity", because the constant a denotes the
(smallest) Godel number of a definite string of symbols, and this number is determined
independently of any interpretation of a. We can then assign that number to a as
denotation. There are other ways of accomplishing this type of 'direct’ self-reference.

(f) In this version of the construction, why are infinitely many constants introduced?
Only one constant is used in the undecidable formula.

6. Let ¢ be a uniformization of the relation defined by W(x,y)Ay>2x. Let S be the range of
0.

(a) Prove that Sisr.e.

(b) Prove that S intersects every infinite r.e. set.

(c) Prove that the complement of S is infinite.

(d) Prove that S is neither recursive nor 1-1 complete, citing a previous exercise.
Remark: This is the promised example of an r.e. set that is neither recursive nor 1-1
complete. As | have said, such sets rarely arise in practice unless we are trying to construct
them. Later it will be proved that K is 1-1 complete.
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Lecture Xl

Languages with a Recursively Enumerable but Nonrecursive Set of Formulae.

In dealing with formal languages, it is common to require that the set of formulae of the
language be recursive. In practice, however, one hardly ever needs to use more than the fact
that the set of formulae is r.e. In practice, one also hardly ever encounters languages with a
recursively enumerable but nonrecursive set of formulae. However, there seems to be
nothing in principle wrong with such languages, especially if one thinks, as e.g. Chomsky
does, that to give a grammar for a language is to give a set of rules for generating the well-
formed formulae, rather than to give a procedure for determining whether a given string of
symbols is well-formed or not.

We can easily cook up a language with a non-recursive but r.e. set of formulae. For
example, let S be any set which is r.e. but not recursive, and let L be the first-order language
which contains no function symbols or constants and whose predicates are {Pf: n e S}. L
will be as required.

While this language is artificial, natural examples sometimes arise as well. In a system
of Hilbert and Bernays, for example, there is, in addition to the usual logical symbols, an
operator (1y), such that (ty)A(Xy, ..., Xn, ¥) denotes the unique y such that A(Xa, ..., Xn, Y)
holds. Hilbert and Bernays thought that this really only makes sense if there is a unique y
such that A(Xq, ..., Xn, Y) holds, so they stipulated that (1y) could be introduced only through
the rule

(X1) - (Xn) BY)AXL, o) Xn, Y)

(X1) -..(X)AX1, ey Xny (WA(XL, ooy Xny Y))

(where (A!y)A(X1, ..., Xn, ) means that there is a unique y such that A(x1, ..., Xn, y) holds,
and is an abbreviation of (Ay)(A(X1, ..., Xn, Y) A (2)(A(X1, ..., Xn, Z) £z =Y))). Aresult of
this policy is that the set of well-formed formulae of the language will in general be
nonrecursive, though it will be r.e. Hilbert and Bernays were criticized on this point, though
it is not clear why this is a ground for criticism.

In terms of our own formalism, we could stipulate that f; be introduced when
(X1)-..(Xp) @'W)A(X1, ..., Xpn, ¥) IS a theorem, where i is a certain Godel number of A, and add
as a theorem (X1)...(Xn)A(X1, ..., Xn, F(X1, ...\ Xn)).
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The ST Theorem.

If R is a 2-place r.e. relation, then intuitively Ry should be r.e. as well; but furthermore,
given k, we ought to be able to effectively find an index for Ry. This is indeed the case, and
is a special case of the S theorem. More generally, let R be an m+n-place r.e. relation. In
the case we have just considered, Ry is obtained from R by fixing k as a parameter; the
general form of the ST theorem (put informally) says that given m numbers ky, ..., k., we
can effectively find an index for the relation obtained from R by fixing ky, ..., K, as
parameters. In our own formalism, the S theorem is an easy consequence of the
definability in RE of substitution. We now state the S% theorem, i.e. the special case of the
ST theorem in whichm =n = 1.

Theorem: For any 2-place r.e. relation R, there is a 1-1 recursive function y such that, for
all k, W\V(k): Rk.

Proof: Lete be an index for R. e is a Godel number of some formula of RE A(X,,X,) that
defines R. An index of Ry, i.e. a Gddel number of a formula of RE that defines Ry, can be
obtained from e via substitution. More specifically, we define the graph of y in RE by the
formula PS(K,y)=gr. @p<y)(Num(p,k) A (w<p)~Num(w,k) A NSubst(0(®),y,[0(1),0()],p) A
(w<y)(~NSubst(0(),w,[0(1),0(2)],))) (the use of negation is legitimate, since the formulae it
affects are equivalent to formulae of Lim). Informally, y assigns to k the least Godel
number of the formula obtained by substituting the least Godel number of the numeral of k
for x, in the formula with Godel number e. The function thus defined is clearly 1-1, since
the results of substituting different numerals for the same variable in the same formula must
have different Godel numbers.

The general form of the S theorem can be stated and proved similarly: for any m+n-place
r.e. relation R, there is a 1-1 recursive function y such that, for all k,...,k,,

we see, the name "S"' theorem" derives from the convention of taking m as the number of
parameters and n as the number of other variables; 'S' probably stood for 'substitution’ in the
original conception of Kleene, to whom the theorem is due.

As a consequence of the above theorem, we have the following

Theorem: For all m and n, there is a one to one m+1-place recursive function y such that
for all m+n-place r.e. relations R, if e is an index of R and kg, ..., k,, are numbers, then (e,
K1, ..., Km) is an index of {<y3, ..., yn>: R(Ky, ..., Km, Y1, .., Yn)}-

Proof: Apply the previous form of the S theorem to the relation Wm*n+1, That is, let v be
a function such that y(e, K, ..., km) is an index of {<yj, ..., yn>: W(e, k1, ..., Km, Y1, .-, Yn)}

={<y1, ..., ¥n>: R(K1, ..., Km, Y1, - Yn) -
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The second form of the ST theorem can thus be seen as a special case of the first. The first
form also follows directly from the second. A third form of the theorem is the standard
form in most presentations of recursion theory, and the form originally proved by Kleene:

Theorem: For all m and n, there is a one to one m+1-place recursive function y such that
if e is an index of an m+n-place partial recursive function ¢, then y(e, ki, ..., k) is an index
of the n-place function ¢(ky, ..., Km, Y1, ---» Yn)-

Proof: Apply the previous theorem to the relation Wm*n+2* the graph of the m+n+1-place
function @m+n+l,

Given m,n, a function y with the property stated in the third version of the theorem (for m,n)
is a function standardly called an S} function.

The Uniform Effective Form of Godel's Theorem.

We can use the S theorem to prove the uniform effective form of Godel's theorem, i.e. that
for any consistent r.e. extension I" of Q, a sentence undecidable in T" can be obtained (in a
uniform way for all T') effectively from I itself. Specifically, given a formula A defining -K,
we can find a recursive function y such that for all e, y(e) is a number such that the
statement that A is true of y(e) is true but unprovable from W, if W, is a consistent
extension of Q, and undecidable in We if W¢ is also w-consistent. (We say that a sentence
is a theorem of W, if it is a theorem of the set of sentences whose Godel numbers are
elements of We; so if W, contains numbers other than the Gddel numbers of sentences, we
ignore them.)

Recall the proof of Godel's theorem. Let I" = W, be any r.e. axiom system, and let A(x)
be some IT; formula that defines -K. Then let (-K)* = {m: T fi A(0(M))}, the set of
numbers provably in -K. Since (-K)* is r.e., for the familiar reasons, (-K)* is Ws for some
f. Then the proof we are familiar with shows that A(O(f)) is true but unprovable in T'
provided that I" is a consistent extension of Q, and undecidable if " is w-consistent.
Intuitively, f depends effectively on e, so f should be (e) for some recursive function y. It
is the proof that this is the case that uses the S'' theorem.

Uniform Effective Form of Godel's Theorem: For every IT; formula A(X) defining -K,
there is a recursive function y such that for all e, A(0¥®) is true but unprovable from W,
if W, is a consistent extension of Q, and undecidable if W is an w-consistent extension of
Q.

Proof: Let A(x) be a fixed IT; formula defining -K, and let R be the relation {<e, m>:
A(0M) is a theorem of W,}. If Risr.e., then by the S% theorem we can find a recursive y
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such that Wye)=Re = {m: R(e, m)} = {m: A(0(M) is a theorem of W} for all e. So
A(0VE)) must be true but unprovable if W is a consistent extension of Q, and undecidable
if We is an m-consistent extension of Q. So we only have to prove that R is r.e., but this is
clear. Let x be a recursive function such that y(m) is a certain Godel number of A(0(M).
Note that A(0(M) is a theorem of W, iff there is a proof sequence from the sentences of W,
on which a Gédel number of A(0M)) occurs. A proof sequence from W, is simply a finite
sequence of numbers, each of which either codes a sentence in We or a logical axiom, or
follows from earlier terms in the sequence by a logical rule of inference. So it is clear that
we can find an RE formula PS(s, e) which says that s is a proof sequence from W,; we can
then define Th(e, x) as (3s)(In < s)(PS(s, €) A [N, X] € s). Th(e, X) says that x is a Godel
number of a formula provable from W,. Using the function y above, the relation R is
defined by the RE formula Th(e, x(m)).

We say that a nonrecursive r.e. set S satisfies the uniform effective form of Godel's theorem
just in case for some IT; formula A(x) defining -S, there is a recursive function y such that
for all e, A(OW(®) is true but unprovable from We, if W, is a consistent extension of Q, and
undecidable if Wg is an m-consistent extension of Q. The theorem just proved shows that
the set K satisfies the uniform effective form of Godel's theorem . However, not every
nonrecursive r.e. set satisfies it. In particular, Post's simple set (defined in the exercises)
does not satisfy the uniform effective form of Godel's theorem.

The Second Incompleteness Theorem.

We shall now use the uniform effective form of Gddel's theorem to prove a version of
Godel's second incompleteness theorem, the theorem that says that a sufficiently strong r.e.
axiom system cannot prove its own consistency. Our proof is based on a proof by
Feferman, although it differs from that proof in an important respect. Before giving the
proof, we will say a little bit about the philosophical background of Gddel's second
incompleteness theorem.

In the early decades of the twentieth century, many mathematicians believed, especially
because of the paradoxes, that mathematics might be in serious foundational trouble. Several
leading mathematicians had then a strong interest in logic and foundations. Many of these
mathematicians thought that the reason behind the trouble is that one cannot reason validly
about the infinite, at least in a "natural” way, e.g., they thought that one cannot reason validly
about the totality of natural numbers, as opposed to something you can reason about by
reasoning about larger and larger initial segments.

Two of those leading mathematicians with strong foundational interests were Brouwer
and Hilbert. Brouwer thought from the beginning that mathematics had to be radically
revised, and he proposed a doctrine of what mathematical reasonings are acceptable, called
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‘intuitionism’. In intuitionism, infinitary constructions were not acceptable, and principles
about infinite collections licensed by classical logic, like the principle that, for a given
property, either all numbers have it or there is a number that is a counterexample; thus, a
proof that not all numbers have a certain property does not guarantee, for the intuitionist,
that there is a number without that property (this can only be shown by constructing such a
number).

Some mathematicians adopted the point of view on foundations common today, i.e., the
point of view that there was no problem of legitimacy with mathematics as it had been done,
including set theory; in the case of the logicists, at least a certain modified logical form of
set theory was legitimate. An entirely different approach to the foundational crisis was taken
by Hilbert. He thought that the intuitionists were right in their worries whether mathematics
as it was being done was legitimate. He further thought that the set of methods of
mathematical reasoning guaranteed to be legitimate was even more restrictive than the set of
methods allowed by the intuitionists. On the other hand, Hilbert did not want to change
mathematics. He had the following idea. One should develop mathematics by means of
formal systems, as had been done by people working in logic and foundations, and view
mathematical theorems as finite strings of symbols without meaning, which could be
generated in mechanical ways in the formal systems. But one should prove, by the restrictive
methods allowed, that the formal systems of mathematics were consistent.

What would be the value of such a proof of consistency? Normally, the reason we don't
want a formal system to be inconsistent is that not all of the theorems of an inconsistent
system can be true. Since Hilbert thought that not all theorems of mathematics could be true,
this was not his reason for demanding a proof of consistency. Another reason is to show
that the system is not uninteresting, for an inconsistent system is uninteresting in the sense
that it proves every sentence. But there were other reasons as well. We have proved for our
own formalisms that if we have a IT; statement (x)L(X), where L(x) is a limited formula,
first, we can decide, for any instance L(0(N) of L(x), whether L(0(N)) is true or not. But
second, and more important, that if the system is consistent, then if (x)L(x) is provable then
all the instances of L(x) are true; for if some instance was false, it could be shown to be so
by finite methods (limited statements, whose quantifiers involve only initial segments of the
natural numbers, are the kind of statements taken to be legitimate by Hilbert), and then
~(x)L(x) would be provable, rendering the system inconsistent if (x)L(x) is provable too. In
this way, a proof of consistency would provide a legitimation for theorems of the form
(X)L(X).

What is known as Hilbert's Program was not merely the idea that proving consistency
would be a good thing. The Program suggested by Hilbert actually included a particular and
very plausible suggestion of how a proof might be attempted. At the time, it looked as if this
suggestion (which we cannot explain here) really ought to work. That's why Gddel's second
incompleteness theorem came as a shock, for it showed that consistency for a system could
not be proved assuming that Hilbert's restricted finite methods were a subset of the methods
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incorporated into the system itself. We can already see from Godel's first incompleteness
theorem that Hilbert's aim was unattainable. For if consistency was provable, then the
statement that every Il; provable statement is true would be provable. But if this was
provable, the Gddel sentence G, which is I'ly, would be such that 'G is provable > G' would
be a theorem; but G says of itself that it is not provable, so '~G o G' would be a theorem,
and so by logic G would be a theorem. And this would imply, by the first incompleteness
theorem, that the system was not consistent after all.

Let us now give our proof of GAdel's second incompleteness theorem. First, let us see
how to write out the first incompleteness theorem in the language of arithmetic. Pick a IT;
formula A(x) which defines -K, and fix a recursive function w as in the uniform effective
form of Godel's theorem proved above. Then

For all e, if W, is consistent and W, extends Q, then A(0W(®) is true but unprovable,
from which it follows that
(1) For all e, if W, is consistent and W, extends Q, then A(0V(©)) is true.

(We leave out the second part on the hypothesis of w-consistency.) We shall write out (1)
in the language of arithmetic. We have in effect already seen how to write out the statement
that W is consistent. We have an RE formula Th(e, x) which says that x is a theorem of
We; W, is consistent just in case 0 # 0 is not a theorem of W,, so W¢ is consistent iff e
satisfies ~Th(e, 0(N)), where n is a Godel number of 0 O; let us write Con(e) for ~Th(e,
0(n). (Alternatively, we could let Con(e) be the sentence (3x)~Th(e, X), since W, is
consistent iff at least one sentence is not provable from W¢; or we could let Con(e) be the
statement that no sentence and its negation are both provable from W,.) And we can easily
write "W, extends Q™ within the system: Q has finitely many axioms Ay, ..., Ak, S0 let ny,
..., Nk be their Godel numbers; W, extends Q just in case e satisfies Th(e, O(nl)) A A
Th(e, 0(NK)). Let us write "e ext. Q" for this formula. Finally, let PS(x, y) be some formula
that weakly represents y in Q. Now consider the statement

(*)  (e)(Con(e) A eext. Q> (Ay)(PS(e, y) A AY)))

(*) is a partial statement of the first incompleteness theorem, and therefore ought to be
provable in reasonably strong systems of number theory. Now consider the theory Q+(*).

Godel's Second Incompleteness Theorem: If W, is a consistent extension of Q+(*),
then Con(0(8)) is not a theorem of W, i.e. W, does not prove its own consistency.

Proof: Suppose W, extends Q* and Con(0(€)) is one of its theorems. Then as (*) is a
theorem of We, Con(0(8)) A 0(€) ext. Q > (Iy)(PS(0(®), y) A A(y)) is also a theorem of
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W,; we already know that Con(0(€)) is a theorem of W,, and 0(€) ext. Q is a true sentence
of RE and is therefore a theorem of Q and therefore of We; so (3y)(PS(0(€), y) A A(y)) is a
theorem of We. Let f=1y(e). Since PS represents y in Q, W, fi PS(0(€), 0(f)) A
(y)(PS(0(®), y) o y = 0(f): it follows that A(0(F) is a theorem of W,. But we already
know from the first incompleteness theorem that A(O(f)) is unprovable in We if W is a
consistent extension of Q. Since W¢ is an extension of Q, it follows that W is
inconsistent.

The theorem does not show that there are no statements which might be thought of as
expressing the consistency of a system which are not provable in the system, pathological
statements of consistency, so to speak. To see this, let " be an arbitrary consistent r.e.
extension of Q, let Pr'(x) be Pr(x) A x # o(n) (where Pr(x) is any X, formula defining the
set of theorems of I, and n is the GAdel number of 0 0), and let Con'r- be the sentence
~Pr'(0(n)). Since I is consistent, 0= O is not a theorem of T, so Pr'(x) defines the set of
theorems provable in T'; if T" is w-consistent, then Pr'(x) weakly represents the theorems of I
in " as well. So in a sense, Con'r says that I" is consistent. However, it is clear that T fi
~Pr(0(N)), i.e. T fi Con'r. Also, we know from the exercises that if we have two disjoint r.e.
sets, we have weak representations of them which are provably disjoint in Q. If we take the
two sets to be on the one hand the set of theorems of T", and on the other hand the set of
sentences whose negation is a theorem of I', we therefore have weak representations of them
which are provably disjoint in Q. We might think that the corresponding sentence expresses
consistency. One of the aims of Feferman's, and of Jeroslow's, work, was to give conditions
for distinguishing these pathological statements from statements for which Godel's second
incompleteness theorem goes through.

An important point about our presentation of Gddel's second incompleteness theorem,
where it differs from other presentations, including Feferman's, is that in the hypothesis of
the theorem we only require that a single statement (namely, the conjunction of Q and (*))
be a theorem of a system for it to fail to prove its consistency. In other presentations of the
theorem, including Godel's original presentation, the proof that a system does not prove its
own consistency requires assuming that a certain sentence, different for each system, is a
theorem of the system. Let G be a Gddel sentence for a system I'" which extends Q and let
Conr be a sentence in the language of arithmetic that says that I" is consistent. The first
incompleteness theorem states that if I is consistent, then G is true but unprovable, so in
particular, if T"is consistent, then G is true. So if I is a powerful enough system to prove
the first incompleteness theorem, then I" fi Conr > G. If I" fi Conr, then I" fi G; since G is
true but unprovable from T, it follows that Conr is not a theorem of . This is how the
second incompleteness theorem was originally proved, as a corollary of the first
incompleteness theorem. Thus, the unprovability of consistency for different I"'s under this
presentation is proved under the hypothesis that different sentences are provable in these
different I"'s — if I" and A are different systems, then to conclude that neither T" nor A prove
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their consistency one must assume that I" fi Conr o G, and that A fi Cony > D (where D is
a Godel sentence for A).

On our approach, taking Conr to be Con(O(e)), where e is an index for I", we give a
single sentence (*) such that any consistent r.e. I" which extends Q + (*) fails to prove
Conr. Without any job of formalization at all, it is shown that any extension of Q+(*)
satisfies the second incompleteness theorem. And a system that does not contain Q+(*) is
not sufficient for elementary number theory, since it should be clear that the methods used
in class can be regarded as methods of elementary number theory.

This much we can say without any formalization at all. And we can presume that some
systems are strong enough to contain elementary number theory, and therefore to prove
Q+(*). So we know enough at this point to state the main philosophical moral of the
second incompleteness theorem -a system in standard formalization strong enough to
contain elementary number theory cannot prove its own consistency. Strictly speaking we
have stated this only for formalisms whose language is the first-order language of
arithmetic, but the technique is easily extended to first-order systems in standard
formalization with a richer vocabulary. Some ideas as to how to consider such systems will
become clear when we discuss the Tarski-Mostowski-Robinson theorem in a later lecture.

If one wishes to consider a specific system, such as the system we have called 'PA’, we
can say in advance that it satisfies the conditional statement that if it contains elementary
number theory, it cannot prove its own consistency in the sense of Con(O(e)) above.
However, we have a task of formalization if we wish to show that the system contains
elementary number theory or at any rate Q+(*). Here is one of the misleading features of
the name 'Peano arithmetic' that has been used for this system: it gives the impression that
by definition the system contains elementary number theory, when in fact it requires a
detailed formalization to show that this is so. If, for example, the properties of
exponentiation or factorial could not be developed in it, it would not contain elementary
number theory after all. We have seen the basic idea of how to do this, but the formalization
here is not trivial. Thus it does require a considerable task of formalization to show that (*)
can be proved in PA, and hence that the appropriate statement Con(0(€)) is not provable in
PA. But it requires no formalization at all to claim that any system in standard formalization
containing elementary number theory fails to prove its own consistency.
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Lecture X1V

The Self-Reference Lemma.

When Gaddel proved the incompleteness theorem, he used the fact that there is a sentence G
with Godel number n which is provably equivalent to the sentence ~Pr(0(n)) saying that the
formula with Godel number n is not a theorem. Thus in a sense G says of itself that it is
unprovable. We have already pointed out that it is difficult to even remember how G is
constructed, and that Godel's theorem is more naturally motivated by considering the
properties of the sentence ~Prov(0(n),0(n)), where n is the Godel number of ~Prov(x,x). In
this sense, Godel's use of the fact about "self-reference”, had the negative effect of making
his proof appear somewhat mysterious. On the other hand, it had the positive effect of
calling attention to the fact that the argument for the existence of G does not depend in any
way on the choice of the predicate ~Pr(x), and establishes a more general claim (which,
although not stated by Godel, can be reasonably attributed to him), usually referred to as 'the
self-reference lemma'.

Sdf-Reference Lemma. Let A(x) be any formula in one free variable in the language of
arithmetic (or RE). Then there is a sentence G of the language of arithmetic (of RE) such
that G = A(O(n)) is a theorem of Q, where n is a Gddel number of G.

(In the case of RE, this could be made precise in two ways: either showing that the
translation of G = A(O(”)) into the narrow language of arithmetic is provable in Q or
showing that the appropriate sentence in the broad language of arithmetic is provable in the
appropriate formalization of Q.)

Intuitively, G says of itself that it has the property A(x). To prove a version of the first
incompleteness theorem using the lemma, let I" be any consistent r.e. extension of Q, and let
Pr(x) be a formula that defines the set of theorems of " in RE. Use the self-reference
lemma to obtain a sentence G such that G = ~Pr(0(n)) is a theorem of Q and hence of T,
where n is a Godel number of G. If G is a theorem of T, then Pr(O(n)) is a true sentence of
RE, and hence is provable in Q and therefore in T'; since T' fi G = ~Pr(0(n)), I'fi ~G, so ~G
is also a theorem of I"and I is inconsistent. Since we are assuming that I" is consistent, G
is not a theorem of I". However, since G says of itself that it is not a theorem of T, G is true;
or more formally, ~Pr(0(n)) is true since G is not a theorem of ', G = ~Pr(0(n)) isa
theorem of Q and is therefore true, so G is true. So G is true but unprovable. The proof of
the self-reference lemma reveals that G is a I'l; sentence; from this it follows that if I is -
consistent, ~G is not provable either.

Notice that we often state the Gddel theorems saying that the sentence obtained is one
which is true but unprovable. If the self-reference lemma is stated for the language of
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arithmetic, we know that the predicate Tr(x) saying that x is the Gddel number of a true
sentence cannot be defined in arithmetic itself. We know also that the opposite situation
holds for the language RE. Either way, we have the following corollary which, like the
lemma itself, holds for both the language of arithmetic and the language RE:

Corollary: Let A(x) be any formula in one free variable in the language of arithmetic (or
RE). Then there is a sentence G of the language of arithmetic (or of RE) with Godel
number n such that G=A(0(M) and A(0(N)=Tr(0(M) are both true.

There are numerous ways of proving the self-reference lemma. Given our Godel
numbering, G cannot actually be the sentence A(0(N)), since the Godel number of A(0())
must be larger than n. However, it is possible to devise a different Gédel numbering such
that for every formula A(x), there is a number n such that A(0(M) gets Godel number n.
(This method of proving the self-reference lemma was discovered independently by
Raymond Smullyan and the author.) If we add extra constants to our language, then we can
prove a version of the self-reference lemma for the expanded language. Specifically, let L*
be the language obtained from the language of arithmetic by adding the constants ay, as, ...
(ar is already in L). Interpret the new constants as follows: if n is a Godel number of a
formula A(X1), then interpret a,+1 as the least Godel number of A(a,+1). Then the sentence
A(an+1) says of itself that it is A. Note that if m, is the Gédel number of A(an+1), the
sentence an+1 = 0(Mn) s true under this interpretation. If we let Q* be the axiom system
obtained from Q by adding as axioms all sentences of the form a1 = 0(Mn), then Q* fi
A(ans+1) = A0MN)) for all n, so we can let G be the sentence A(an+1). So if we chose to
work in the language L* rather than L, we could get the self-reference lemma very quickly;
moreover, L* does not really have greater expressive power than L, since L* simply assigns
new names to some things that already have names in L. Using this version of the self-
reference lemma it is also possible to prove Gddel's incompleteness theorem, as we have
seen in an exercise.

The proof of the self-reference lemma essentially due to Gddel employs the usual Godel
numbering and constructs the sentence G in a more complicated way. Let A(x) be given.
Let ¢ be a recursive function such that if y is the Gddel number of a formula C(xy), then
o(n, y) is the Godel number of C(O(n)). Let B(X, Y, z) represent ¢ in Q, and let A'(x, y) be
the formula (3z)(B(X, Y, 2) A A(2)). Ify is the Gddel number of a formula C(xy), then A'(n,
y) holds iff the Godel number of C(0(N)) satisfies A(x). (We can read A'(X, y) as "y is A of
x"; for example, if A(x) is "x is provable", then A'(X, y) is "y is provable of x".) Let m be
the Godel number of A'(X1, X1), and let G be the sentence A'(O(m), O(m)). (A(X1, X1) says
that x; is A of itself, and G says that "is A of itself" is A of itself.) We shall show that Q fi
G = A(0(N)), where n is the Godel number of G. Note that G is really (3z)(B(0(M), 0o(M), 2)
A A(2)), where B represents ¢ in Q. Note also that ¢(m, m) is the Godel number of G itself,
since m is the Godel number of A'(xy, X1) and G is A'(0(M), 0(M)); so Q fi B(0(M), o(M),

104



Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

o) A (y)@B(0(M), o(Mm), y) > y = 0N). So Q fi A(ON) > (Fz)(BOM), 0(M), 2) A A®2)),
i.e. Q fi A(O(M) > G; and Q fi G = B(0(M), o(M), o)) A A(N)), s0 Q fi G > A(OM).
Therefore, Q fi G = A(0(N).

The proof of the self-reference lemma that will be the preferred one in our treatment is
perhaps the standard one nowadays, and uses some of the recursion theory that we have
already developed. It is as follows. Let the formula A be given. Let PH(Xq, X2, y) be a
formula that functionally represents @ in Q (recall that @ is a function that enumerates the
unary partial recursive functions). Let y be a recursive function such that y(m) is a certain
Godel number of (EIy)(PH(O(m), o(m), y) A A(y)). That there is one such recursive function
is clear by the familiar reasons. In fact, we may naturally let y be just an S|, function for
the given formula (3y)(PH(x2, X2, ¥) A A(y)) (which we may take to have number e). Let f
be an index of y. Let G be the sentence (y)(PH(O(), o), y) A A(y)). (f, f) = y(f) = a
Godel number of (3y)(PH(OM), o(f), y) A A(y)) = a Godel number of G. Letting n = y(f),
Q fi G o A(0) (since Q fi G > PH(0(F), 0o(f), o) A A(0(M)), as PH functionally
represents @ in Q), and Q fi A(0(M) = G (since Q fi PH(OM), o(f), o). Thus, Q fi G =
AN)).

Through a similar proof we can obtain an effective version of the self-reference lemma:

Self-Reference Lemma. Effective Version: There is a recursive function ¢ such that for
all formulae A(x) of the language of arithmetic (RE) in one free variable, if m is a Godel
number of A(x), then ¢(m) is a Godel number of a sentence Gm of the language of
arithmetic (RE) such that Q fi G = A(0(®(M))),

Proof: Let PH(x1, X2, X3, y) be a formula that functionally represents &3 in Q (recall that
®3 is a function that enumerates the 2-place partial recursive functions). Let y be a 2-place
recursive function such that if p is a Godel number of a formula A(y), w(q,p) is a certain
Godel number of (3y)(PH(0(@), 0(d), 0(P), y) A A(y)). This may be taken again to be an
ST function. Let f be an index of y, and let o(p)=wy(f,p). Then ¢(p) will be a code of the
sentence Gp = (3y)(PH(0(N), 0(f), 0(P), y) A A(y)), if p is a Godel number of A(y). So if p
is a Godel number of A(y), ®(f, f, p) = w(f,p) = o(p) = a Godel number of (Jy)(PH(0(),
o(f), o(P), y) A A(y)) = a Gédel number of Gp. Letting r = ¢(p), Q fi Gp > A(0() (since Q
fi Gp o PH(O(N), o), 0(P), 0(r) A A1), as PH functionally represents ®3 in Q), and Q fi
A(N) > Gp (since Q fi PH(O(T), o(f), o(P), o(r))).

The proofs of the self-reference lemma do not depend on the fact that A has only one
free variable. Noting this allows us to state a more general version of the self-reference
lemma in which G is allowed to have free variables.

Self-Reference Lemmawith Free Variables: Let A(X, 1, ..., Ym) be a formula of the

language of arithmetic (or RE) with all free variables shown; then there is a formula G(y;,
..., Ym) Of the language of arithmetic (or of RE) such that Q fi (y1)...(Ym)(G(Y1, ..., Ym) =
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AOM), y1, ..., ym)), where n is a Godel number of G.

The version of the self-reference lemma in which G does not have free variables is simply
the special case of this lemma in which n = 0. Naturally, there is an effective version of the
self-reference lemma with free variables.

A corollary of the self-reference lemma with free variables is the following:

Corollary: Let A(x, y) be a formula of the language of arithmetic (or RE) with all free
variables shown; then there is a formula G(y) of the language of arithmetic (or of RE) with
Godel number n such that (y)(G(y) = A0(N),y)) and (y)(A(0(N),y) = Sat(0(N),y)) are both
true.

(In the case of RE, Sat(x,y) is W(x,y). In the case of the language of arithmetic, Sat(x,y),
which we use to mean that y satisfies the formula of the language of arithmetic with Godel
number X, is not itself a formula of the language.)

The self-reference lemma with free variables might be given the name "self-reference
lemma with parameters”, but this name is more appropriate for the following variant of the
lemma.

Self-Reference Lemma With Parameters. For any formula A(x), there is a recursive
function y and a formula PS(x, y) that represents y in Q, such that for all m, y(m) is the
Godel number of the formula (3z)(PS(0(M), z) A A(z)), and furthermore this formula is
provably equivalent in Q to A(O(W(M))).
Proof: Let x be a recursive function such that if m is the Gédel number of a formula B(x,
X2), then x(m, n, p) is the Gddel number of the formula B(O(n), O(P)). Let CH(x, y, z, w) be
a formula that represents y in Q. Let n be the Godel number of the formula (Ix3)(CH(x1,
X1, X2, X3) A A(X3)), and let PS(x, y) be the formula CH(0(M), 0(), x, y). PS represents the
function y(x) = x(n, n, x); to prove the theorem, we only have to show that y(m) is the
Godel number of the formula (3z)(PS(0(M), z) A A(z)), for any m. Since n is the Godel
number of (Ix3)(CH(X1, X1, X2, X3) A A(X3)), it follows that y(m) = % (n, n, m) = the Gddel
number of (Ix3)(CH(OM), 0(N), 0(M), x3) A A(x3)), which is the formula (Ix3)(PS(0(M),
x3) A A(X3)).

Now, notice that (3z)(PS(0(M), z) A A(2)) is provably equivalent to A(O(W(M))). Thus,
writing G(x) for (3z)(PS(X, z) A A(z)), we have

Q fi G(0(M)) = A(0(w(M)))
for all m, where w(m) is a Godel number of G(0(M)).

An alternative proof of the self-reference lemma with parameters consists in noting that we
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may take G(x) to be the formula (3y)(PH(0(F), 0(f), x, y) A A(y)), as in the proof of the
effective form of the self-reference lemma, and  to be the function ¢ of that same proof.

The Recursion Theorem

Kleene seemed to use the term 'the recursion theorem' as an ambiguous term for two
theorems that he proved. Later, the two theorems came to be called Kleene's first and second
recursion theorems. Generally speaking, the second recursion theorem is the more powerful
of the two. Nowadays, it is usually called 'the recursion theorem'. We discuss this theorem
here (the first recursion theorem will come later). In terms of our formalism, it is simply the
self-reference lemma for the language RE with formulae of two variables.  Recall that for
any 2-place relation R and number e, R is the set {n: R(e, n)}.

Recursion Theorem: For any 2-place r.e. relation R, there is an e such that W, = Re.

Before proving the recursion theorem, it is worth noting that the result is somewhat
surprising. Any r.e. relation R can be thought of as enumerating a subclass of the r.e. sets
(namely, the class {Re: e € N}). We may thus call such a relation a subnumeration or the
r.e. sets. The recursion theorem says that every subnumeration coincides with W at some
point. Offhand, we might have thought that we could obtain a subnumeration which did not
coincide with W at any point at all; R might be some scrambling of W, for example. The
recursion theorem shows that this is not so.

Note that, since W, is the set of numbers satisfying the RE formula with Gddel number
e, the second recursion theorem says that for any r.e. relation R there is an RE formula A(X)
with Godel number e such that for all n, n satisfies A just in case R(e,n). Since R is itself
defined by some RE formula B, this is just to say that for any RE formula B(y, x) of two
free variables, there is an RE formula A(x) of one free variable such that for all n, A(x) is
true of n iff B(0(8), x) is true of n, and so, that (X)(A(x) = B(0(€) x)) is true, where e is the
Godel number of A(x). That is, the recursion theorem is really the self-reference lemma
with free variables for RE in the case of one free variable. We can thus prove the recursion
theorem by imitating the proof of the self-reference lemma, by considering an ST function
for the RE formula (3z)(PH (X2, X2, Z) A B(z, y)). This was also the inspiration for Kleene's
original proof of the recursion theorem, although he was not working with RE, but with a
different formalism. We shall give a proof which, although based essentially on the same
underlying facts, is shorter and more common in textbooks.

Proof of the Recursion Theorem: Let R be any 2-place r.e. relation. Consider the

relation S(X, y) = R(®(X, X), y). Sisanr.e. relation, so apply the S% theorem to obtain a
recursive function y such that for all m, Wy,m) = Sm = Raym, m)- Since  is recursive, it has
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anindex f. Lete = y(f); We = Wy = St = Rat, ) = Re (since ®(f, f) = y(f) = e).

This proof is breathtakingly short. It only uses the fact that W is an enumeration for which
the statement of the S| theorem holds.

In the same way that there is an effective version of the self-reference lemma with free
variables, there is an effective form of the recursion theorem that is easy to state and prove:
there is a recursive function ¢ such that for any 2-place r.e. relation R with index e,

Wi e)=Ry(e)-Of course, the effective version, like the noneffective, can be proved for all
appropriate formalisms, and not just for RE.

The recursion theorem can be generalized to n+1-place r.e. relations. If R is an n+1-
place relation, then let Re be the relation {<xq, ..., Xp>: R(e, X1, ..., Xn)}; the general form of
the recursion theorem states that for every n+1-place r.e. relation R, there is an e such that
Wit = R,.

Besides being surprising, the recursion theorem has curious consequences. Let R(X, )
be the relation W(x+1, y). Then W = Rg = W41 for some e; so W enumerates the r.e.
sets in such a way that at least one such set is listed two consecutive times. More generally,
we see that for all n there is an e such that W = We4p,; SO W has many repetitions. (It is
natural to ask whether a repetition-free enumeration of the r.e. sets exists; it turns out that
such enumerations do exist, but are hard to construct.) Also, we can find a number e such
that W, = {e}; just let R(e, x) be the identity relation. Since this relation is certainly r.e., we
can use the recursion theorem to find an e such that W(e, x) iff x = e, i.e. we can find a
formula A(x) which is satisfied only by its own Gddel number.

More generally still, let y be any recursive function; by letting R(X, y) = W(y(x), y), we
see that We = W) for some e. So we have the following

Theorem: For every recursive function , there is an e such that We = W)

This theorem looks superficially like a fixed-point theorem, and we will sometimes refer to
it as 'the fixed-point version of the recursion theorem'. Notice, however, that it is not quite a
fixed point theorem. A fixed point theorem states that a function F has a fixed-point, i.e.
there is an a such that F(a) = a. On the one hand, the theorem does not show that y itself
has a fixed point, since we can have y(e) # € and We = Wye). On the other hand, the
"function” F(We) = Wy is not really a function at all, since its value depends not only on
its argument, the set W, but also on the index e (we can have We = Ws and Wi,y # W)
By contrast, Kleene's first recursion theorem, which we shall eventually prove, really is a
fixed-point theorem.

There is also a version of the recursion theorem for ®. In fact, there are two versions,
corresponding to the first version and to the fixed-point version.

Recursion Theorem for Partial Recursive Functions: (a) For all partial recursive y
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there is an e such that ®(e, x) = y(e, x), all x; and (b) for all total recursive y there is an e

such that d(e, x) = D(y(e), x), all x.

Proof: For (a), recall that ® is really a uniformization of the relation W3. Let PS(x, y, z) be

the graph of y. Find an e such that W, = PSg, i.e. for all y and z, W(e, vy, z) iff PS(e, vy, z)

iff w(e, y) = z; then W, is single-valued, so W(e, y, z) iff ®(e, y) = z; so @(e, y) = y(e, ).
(b) is immediate from (a): let x(X, y) = ®(y(x), ¥), and let e be an index of y; then d(e,

X) = (e, X) = D(y(e), X).

Form (b) is the form that usually is referred to as ‘the recursion theorem' in the literature.

The recursion theorem is interesting mainly because the relation R can itself involve W,
as we saw in the case R(x, y) = W(y(x), y). To illustrate why this is useful, we shall give a
proof, using the recursion theorem, that the factorial function is recursive. (This illustrates,
by the way, why the theorem is called 'the recursion theorem'.) To show this, it suffices to
show that the graph of the factorial function is recursive. If R is a relation such that

(*) RXy)=xX=0Ay=1)v(@n)@z)(Xx=n+lAy=(n+l)z AR(n, 2)),

then R is the graph of the factorial function. (This can be seen by showing, by induction on
X, that there is exactly one y such that R(X, y), and y = x!.) So we only have to find an r.e.
relation R that satisfies (*). If R is r.e., then R = W for some e, so an appropriate R exists
just in case

W(e, x,¥)=(Xx=0Ay=1)v (@n)(Jz)(x=n+1l Ay =(n+l)z A W(e, n, 2))

holds for some e. Setting S(e, X,y)=(Xx=0Ay=1) v (@n)(F)(x=n+l Ay =(n+l)z A
W(e, n, z)), we see that S is r.e. and that y = x! is recursive if

W(e, X, ¥) =S(e, X, Y)

for some e; but by the recursion theorem, such an e exists. We can similarly show that the
Ackermann function is recursive. More generally, we can use the recursion theorem to find
partial recursive functions that satisfy arbitrary systems of equations. For example,
consider the system consisting of the two equations

y(0) =1
y(n+1) = y(n)-(n+1)

We can use an argument similar to the one given above to show that there is a partial

recursive function satisfying these equations. In this case, we see that the function in
question is total. In general, however, we cannot guarantee this. For example, let our
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system of equations consist of just the equation y(x) = y(x)+1. This does indeed have a
solution, namely the function which is undefined everywhere.

So far, we have not used the recursion theorem to prove anything that could not be
proved already using the generated sets theorem. However, there are some important
applications of the recursion theorem that go beyond the generated sets theorem.
Unfortunately, these applications are not as easy to state as the ones just given, and
presuppose some knowledge of transfinite ordinals. Just as we can define functions on the
natural numbers by ordinary induction, we can define functions on the ordinals by
transfinite induction; and if ot is a limit ordinal, f(o) will in general depend on the infinitely
many values f(B) for B < a.. Thus, we cannot use the generated sets theorem to show that
such a function is recursive, since we cannot generate f(or) until we have generated f(j3) for
all B < a, and at no stage have we actually generated infinitely values. Nonetheless, we can
intuitively define f by a system of equations. For example, we might define ordinal
exponentiation by

al=1
ob+l = oB-a
oB = sup{or: y< B} when B is a limit.

In fact, we can use the recursion theorem to show that this system of equations defines a
recursive function on the recursive ordinals (i.e. those ordinals which are order types of
recursive well-orderings), in essentially the way we showed that the factorial function is
recursive. (However, for this to make sense we need a way of coding up the recursive
ordinals as natural numbers.) Thus, we can use the recursion theorem to get around the
problem that the value of o depends on that of infinitely or's for y< 3 when B is a limit.
(Since what we are really defining is an index e of the ordinal exponentiation function, the
set {or: y< B} is coded up in a finite way in terms of o,  and e; in effect, this is what
allows us to talk about infinitely many values of the function at once.)

Exercises

1. (a) LetShbeanr.e.set. Prove that there is a 1-1 recursive function x such that for all m,
Wx(m):N ifme SandWX(m)=®ifme‘ S.
(b) Show that K is 1-1 complete. (This is a result that has been long awaited.)

2. (a) Show thatan r.e. setS is nonrecursive iff there is a total function y such that for all
X, W(X) € Siff y(x) e Wy. Sis called completely creative if y is recursive, and 1-1
completely creative if y is also 1-1. Observe that K is 1-1 completely creative, where y is
the identity function.
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(b) Prove that every completely creative set is many-one complete, and that every 1-1
completely creative set is 1-1 complete.

(c) Prove that if S; <, Sp and Sy is completely creative, then so is S,. Also show that
if S; <1 Sy and Sy is 1-1 completely creative, then so is Sy.

(d) Show that every many-one complete set is completely creative, and that every 1-1
complete set is 1-1 completely creative.

3. (a) Recall the set S of exercise 6 in Lecture XII. There is a formula (x2)L(X1, X2) with L
in Lim that defines the complement of S. Why? Prove that if I" is a consistent r.e.
extension of Q, then only finitely many sentences of the form (x2)L(0(m), X») are provable
in T" even though infinitely many such sentences are true. Hence conclude that if T" is o-
consistent, all but a finite number of true sentences of the form (x2)L(0(M), x,) are
undecidable.

(b) Prove that if the effective form of the Gddel theorem holds for an r.e. set T which is
not recursive (in the sense in which it holds for K), then there is an infinite r.e. set that is
disjoint from T. Conclude that though the noneffective form of the Godel theorem holds
for the set S of exercise 6 of the midterm assignment, S does not satisfy the effective form.
(Anr.e. set T with properties (b) and (c) of exercise 6 is called 'simple’. Observe that
exercise 6 shows that every simple set is neither recursive nor 1-1 complete. Property (a) of
the present exercise also follows from the fact that the set is simple.)

(c) Also show that if T is a nonrecursive r.e. set and T is completely creative, then T
satisfies the effective form of Godel's theorem. (It follows that K satisfies the effective form
of Godel's theorem, which we have already seen to be the case.)

111



Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

Lecture XV

The Recursion Theorem with Parameters.

Let R be a 3-place r.e. relation, or in other words, a subnumeration of the 2-place r.e.
relations. For any given m, let R™ be the relation {<e, x>: R(e, X, m)}; RMis a
subnumeration of the r.e. sets. It follows from the recursion theorem that for any given m,
there is an e such that W, = RM,. But more is true: we can find e effectively from m.

Recursion Theorem with One Parameter: For any 3-place r.e. relation R, there is a
recursive function v such that for all m, Wy,(m) = R™y(m) i.e. for all x and m, W(y(m), x) iff
R(y(m), x, m).

Proof: First, let x be a recursive function such that W, a) = RMg(a,5) for all m, a. Since
RYa(xx) IS an r.e. relation, such a  exists by the ST\ theorem (taking m and a as the
parameters). Next, let ¢ be a recursive function such that ®(¢(m), a) = x(m, a) for all m, a; ¢
is easily obtainable from a two place function o guaranteed by the S theorem for partial
recursive functions, by taking an index of  as fixed as the first argument of o.. Finally, let
y(m) = &(o(m), o(m)) = x(m, ¢(m)). Then Wy m) = Wy(m, o(m)) = R™a(om),om)= R™w(m);
all m.

This proof should be compared to the proof of the parameter-free recursion theorem; all we
have done is to make the number f of that proof depend effectively on m. The theorem can
be generalized to more than one parameter via the usual methods, i.e. either by imitation of
the proof for one parameter, or via the pairing function.

The more usual statement of the theorem is this: for all 2-place recursive y there is a 1-
place recursive function y such that for all m, Wy,m) = W, (y(m), m)- This follows from the
version we have just proved: simply let R(y, x, m) iff W(x(y, m), x), and find a y such that
Wym) = RMym) = Wigy(m), m)

The recursion theorem with parameters has even spookier applications than the
parameter-free version.

Arbitrary Enumerations.

We shall now take a different approach to the ST and recursion theorems, by considering
arbitrary enumerations of the r.e. sets rather than simply the specific relation W. This
approach has the virtue of making the recursion theorem appear less mysterious than the
usual presentation.

For most applications of either the recursion theorem or the ST' theorem, we don't need
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any specific properties of the relation W except that it is an enumeration. For most
applications of the ST' and recursion theorems, it suffices to have available the fact that there
is some enumeration of the r.e. sets with the properties stated in the S™ and recursion
theorems for W. Eventually, the approach that we will develop establishes that W has these
properties, but it first “cooks up" enumerations with those properties. One can find in the
literature the awareness that it is possible to cook up enumerations with the S property;
however, the rest of the theory does not appear in the literature and is due to the author, who
developed it without knowing that it had been developed for the S case.

Let W' be an enumeration of the r.e. sets. For each k, we can easily obtain an
enumeration W'k of the k-place relations from W' via the pairing function. The diagonal
enumeration of an enumeration of the two-place r.e. relations W'2(x,z,y), Diag(W'), is the
relation W'2(x, x, y). We say that W' is a recursion enumeration (or that it has the
recursion property) if for all r.e. two-place relations R there is an e such that W' = Re. We
also say that a subnumeration S is a recursion subnumeration if for all r.e. two-place
relations R there is an e such that S = Re; every recursion subnumeration is an
enumeration: let A be an r.e. set and let R be the r.e. relation such that R(e,x) iff X is in A;
then A=Rq for every e; since S is a recursion subnumeration, there is an e such that Se =
Re=A.

Theorem: For any enumeration in two variables W'2(x,z,y), its diagonal enumeration
Diag(W') is a recursion enumeration.

Proof: That W'2(x,z,y) is an enumeration means that for every r.e. two-place relation R there
is an e such that for all z,y, R(z,y) iff W'2(e,z,y). In particular, for every R there is an e such
that for every y, R(e)y) iff W2(e,e,y), i.e. for every R, Re=Diag(W'2),. This proves that
Diag(W) is a recursion subnumeration of the r.e. sets, and hence, by our previous result,
that it is a recursion enumeration.

This proof of the existence of a recursion enumeration of the r.e. sets from the existence of
an enumeration of the two-place r.e. relations is as breathtakingly short as the standard
proof that W has the recursion property, if not more so. However, it is much more natural
and less mysterious than the latter. Suppose you had an enumeration of the 2-place r.e.
relations, and you wanted to construct an enumeration of the r.e. sets with the recursion
property. Each 2-place r.e. relation can be thought of as a list of r.e. sets, and the given
enumeration of the r.e. relations can be thought of as a list of all these lists; in constructing
an enumeration with the recursion property, what you really want to do is to construct a list
W of r.e. sets which coincides with each of the other r.e. lists at some point. If R is the eth
such list, what could be more natural than having WT coincide with R at the eth place? This
is just what we have done in defining Diag(W'2) above.

We say that W' is a fixed-point enumeration (or that it has the fixed-point property) if
for all total recursive functions y there is an e such that W'e = W'y,e). In calling these 'fixed
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point enumerations' we are referring to the fact that the fixed-point version of the recursion
theorem resembles a fixed point theorem (as we have pointed out, however, it is not really a
fixed point theorem). By a proof similar to the proof of the fixed point theorem from the
recursion theorem, we can prove the following

Theorem: Every recursion enumeration is a fixed-point enumeration.

The converse fails; that is, there are fixed-point enumerations which are not recursion
enumerations.

Let us now define the notion of an enumeration that satisfies the S theorem. We can
say that W' is a substitution enumeration (or that it has the substitution property) if for any
2-place r.e. relation R there is a 1-1 recursive function y such that W'y,) = Re for all e.
Another way of stating the definition of a substitution enumeration is as follows. If R and S
are subnumerations of the r.e. sets (i.e. 2-place r.e. relations), and  is a recursive function,
let us say that y is a trandation of R into S (in symbols, y: R — S) if for all e, Re = Sye).
Let us say that a subnumeration S is maximal if for every r.e. R, there is a recursive y such
that y: R — S; if we can require y to be 1-1, then we say that S is 1-1 maximal.

Translation is analogous to reducibility, and maximality (1-1 maximality) is analogous to m-
completeness (1-completeness). Clearly, an enumeration is a substitution enumeration just
in case it is 1-1 maximal. (A 1-1 maximal enumeration can also be called an effective
enumeration) Assuming that an enumeration W' exists, it will follow that every maximal
subnumeration S is an enumeration, because there will be a recursive function y such that
for all e, We = Sy(e), and so S enumerates the r.e. sets.

We shall now show that given any enumeration, we can find a 1-1 maximal
enumeration.

Theorem: If W' is an enumeration of the r.e. sets, the relation W"([e, n], x) which holds iff
W'2(g, n, X) is a 1-1 maximal enumeration.

Proof: Let W' be an arbitrary enumeration. Let W" be the enumeration such that W"([e, n],
X) = W%2(e, n, x); W" is called the pairing contraction of W2, (Formally, W" is the r.e.
relation defined by (3e)(3n)(z = [e, n] A W'(e, n, X)). Note that W", = @ when z is not of
the form [e, n].) To see that W" is 1-1 maximal, let R be any r.e. relation, and let R = Wézo.
Let w(n) = [eo, n]. W"(w(n), x) iff W'2(eg, n, X) iff R(n, X), 50 Wy,(n) = Ry Since y is 1-1,
vy is a 1-1 translation of R into W".

Once we know that W" is a substitution enumeration, it follows that it is a recursion
enumeration (and therefore a fixed-point enumeration). In fact, the standard proof of the
recursion theorem using the S| theorem establishes that every substitution enumeration is a
recursion enumeration, since it doesn't appeal to any properties of W besides its being an
enumeration. Actually, the following is also true:
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Theorem: If W'y and W', are enumerations such that for some recursive v, y: W'y — W',
then, if W'y has the recursion property, W', has also the recursion property.

Proof: That W'y has the recursion property means that for all r.e. two-place relations R
there is an e such that W'y = Re; that y: W'y — W', means that for all e, W'1e = Wy (e).
We want to prove that for all r.e. two-place relations R there is an e such that W'pe = Re. Let
R be an r.e. two-place relation. There is an e such that for all x, W'1(e,x) iff R(e,x). Consider
the relation R'(x,y) which holds iff R(y(x),y). This is an r.e. relation and so there is an e
such that for all y, W'y(e,y) iff R'(e,y) iff R(y(e),y) iff Wo(w(e),y). So w(e) is such that
W'ay(e) = Ry(e)» and W', has the recursion property.

The theorem has as an immediate corollary that a maximal enumeration must have the
recursion property, since any recursion enumeration gets translated into it.

We mentioned that not every fixed-point enumeration is a recursion enumeration. A
fixed-point enumeration which is maximal is also a recursion enumeration.

As we said, most of the results in recursion theory that use W really only depend on the
fact that there is an enumeration with certain properties (specifically, the substitution
property, the recursion property, and the recursion property with parameters); as far as
recursion theory is concerned, little is gained by showing that the particular enumeration W
has these properties, since a cooked up enumeration with those properties will in general do
the job as well.
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Lecture XVI

The Tarski-Mostowski-Robinson Theorem

Recall from lecture X that if T" is a set of true sentences in the language of arithmetic, then
every r.e. set is weakly representable in T". Specifically, if A(x) is a formula of RE that
defines a set S, then Q o A(x) weakly represents SinT": ifne S, thenQfi A(O(n)), soa
fortiori I, Q fi A(O(n)), and so by the deduction theorem, I'fi Q o A(O(n)); if, on the other
hand, T fi Q > A(0(M), then Q > A(0(N)) is true (since it follows from a set of true
sentences), and Q is true, so A(0(N) is true and therefore n e S. It follows that every r.e.
set is 1-1-reducible to the set of theorems of T'; if T"is r.e., then the set of theorems of T" is
1-complete. But whether or not " isr.e., I" is undecidable.

Alfred Tarski, Andrzej Mostowski, and Raphael Robinson generalized this result,
developing a technique for showing that various theories are undecidable. The theorem
summing up this technique that we will state here, which says that certain theories are 1-1
complete, can be reasonably attributed to Bernays. We will call our basic result the "Tarski-
Mostowski-Robinson theorem’, since it is essentially due to them, although Myhill and
Bernays deserve credit for stating it in this form.

The basic idea behind the proof of the Tarski-Mostowski-Robinson theorem is to
weaken the hypothesis that I" be true (in the standard model of the language of arithmetic) in
such a way that the argument of the last paragraph still goes through. We shall prove the
theorem in stages, finding successively weaker hypotheses.

First, note that we can find a slight weakening of the hypothesis already. We already
know that if " is a true theory in a language with two three-place predicates A and M for
addition and multiplication (or, from an exercise, even with a single three-place predicate for
exponentiation) then I" is 1-complete. Weakening the hypothesis still further: suppose I"is a
theory in some language L' which contains the language L of arithmetic (or simply the
language {A, M}) but contains extra vocabulary. Then the reasoning still goes through, as
long as I" has a model whose restriction to L is the standard model of L (or isomorphic to
it). To see this, we need only verify that if " fi Q o A(O(n)) then n € S (where A(X) defines
S in RE and 'Q' is some appropriate formulation of Q if the language considered is {A,M}).
So suppose I' fi Q o A(O(n)) and | is a model of I" whose restriction to L is the standard
model of L. Then Q o A(O(n)) is true in | and therefore in the standard model, since Q ©
A(O(n)) is a sentence of L. So we have the result that if I is a theory in some language L'
which contains the language L of arithmetic (or simply which contains {A,M}) and T" has a
model whose restriction to L is the standard model of L (or isomorphic to it) then T"is 1-
complete.

Even in this form, the result is difficult to apply in practice, since, first, some theories we
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might want to apply it to are formulated in languages which do not contain the language of
arithmetic; and second, few if any interesting theories whose languages extend the language
of arithmetic have models whose restriction to this language is isomorphic to the structure
of the natural numbers. The full Tarski-Mostowski-Robinson theorem will show that the
theories of various sorts of algebraic structures (e.g. groups, rings, etc.) are undecidable; to
use the form of the theorem just mentioned to show that the theory of some class C of
structures is undecidable, the structure <N, 0, ', +, -> must be a member of C, and few if any
such classes that have actually been studied include this structure. For example, we cannot
yet show that the theory of rings is undecidable, since the natural numbers under addition
and multiplication do not form a ring, as they are not closed under additive inverse.

However, the integers do form a ring, and moreover they include the natural numbers as
a part. This suggests another weakening of the hypothesis that T" is true: roughly, we shall
show that as long as I has a model | such that the natural numbers under addition and
multiplication are a submodel of | and they can be "picked out" using the language of T,
then T" is 1-complete. Actually, we shall prove a result that turns out to be equally powerful:
we shall show that if " is a theory in some first-order language L, and L' is a language
obtained from L by adding finitely many constants, and I" has a model I in the language L'
such that the natural numbers under addition and multiplication (or a structure isomorphic
to this) are definable as a submodel of I, then the set of theorems of I"in L is a set to which
all r.e. sets are 1-1 reducible.

Tar ski-M ostowski-Robinson Theorem: Let I be a theory in some first-order language
L, and let L' be obtained from L by adding finitely many constants (possibly 0). Suppose I"
has a model | in the language L' such that the natural numbers are definable as a submodel
of I. Then the set of theorems of I" in L is a set to which all r.e. sets are 1-1 reducible.

The proof of the theorem will occupy us for the most part of the rest of this lecture.

As a first step to spelling the content of the theorem out, let T" be a theory in some first-
order language L, and let L' be obtained from L by adding finitely many constants. What
does it mean to say that I" has a model I in L' such that the natural numbers under addition
and multiplication (or a structure isomorphic to this) are definable as a submodel of 1? It
means that there is a model I in L' of I" and there are formulae N'(x), A'(x, y, z), and M'(X, y,
z) of L' such that the structure <l Iy is the structure of the natural numbers under
addition and multiplication (or a structure isomorphic to it), where In={a: a satisfies N'(x)
in 1}, Ia={<a,b,c> e In3: <ab,c> satisfies A'(x, y, z) in I}and Iyy={<a,b,c> e In3: <ab,c>
satisfies M'(x, y, z) in I}.

If N', A"and M' are not already primitive predicate letters in L, we add corresponding
predicates N, A, M to L and sentences (X)(N(x) = N'(x)), X)(¥)(@)(A(x,y,z) = A'(X,y,2)),
)W) (@)(M(x,y,2) = M'(x,y,2)) as "definitional” axioms to I". We also add symbols for zero
and successor and definitional axioms for them, as follows: (X)(N(x) o (x=0 = A(X,X,X)))
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for zero, (Y)(X)(N(X) A N(y) o (x'=y = 3Aw)(N(W) A (2)~A(z,2,2) A M(W,w,w) A A(X,W,Y))))
for successor. The resulting theory is the set of consequences in L'U{N,0,',A,M} of T" plus
the finite set D of definitional axioms.

Now, if B is a sentence, let By be the result of restricting all of B's quantifiers to N; that
is, Bn comes from B by replacing (3x)... by (3X)(N(x) A ...) throughout and (x)... by
(X)(N(x) o ...) throughout. By is called the relativization of B to N. It is simple enough to
show that By holds in | iff B holds in the submodel of I defined by N. Call Qy the theory
whose theorems are the consequences of a conjunction of the relativizations of the axioms
of Q to N.

We then know that for every r.e. set S, if B(x) defines S in RE, then By(x) is such that
(1) Bn(x) defines S on the natural numbers (or the copy of S in the structure defined by N)
and (2) for all n, Qu fi Bn(0(M) iff n e S. First, By(X) clearly defines S (or the copy of S in
the structure defined by N). Now, suppose that n € S. Then for the usual reasons, fi Q o
B(0(N)); it is easy enough to show that fi Qn > Bn(0(M), and therefore that Qy fi By(0M).
Now suppose that Qy fi BN(O(n)). Then BN(O(n)) is true in the natural numbers (or in the
structure defined by N), and son € S.

Now consider the theory I'+D+Qy, the set of consequences in the language
L'U{N,0,",A,M} of T plus the finite set D of definitional axioms, plus Qy. Then for every
re.setS, if B(x) defines S in RE, then By(x) defines S (or the copy of S in the structure
defined by N), and for all n, (i) if n € S then I'+D+Qy fi BN(O(”)) (by the same reasoning
as in the preceding paragraph) and (ii) if T+D+Qy fi BN(O(n)) then n e S, for suppose n ¢
S; B(x) defines S, so B(O(M) is false, and so Bn(0(M) is false in the structure defined by N,
and hence in I; but T+D+Qy are true in I, so not T+D+Q fi Bn(0(M). (i) and (ii) establish,
in other words, that By(x) weakly represents S (or its copy) in T'+D+Qy.

Then, by the deduction theorem, for alln,ne Siff '+D fi Qy> BN(O(n)). This
indicates how to prove, using the familiar arguments employing the recursiveness of
substitution, that S is 1-reducible to the set of theorems of I'+D, i.e. that there is a 1-1
recursive function y such that n € S iff y(n) is a Godel number of a theorem of I'+D; y(n)
will be a Gédel number of a sentence of the form (x)(x=0(") > (Qn > Bn(X)). This shows
that the set of theorems of I'+D is 1-complete if itis r.e.

But we have not shown yet that every r.e. set is 1-reducible to the set of theorems of I
(in the language L). Let us first see how the proof of this will go if we suppose that L and L'
are the same, i.e., that no extra constants are aded to L, so that the definitional axioms only
contain symbols from L and I'+D is a theory in LU{N,0,",A,M}. Intuitively, the addition of
the new non-logical symbols by means of definitions does not add expressive power to L.
More precisely, if B is a theorem of I'+D then there is a translation B* of B into L, obtained
by replacing "definienda™ by "definientes" throughout, such that B* is a theorem of I" (the
converse trivially obtains). In other words, there is a function ¢ such that if m is a Godel
number of a sentence of the language LU{N,0,",A,M}, 6(m) is a Godel number of its
translation into L. If we could show that we may require ¢ to be recursive and 1-1, then we
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would have shown that every r.e. set is 1-reducible to the set of theorems of T" (in the
language L), because the composition of ¢ and y would be 1-1 and recursive, and would
reduce S to the set of theorems of T".

In fact, we will show how to define directly, for each r.e. set S, a function 3 whose value
for n is (a Godel number of) a translation of (x)(x=0(") > (Qn > Bn(X)) (Where By(X) is as
before). It is clear that the parts Qn and By(X) of one such formula are (recursively)
translatable into appropriate formulae of L (a fixed translation Q* of the conjunction of the
axioms of Q and a fixed formula B*(x) defining S (or a copy of it) in L). The part x=0(N)
is the only one that depends on n. Recall that L need not contain symbols for successor and
zero. Now, clearly there is some formula Dn(x) of L, obtained by repeated applications of
the definitions for 0 and ' and Russell's trick, and such that the sentence (x)(x:o(n) =
Dn(x)) is a theorem of I'+D. To obtain Dp(x) in this way we would need a cumbersome
application of the generated sets theorem. But we can obtain an appropriate formula En(x)
in a simpler fashion using the uniformization theorem. Notice that there must be a formula
En(x) of L such that (x)(xzo(n) = En(x)) is a theorem of D alone (intuitively, we only need
the definitions to prove an appropriate equivalence). But D is finite, so its set of theorems is
r.e. Therefore the relation R={(n,m): m is a Gddel number of a formula E(x) and E(x) is in
L and (x)(x=0(n) = E(x)) is a theorem of D} is an r.e. relation, for the familiar reasons.
Clearly for all n there is an m such that R(n,m). So R can be uniformized to a recursive
function o such that ou(n) is a Godel number of a formula Epy such that (x)(x:O(n) = En(x))
is a theorem of I'+D (in fact, of D alone); a is clearly 1-1, because otherwise (x)(x:O(p) =
x:O(Q)) for some p, g, p#q would be a theorem of I'+D, which is impossible, since that
sentence must be true in a model isomorphic to the natural numbers, and any such model
makes that sentence false.

Finally, B(n) will be definable in RE using concatenation as e.g. the least Godel number
of (X)(En(x) o (Q* o B*(x)), where En(x) is cashed out in the definition of 3 in RE by
means of a. B is thus clearly recursive and 1-1 (since o is). B 1-reduces S to the set of
theorems of T, since for all n, n € S iff B(n) is a Gddel number of a theorem of T".

But we will have proved the Tarski-Mostowski-Robinson theorem only when we prove
the same result without assuming that L' is equal to L. So far our proof only establishes (or
can be minimally modified to establish) that every r.e. set is 1-reducible to the set of
theorems of T"in L', not in L. But we can easily show how to obtain recursively and in a 1-1
fashion, for a formula of the form (X)(En(x) o (Q* > B*(x)) possibly containing extra
constants, a formula C of L (thus without extra constants) such that T" fi (X)((En(x) o (Q*>
B*(x)) = C). Since I'" is a theory in L, any property of the extra constants provable from I"
must be provable in I" for arbitrary objects; thus, if F(ay,...,an) is provable from T,
(Y).-(Yn)F(Y1,....Yn) (Where y1,...,yn are the first variables that do not occur in F(ay,...,an))
must be provable from T

This concludes our proof of the Tarski-Mostowski-Robinson theorem.

(It may be remarked that we could have proved a weaker result which does not mention
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extra constants at all. We will see how the addition of extra constants can be profitably
applied in an exercise.)

Both Bernays and Myhill stated a theorem whose statement is closely related to the one
we have given, although Myhill (and perhaps also Bernays) did not have an appropriate
justification for it. The theorem they stated says that if a theory has a model with a definable
submodel which is a model of Q, then the theory is 1-1 complete. This theorem is true (see
the exercises) but it is harder to prove than our theorem. What Myhill and Bernays proved,
essentially, was this theorem under the hypothesis that the theory is w-consistent.

The Tarski-Mostowski-Robinson theorem can be applied to show that several algebraic
theories are undecidable. Among them, the elementary theories of rings, commutative rings,
integral domains, ordered rings, ordered commutative rings (all with or without unit), the
elementary theory of fields, etc. The proof for the theory of rings is given as an exercise.

Despite its simplicity, the Tarski-Mostowski-Robinson theorem is a very striking result,
since it states that for a theory to be undecidable, it is enough that it have just one model in
which the natural numbers are definable as a submodel. Part of the reason it is so striking
is that it is commonly applied to theories (like the theory of rings) for which there is no
single standard interpretation. However, it is really no different in principle from the result
that Q is undecidable. Q also has many different interpretations, but we tend to think of one
particular interpretation as “standard™ or "intended", so we are less surprised when that
interpretation is used to show that Q is undecidable; nonetheless, mathematically speaking,
using the standard interpretation of Q to show that it is undecidable is no different from
using the fact that the integers form a ring to show that the theory of rings is undecidable.

If we have already shown that a given theory is decidable and that I is a model of that
theory, it will follow that the set of natural numbers is not definable in 1. For example,
consider the model in the language of arithmetic whose domain is the real numbers. Itis a
famous theorem of Tarski that the first-order theory of this model (i.e. the set of sentences
true in this model) is decidable; it follows from the Tarski-Mostowski-Robinson theorem
that the set of natural numbers is not definable in this model. Similar remarks apply to the
complex numbers. This also illustrates the fact that, for the theorem to apply, the formula
that picks our the natural numbers must be a formula of the object language, since in the
metalanguage we can certainly pick out the natural numbers from the real numbers.

Note also that the theorem relates the undecidability of " in L to the existence of a
certain kind of model of I" in a possibly larger language L". It is important to notice that L'
is only allowed to differ from L' by the addition of finitely many constants; the theorem
does not hold if we allow L' to have additional predicates or function symbols as well. To
see this, recall that the first-order theory I'" of the reals in the language L of arithmetic is
decidable. However, letting L' = L U {N} (where N is any unary predicate), we see that I" is
undecidable in L": simply let I be the model for L whose domain is the set of reals, etc., let I
be the expansion of | to L' in which N is interpreted as applying to the natural numbers, and
apply the Tarski-Mostowski-Robinson theorem.
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Exercises

1. A classical theorem of elementary number theory says that every positive integer is the
sum of four squares. Use this to prove that the elementary theory of rings is 1-1 complete.
(Remark: For those who know about such things, the same argument can be used to prove
that the elementary theories of commutative rings with or without unit, of integral domains,
of ordered rings and ordered integral domains, etc. are 1-1 complete. It is more difficult to
prove the 1-1 completeness of the elementary theory of fields, which uses a similar but more
difficult method.)

2. (a) Show that the theorem that every maximal enumeration is a recursion enumeration
can be proved using the method employed in the lectures to prove the self-reference lemma
(with the recursion theorem for W as a special case). Remember that a maximal
enumeration is one with the substitution property.

(b) Formulate an appropriate version of the recursion property with parameters, and
prove that the diagonalization of any maximal subnumeration has the recursion property
with parameters.

3. Recall the recursively inseparable sets S; and S, from the lectures.

(@) Let C be anr.e. set containing S; and disjoint from S,. Prove that C is completely
creative. Hint: Let A(X, Y, z) be ther.e. relation(ye CAz=0") v (W(X,y) Az=0). Let
y(X, y) be a uniformization of A(X, y, z). Prove that there is a recursive function  such that
y(X, y) = D(x(x), y), for all X, y. Prove that x is a completely creative function for C.

(b) Give an example of a formula A(x) in the language L of arithmetic such that if T"is
any consistent r.e. extension of Q in L, then A(x) weakly represents a completely creative
set in I". (A(X) need not represent the same completely creative set in all these systems.)

(c) Prove that if T"is as above, every r.e. set is weakly representable in T".

(d) Prove that if T" is as above, the set of all theorems of I" is one-to-one complete.

Comment: this finally shows that the results we stated before under the hypothesis that "
extends Q and is w-consistent, concerning weak representability, 1-completeness, etc. all
hold if w-consistency is weakened to consistency. (Or almost all: this does not show that
the result about nice weak representability still holds. This can also be proved, but requires
another argument.) Rosser's work gave a start for this, but it took several decades to reach
the point of this exercise.

(e) Use the results above to show how to prove the Tarski-Mostowski-Robinson results,
stated in class under the hypothesis that T" has a model with a definable submodel
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isomorphic to the standard model of L, under the weaker hypothesis that I" has a model with
a definable submodel which is a model of Q.

Comment: Tarski, Mostowski and Robinson, as said in class, used a less model-theoretic
formulation. However, their work would have implied the result in (e) with the conclusion
of undecidability only. I know of no significant application to a specific theory, however,

where the generalization to models of Q is really useful.

4. (a) Anr.e. set S is creative if there is a recursive function y such that whenever Wy is
disjoint from S, y(x) ¢ S U Wy. Prove that every creative set is many-one complete. Hint:
Let S* be any r.e. set. Prove that there is a recursive function y such that, for all x,

w(x(x)} ifxe S*

Wt Bifxe S*

(b) Conclude from what we have done so far that the concepts creative, completely
creative, and many-one complete are equivalent. Also show that the concepts 1-1 complete,
1-1 completely creative, and 1-1 creative (defined in the obvious way) are equivalent. Later
on it will turn out that all six concepts are equivalent.

(c) Another equivalent concept: prove that a set S satisfies the effective form of Godel's
theorem, as defined for nonrecursive r.e. sets, iff S is creative.

Comment: all of the concepts <p,, <1, m-complete, 1-complete, creative, and simple are due
to Post. Many theorems relating them are also due to Post, as (essentially) is the connection
between creativeness and Godel's theorem (which inspired the term "creative™). Other
important properties of these concepts were proved by Myhill.

5. Show that the set of all valid formulae in the first-order language with one two-place
predicate letter and no others, is 1-1 complete. Also show that the elementary theory of one
irreflexive relation and the elementary theory of one asymmetric relation are 1-1 complete.
Sketch of the method: consider a certain structure with set-membership as the only relation
between elements of the structure. Set membership is irreflexive and asymmetric. The
structure will consist of the natural numbers, the sets of natural numbers, the sets whose
elements are natural numbers and sets of natural numbers, and so on, through all finite
levels. Kuratowski defined the ordered pair <x, y> as {{x}, {x, y}}. Prove that this has the
property of a pairing function: that is, if <x, X,> = <yj, y>>then x; = y; and X, = y,. An
ordered triple etc. can be defined in terms of ordered pairs. This pairing function is an
important tool in the proof. The proof is much simpler if one realizes that definitions with
extra constants are allowed.
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Comment: some of you may know that a model of the natural numbers together with
definitions of + and - can be defined in set theory. This fact could have been used to do this
exercise, but the method given above presupposes much less prior background, and shows
that this is not needed.

6. A reduction classis a recursive class of formulae in a first-order language such that
there is an effective mapping y of arbitrary formulae of the full language of first-order logic
(i.e. the language of first-order logic with all predicates and constants) into formulae of the
class such that a formula A of the full language is valid iff w(A) is valid. Reduction classes
were an active topic of research even before the development of recursion theory.

(a) A recursive class C of formulae is a reduction class iff the set of all (Gddel numbers
of) valid formulae in Cis .. .. Fill in the dots with a concept already defined in this course,
and prove the correctness of your answer.

(b) Give a non-trivial example of a reduction class, using the answer to part (a).

123



Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

Lecture XVII

The Evidence for Church's Thesis,

In most courses on recursion theory, some mention is usually made of the evidence for
Church'sthesis. The evidencethat isusualy cited includes Turing's original analysis of the
notion of computability which led to his definition of Turing machines, the now very
considerable experience of recursion theoristsin showing that intuitively computable
functions can be shown to be recursive, and the fact that alarge class of formal notions of
computability have been proved equivalent. Here we shall discuss a piece of evidence for
Church'sthesis of adifferent kind.

Let I" beany r.e. set of axiomsin alanguage that includes the language of arithmetic but
which may contain extra predicates and function symbols. Then the set of theorems of I
will ber.e., and therefore any set or relation weakly representablein " will ber.e. (The
proof that T"'stheorems form anr.e. set isjust as before, except that the possibility of extra
function letters makes matters a bit more complicated. In particular, the universal
instantiation axiom will have to be given a more complicated set of restrictions.) Therefore,
one way to show that aset or relationisr.e. isto find asuitable I' in which it isweakly
representable.

For example, we may use this method to show that the factoria function isrecursive, by
finding aT” inwhich its graph isweakly representable. Weform I' by adding to the
language of arithmetic the new unary function letter f and adding to the axioms of Q the
following new axioms:

f(0) = O;
((F(x) = (x)-(x)).

(We could give similar axioms, and include an axiom of existence and uniqueness) for a
two-place predicate letter instead of afunction letter). It is easy enough to seethat T fi
f(0(M) = oK) iff k = n!. (To seethat k = n! impliesT fi f(0(N)) = 0(K), argue by induction
onn. Toseethat I" fi f(0(N) = 0(K) impliesk = n!, we need only show that I is consistent;
but the standard model for the language of arithmetic, expanded by interpreting f asthe
factorial function, isamodel of I.) Thusthe formulaf(x) =y weakly represents the graph
of the factorial functioninT". We thus see how to show, in awide range of cases, that a
function isrecursive by defining it by a system of equations.

We can also use thisideato give an informal argument for Church'sthesis. If we havea
set of discrete directionsin classical mathematics, then it should be a corollary of our ability
to construct appropriate formalisms to codify mathematical practice that that set of
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directions codifies a recursive procedure. A computation procedure is a set of instructions
which says what to do at any stage in the computation explicitly in terms of what went on at
the previous stage. Thus, given the state of a system at stage n of acomputation, the state at
stage n+1 should follow as a matter of logic. Assuming that informal logical reasoning can
be carried out within aformal deductive system, it ought to be possibleto giveaset T" of
axioms such that whenever A isadescription of the state of the system at stage n of the
computation and B isadescription of stage n+1, thenT", A fi B. Thus, if | isadescription
of theinitial conditions, we should haveT’, | fi A whenever A isadescription of the state of
the system at stage n, for any n. If A doesindeed follow from T, I, we know that it will be
provable from them, by the completeness theorem. Moreover, since there are only finitely
many instructions, " ought to befinite, and thereforer.e. Thus, any relation weakly
representable in " will ber.e. If 1(x) isaformulain the language of T that saysthat the
computation starts with input n, and O(x) says that the computation eventually halts with
output x, then we should have I fi I(O(n)) - O(O(k)) whenever input n yields output k; thus
the formulal(x) o O(y) will weakly represent the graph of the function that the procedure
computes, and that function will therefore be partid recursive.

Besides being an argument for Church's thesis, the foregoing can be tightened up in
particular casesto yield a proof that al functions computable by some particular sort of
computation procedure arein fact partial recursive. For example, we could prove that all
functions computable by a Turing machine arein fact partial recursive, by setting up a
formal system I" containing, besides the language of arithmetic, predicates relating to
sguares on the machine's tape and axioms relating the state of the system at one timeto its
state at the next time. This could be done by adding only finitely many extra predicates and
only finitely many new axioms, so I would certainly ber.e. Then we could write out a
formulal(x) which saysthat initsinitia state, the tape contains marks representing the
number x; and aformula O(x) which says that when the machine halts, the tape contains
marks representing the number x. Then the formulal(x) o O(y) will weakly represent the
graph of the function that the machine computes.

Note that I" may contain, besides new predicates of numbers, names of new objects
besides the numbers; we may also giveI” an interpretation in which the domain contains
objects besides natural numbers. That domain may contain squares on a Turing machine's
tape, for example. We can till talk about the system I” within the language RE, sinceT"is
still acollection of formulae, which we can code up as numbers, even though we are
thinking of T" as being about objects other than numbers.

Relative Recursiveness.

We have already seen, in our study of 1-1 and many-one reducibility, waysin which one
decision problem can be "reduced" to another. If aset A ismany-onereducibleto aset B,
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then if you had an "oracl€" which told you, for any given number y, whether y € B, then
you could tell effectively whether x € A for any given x: simply compute ¢(x) (whered is
the function that reduces A many-one to B) and ask the oracle whether ¢(x) € B.

In general, aset A issaid to be reducibleto aset B if we can find acomputation
procedure for deciding membership in A which is allowed to use an oracleto B. In the case
of many-one reducibility, the way in which the oracle can be used isvery limited: it can
only be consulted once in the course of the computation, for example. By allowing the
oracleto be used in different ways, we get broader reducibility notions; in this section, we
shall concentrate on the broadest such notion.

Let ussay that aset S; is semi-computable from a positive oracle for S, (or, is semi-
computable from a semi-computation of ) if there is a semi-computation procedure for $;
which isalowed to consult, at arbitrarily many times in the course of the computation, an
oraclethat gives postive information about S,. That is, when the oracle is asked a question
of theform"isx € 7", it dwaysanswers"yes' if x e S, but remainssilent whenx ¢ S,.
The oracle reserves the right to take as long as it wants in answering any given question, so
if at any given time the oracle has not answered, the semi-computation procedure cannot
conclude that the answer is"'no". The procedure can do other things while it iswaiting for
the oracle to answer; it can also ask the oracle several questions at once (or ask it aquestion
before it has answered a previous question).

(Equivalently, rather than answering questions, the oracle could list the elements of S,
not necessarily in order. Consulting the oracle about whether x € S, would then amount to
waiting for x to appear in the listing of S,. Thisisthe approach used by Hartley Rogers.)

Similarly, let ussay that S; is computablein S; if there is a computation procedure for
S; which hasan oracleto S, i.e. an oracle which gives both positive and negative
information about Sy, which it is alowed to consult at arbitrary points in the computation.
Thereisaso amixed notion: we say that S, is semi-computablein S if there is a semi-
computation procedure for S; which has an oracle that gives both positive and negative
information about S,.

For all of these notions, we can allow, not just one oracle, but several oraclesto severa
different sets. That is, we can say that S is semi-computable from semi-computations for
Sy, ..., Syif there is a semi-computation procedure for Swith positive oraclesto S, ..., Sy,
and similarly for the other notions.

Given the notion of being semi-computable in a semi-computation of a set, we can
define the other notions. For example, S; issemi-computablein S, just in case S; is semi-
computable from semi-computations of Sy, -Sp, and $; iscomputablein S, if both S; and
-S; are semi-computablein S,. Equivaently, S; is semi-computablein S, if S; issemi-
computable from a semi-computation of the characteristic function of S,. (Here we identify
the function ¢ with the set {[n, d(n)]: ne N}.)

Now let us give formal counterparts for these intuitive notions. Alongside the notion of
semi-computability in a semi-computation, we have the notion of enumeration reducibility:
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we say that S; is enumeration reducibleto S, and write S; < S, if S; isdefinablein the
language RE[P], the result of adding to RE the unary predicate P and interpreting it as
applying to the elements of S,. More generally, Sisenumeration reducibleto the sets S,
.y Spif Sisdefinablein RE[Py, ..., Py], the result of adding to RE the new unary predicates
P1, ..., Prand interpreting each P, (i = 1, ..., n) asapplying to the elements of §. More
generaly still, we could add new k-place predicates (for k > 1) and new function symbolsto
RE and define a notion of enumeration reducibility to a collection of sets, relations, and/or
functions. We shall seethat all of this reduces to the case of enumeration reducibility to a
single set.

Wesay that S;isr.e. inSyif S < S, -S, (equivalently, iff S; <¢ the characteristic
function of Sp), and that S; isrecursivein or Turing reducibleto S, (S; <t Sp) iff both S§;
and -S; arer.e.inSy. S0 S, <7 S iff both 1< S, -S; and -S; < S, -S,. We do not
use anotation for "r.e. in" involving "<", for it will turn out that therelation S isr.e. in S is
not trangitive.

Thereisardativized form of Church'sthesis: aset S; isrecursivein S, iff S; is
computablein S, (or in terms of semi-computability, S; isenumeration reducibleto S, iff
S; is semi-computable from a semi-computation for Sp). Asin the unrelativized form, there
isan easy direction which we can prove (i.e. that anything satisfying the formal notion
satisfies the informal notion) and a harder, converse direction which has not been proved.

Let us now check that the relations we have written with a"<" aretransitive. We have
already checked thisfor <1 and <,, S0 we only have to check it for <c and <. Suppose S;
<e Sy and S; < S3. Then S isdefined by some formula A(x) in the language RE[P,] and
S, isdefined by some formula B(x) in the language RE[P3], where P, has as its extension
theset S, and P; has asits extension the set Sz. Let C(x) be the formula obtained from
A(X) by replacing each occurrence of Px(y) by B(y), for any variabley. P, and B define the
same set, so A(X) and C(x) define the same set, namely S;; but C(x) isaformula of RE[P3],
s0 S; isdefinablein RE[P3], i.e. S; < Ss.

Now supposethat S, <t S, and S, <71 S3. Both S; and -S; are <¢ S, -Sp, and both S,
and -Sy are < Sz, -S3, S0 S; and -S; are < S, -Sg, i.e. S <1 S3. (Actualy, for thisto
work, we need to use something dightly stronger than the transitivity of < for single sets:
weneedthat if X <Y, ZandbothY and Z are<. U, V, then X < U, V)

However, this proof will not show that therelation r.e. inistransitive. Suppose we tried
to show that thisrelation istransitivein thisway. Giventhat S;isr.e.inS,andthat Sy is
r.e.in Sz, we can concludethat S; < Sy, -Sp; and that Sp <o Sz, -S3. But to show that S; is
r.e. in Sg, we must show that S; < Sz, -Sg, and we can't conclude this from the trangitivity
of <, since we don't know that -S, <¢ S, -S3. In other words, given both positive and
negative information about Sz, we only get positive information about S,, and we need
positive and negative information about S, to get positive information about S;.

If aset Sisr.e, thenforal S, S; < Siff Spisr.e. Thisissmply because RE[P] has
the same expressive power as RE in this case, since the set P definesis already r.e.
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Similarly, if Sisrecursive, then S, <t Siff S;isrecursive. Thus, al r.e. sets bear < to each
other and collectively form a bottom element in the < ordering; similarly, the recursive sets
form a bottom element in the <t ordering. Observethat -K is not enumeration reducible to
K, sinceK isr.e. but -K isnot r.e.; however, -K <7 K, since-S<t Sforany set S(S<1 S
by reflexivity, and whenever S; <1 S, -S1 <1t S by the definition of <t). Notice also that
-K isr.e.inK, since every setisr.e. in its complement, and that K isr.e. in &, since any r.e.
setisr.e.inany other set. But-K isnotr.e.ind, since-K isr.e.in @iff -K < @, N iff -K
isr.e. Sotrangtivity failsfor thereationr.e. in.

Whiletherdationr.e. inisnot transtive, it has the following "weak transitivity"
property: if Aisr.e.inB and B isrecursivein C,then Aisr.e.in C. To seethis, suppose A
isre.inBandB <1 C. Then A <¢B, -B and both B and -B are < C, -C; so0 by the
trangitivity of <, A < C, -C,i.e. Aisr.e. inC. If A<rBandBisr.e. in C, however, it does
not follow that A isr.e.inC. (eg.-K <K andKisr.e in@, but -K isnotr.e. in @.)
Nonetheless, if A <¢B and B isr.e. in C, it doesfollow that A isr.e. in C, again by the
trangitivity of <.

Therelations<¢ and <t are also reflexive, asis easly seen.

Let us now prove some elementary facts about our reducibility notions. First of all, both
S1eSand S <7 Sy imply that Spisr.e in'Sy, asiseasily seen from the definitions. The
conversesfail, however. Wealsohavethat S5, <1 S, = S S = S 57 S, sothe
relations <t, <, and <, are progressively stronger reducibility notions. (It is clear that S;
<1 Sy implies S < Sp; we shall see shortly that the other implication holds.)

SIS = S5 Sy suppose S; < Sp, and let ¢ be arecursive function such that x
e S iff ¢(x) € Sp. Let F(x, y) define o'sgraphin RE. Then (Ay)(F(X, y) A P(y)) defines
S;in RE[P] (where Pisgiven S; asitsextension in RE[P]). Also,wehave S <, S =
S1<m-$H=-51%-S). S0if S < Sy, then $1 5 Sy, -S, (since $1 <5 Sp), and -S; <e
S, -S, (since-S; <6 -S)), 0 S1 <7 S). Wethereforehave S; < S, = $1 <1 Sp. Letus
summarize what we have now proved:

S151S = SIS = SIS
U U
S15eS, = Sreins

In each case, the converse fails (though so far we have only proved thisfor the case S; <4
S, = S1<h S). Also,

S151S & -551-S

U |}
Si<mS & -S1$h-S
il U

SISTSH & -S157-3
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The only part of thiswe haven't explicitly proved isthefina equivaence $; <1 S, & -S1 <t
-S,. However, thisfollowstrivialy from the definition of <.

Noticethat in proving that S; <y S, = S1 <1 Sy, we actually showed that S; <1 Sp
impliesthat S; < S; and -S; <¢ -S,. When thisrelation obtains between S; and S, let us
say that S; isenumeration bireducibleto S, and write $; < Sp. (Neither the term nor the
notation is standard, as the notion has not been explored in the literature.) It iseasy to see
that S; <ee Sy impliesboth $; < S, and S; <t Sp, but the converses do not obviously hold
(andinfact arefalse). We can thus extend our diagram:

S151S =2 S1SmS =2 S1%eS = SIS

|} |}
S15e S =  Srein$
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Lecture XVIII

Recursive Union.

Wewill now show how the notion of enumeration reducibility to arelation, or to afunction,
can be reduced to the notion of enumeration reducibility to aset. In fact, the most obvious
thing works here: if Risan n-placerelation and Sisaset, let R' = {[X, ..., Xp]: R(X1, ..,
Xn)}; then S<Riff SR Similarly, if ¢ isatotal n-place function and F = {[Xx4, ..., Xp,
y]: &(Xq, ..., Xn) =Y}, then S<g ¢ iff S<c F. To show thisis simply to show that the
languages RE[P}] and RE[P]] (resp. RE[f]]) have the same expressive power, where P} is
interpreted asthe relation R (resp. f] isinterpreted as the function ¢), and P% isinterpreted
asthe set R' (resp. asthe set F). To show this, we ssimply show how aformulain either
language can be trandated into the other language. For simplicity, we concentrate on the
case of the 2-placerelation R. If A isaformulaof RE[PZ], let A* be the formula of RE[P}]
that comes from A by replacing all occurrences of PA(x, y) by Pi([x, y]); andif B isa
formulaof RE[P}], let Bt be the formula of RE[PZ] that comes from B by replacing all
occurrences of PL(x) by (3y)(32)(x = [y, Z] A PX(y, ). It then sufficesto check that A is
equivalent to A* and that B is equivalent to Bt.

We can use this result to show that being r.e. in arelation or function (resp. Turing
reducibility to arelation or function) reducesto being r.e. in (resp. Turing reducibility to) a
set. Again, we focus on binary relations for simplicity. Suppose Sisr.e. inR; then S<¢R,
-R, and the above proof will show that S<¢ R, -R’, so Sisr.e. in R’; the converse is proved
smilarly. (Matters are abit delicate here, since -(R’) is not the same set as (-R)'; so we
really have to show that S<¢ R, (-R)' iff S<¢ R', -R".) Now suppose S<t R. Then both S
and-Sarer.e. inR, and s0, aswe have just seen, both Sand -Sarer.e. inR, s0 S<T R.
Again, the converseis proved similarly.

We can also show that reducibility to several setsis nothing over and above reducibility
toasingle set. What we really want is a pairing function on sets; if i is such afunction,
then we want to show that S<¢ Sy, S iIff S<(S1, Sp). (Thisisanalogousto our use of a
recursive pairing function on numbersto reduce relations and functions to sets.) In fact, we
do have asuitable pairing function. For any sets $; and Sy, we define the recursive union
of S;and S, (written S; U Sy) tobetheset{2n:ne S} u{2n+1. ne Sy}. Itiseasyto
verify that the function U isindeed a pairing function on sets of natural numbers. Infact, it
isan onto pairing function, i.e. every set SisS; U S, forsomeS;and S,. S;and S, are
called the even and odd parts of S, respectively.

The idea behind recursive union is one that is familiar from other branches of
mathematics. $; U Sy isthe union of digoint copiesof S; and S. It isdifferent from
ordinary unionsin the following striking way: whereas-(S;1 U $) =-S1 1 -S, -(S1 U Sp)
=-S1 U -Sp. (Proof: theevenpartof -(S1U ) is{n:2ne -(S U )} ={n:2n¢ (S1 U
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S)} =-S1, and similarly for the odd part.)

It canthen be shownthat S<g S, S; Iff S S; U Sy, and similarly that Sisr.e. in S,
S iff Sisre.inS;U Sy, andthat S<7 S, S, iff S<T S U S,. Using thisit is easy to
show how to reduce the case of several setsto the case of one set by iterating the recursive
union function.

Observethat S; and S, are both 1-1 reducibleto S; U Sp: in the case of S; by the map
X — 2%, and inthe case of S, by themap x — 2x + 1. It followsthat S, and S, <, S; U
Sythaa S and S5 S U Sy that S;and S, arer.e.inS; U Sy, andthat S; and S, <1 S; U
S,. Thus, theset S; U Sp isan upper bound of S; and S, with respect to all of these
reducibility notions.

In fact, something moreistrue: for any set S*, if S;, S, < S, then S U S, < SF; and
the same holds for <t. For suppose Sy, S, <¢ S*; then we have aformula A(x) and a
formula B(x) of RE[P] that define S; and S, respectively; then the formula (IX)((A(X) Ay
=2X) v (B(X) Ay =2x + 1)) definesS; U S, in RE[P]. Similarly, if S, and Sy arer.e.in
S, thenS;and S, are <. S*,-S%, 505U S, < S*, -S%,i.e. S U Syisr.e. in S*. Now
suppose S; and S, are Turing reducibleto S*. They arer.e.in S¥,s0S; U Syisr.e in S*.
Also, -S; and -Sy; arebothr.e in S*,s0-(S5U $) =-S; U -Spisre inS*. SoSU S,
<t S*.

Thus, besides being an upper bound of S; and Sy, theset S; U Sy isaleast upper
bound of S; and S, with respect to < and <, in the sense that whenever S; and S, are both
reducibleto agiven set, S; U Sy isalso reducible to it.

Enumeration Operators.

Let us concentrate on therelation <. $; <¢ S, iff S; isdefined by some formula of RE[F];
let A(x) be such aformula. What set A(x) defines will depend on the extension of the new
predicate P; in fact, the set A(X) definesisafunction of Psextension. Given any formula of
RE[P], we can therefore associate with it an operator y from sets to sets, such that y(S) =
the set defined by A(x) when Pisgiven Sasits extension. Such an operator is caled an
enumeration operator. We seethat S; <¢ Sy just in case S; = y(Sp) for some enumeration
operator y. Note also that y(S) < Sfor all yand S.

We can dso dlow y to have several arguments (by letting the corresponding formula
have several extra predicates), and we can allow its values to be relations (by letting the
corresponding formula have severa free variables). Soin genera, for any nand k, each
formulaA(Xq, ..., Xk) of RE[P4, ..., Py] corresponds to an n-place enumeration operator from
setsto k-placerelations. (Or we could alow the arguments themselves to be relations, by
considering formulae with extra non-unary predicates.) In genera, we will be concerned
with the casesin whichn = 1. We do not require that k > 0; when k = 0, the values of the
enumeration operator are truth values.
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Let us now verify two important properties of enumeration operators. Thefirstis
monotonicity. An operator y issaid to be monotonic if whenever S; ¢ Sp, w(S1) < w(S)).
(When y takes as its values the truth values T and F, then we say that y is monotonic if
whenever S; ¢ S; and w(Sp) =T, then w(S;) = T.) The second isfiniteness. An operator is
said to befiniteif for all x and S, x € () iff thereis somefinite Sy — S such that x €
W(So).

Once we have proved monotonicity and finiteness for the case k = 0, the result will
follow for al k> 0. To seethis, suppose vy isan enumeration operator corresponding to a
formula A(X4, ..., Xp) of RE[P], and suppose S; ¢ Sp. Suppose<ay, ..., &> € y(S1). Then
<ay, ..., &> satisfies A(X, ..., Xn) Wwhen Pisinterpreted as S, so the sentmceA(O(al),
0(an)) of RE[P] istrue. By monotonicity for k = 0, A(0(&1), ..., 0(&n)) remains true when P
isinterpreted as S, and S0 <a, ..., &> dill satisfies A(X4, ..., Xp), i.€. <&, ..., & € Y(S)).
Sincethe n-tuple<a, ..., &> was arbitrary, it follows that y(S;) < w(Sp). Similarly,
suppose finiteness holds for the case k = 0, and suppose <ay, ..., &> € Y(S). Then<a, ...,
a> satisfies A(Xq, .., Xn) when Pisinterpreted as S, so A(0(81), ..., 0(@n)) istrue; by
finiteness, A(0(21), ..., 0(&n)) istrue when Pisinterpreted as S, for somefinite Sy S, so
<ay, ..., &> € Y(S).

Theorem: Monotonicity holds for enumeration operators.

Proof: By the foregoing discussion, we need only show that if A isasentence of RE[P]
and A istruewhen Pisinterpreted as S;, then A remainstrue when Pisinterpreted as S,
whenever S; ¢ S,. (To savewords, let us say that A istruein Sto mean that A istrue when
Pisinterpreted as S.) We show this by induction on the complexity of RE[P] sentences.
Atomic sentences are either sentences of RE or sentences of the form P(0(N). The former
aretrue or false independently of how Pisinterpreted, and P(O(n)) istrueinSiffne S, s0
obviously the theorem holds for P(O(n)). If the theorem holdsfor A and B, and A AB is
truein Sy, then both A and B aretruein S; and by the inductive hypothesis remain truein
S,; therefore, A A B istruein S,. The remaining cases offer no difficulty and are left to the
reader.

Theorem: Finiteness holds for enumeration operators.
Proof: Again, we only have to show that a sentence A of RE[P] istruewhen Pis
interpreted as some set Siff A istrue when Pisinterpreted as Sy for somefinite So c S.
The"if" partistrivial, by monotonicity. We prove the "only if" part by induction on the
complexity of sentences. If asentenceisatomic, it isether asentence of RE or of the form
P(O(n)). In the former case, the interpretation of Pisirrelevant to its truth, so we can take
=@. Inthelatter case, if P(O(n)) istruein S, thenn e S, so we cantake Sy ={n}.
If AvBistruein S, then either A or B istruein S; suppose A is. Then by the inductive
hypothesis, A istruein S for somefinite So ¢ S, so the sentence A v B isalso truein S.
If A ABistruein S, then both A and B aretruein S, so by the inductive hypothesis
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therearefinitesets S;, S, ¢ Ssuch that A and B aretruein $; and Sy, respectively. So by
monotonicity, both A and B aretrueinthefiniteset S=S, U Sy, and s0 A A B istruein
So.

If (3X)A(X) istruein S, then the caseislike digunction. A(O(n)) istruefor somen, so
by the inductive hypothesis A(O(n)) istruein Sy for somefinite S < S; so (AX)A(X) istrue
inS.

If (x < 0(M)A(x) istruein S, then the caseiis like conjunction. A(0), ..., A(0(N-1)) areall
truein S, so by the inductive hypothesisthey aretruein finite sets S, ..., S, respectively.
So by monotonicity, they areadl truein thefiniteset S =S U ... U S, So the sentence (x
< 0(MA(x) isitself truein S,

The set S is sometimes called afinite support for the sentence.

We can use the last theorem to prove a normal form theorem for sentences or RE[P].
Let A besuchasentence. A istruein Siff for somefinite Soc S, A istruein &. (And by
the discussion above, thisalso holdsif A hasfreevariables) We can write out the right side
of the"iff" in RE[P]. Let sbe some variable that does not occur in A, and let A* be the
result of replacing all occurrencesof P(t) by t € s, for t aterm. A* isthusaformulaof RE.
Let sc P abbreviate the RE[P] formula (X <s)(x ¢ sv P(x)). Then A isequivaent to the
formula (3s)(sc P A A*). Thus, the extra predicate P can be segregated off, asit were, so
that it only occursin the conjunct sc P.

The normal form theorem gives us an enumeration theorem: to get an enumeration of
the n-place relations definable in RE[P], we simply replace A* by the formulaW(e, s, X1, ...,
Xp). If ann-placerelation R isdefinablein RE[P], then it is definable by anormal form
formula(3s)(s = P A A* (X4, ..., Xn)), and A*(Xq, ..., Xn) is equivalent to W(0(E), s, X1, ..., Xp)
for some e, so R is defined by the formula (ds)(sc P A W(O(e), S, X1, .., Xn)); SO (FS)(SC
PAWC(e, s, X1, ..., Xp)) (inwhich eis now avariable) defines an n+1-place relation that
enumerates the n-place relations definable in RE[P], since R was arbitrary. (eisan index of
therelation R here)) Infact, this also gives us an enumeration of the enumeration operators,
we will sometimes write ye to denote the eth operator in this enumeration. (We could have
also proved an enumeration theorem by imitating the proof of the enumeration theorem for
RE.)

The Enumeration Operator Fixed-Point Theorem.

We shall now prove that every enumeration operator has aleast fixed point, and that this
fixed pointisr.e. Thistheorem isclosely related to Kleene'sfirst recursion
theorem.Kleene stated hisfirst recursion theorem in terms of partial recursive functions, but,
just asin the case of the second recursion theorem, we first give the version for r.e. setsand
relations. We will consider Kleene's form of the theorem at the end of the section.
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A fixed point of afunction ¢ isan x such that ¢(x) = x, so in particular afixed point of
an enumeration operator y isaset Ssuch that y(S) =S. A set Sissaid to be closed (under
y) if y(S) c S Sissaidto besoundif Sc y(S). So Sisfixed iff Sisboth sound and
closed. If Sisafixed point of y, we say that Sistheleast fixed point of v if Sc S for al
fixed points S of y.

Theorem: Every monotonic operator has aleast fixed point.
Proof: We shall give two proofs of this theorem; the first is shorter, but the second gives us
more information about the least fixed point, and thisinformation will be useful later.

Let G=n{S: Sisclosed}. ({S: Sisclosed} isnot empty, since we know that thereis
at least one closed point, namely N.) First, we show that G isclosed. If Sisclosed, then G
c Shy the definition of G, so y(G) < yw(S) < S by y's monotonicity and S's closedness.
So y(G) < Sfor dl closed S, and therefore w(G) < G by the definition of G, and G is
closed. Next, we show that G issound. Note that y(G) isclosed: y(G) c G aswe have
seen, S0 y(Y(G)) < y(G) by monatonicity. Since y(G) isclosed, G c y(G), so Gis
sound. So Gisafixed point. Finaly, Gistheleast fixed point: if Sisafixed point, then S
isclosed, so G ¢ Shy the definition of G.

In the second proof, we construct afixed point by transfinite induction. Let Sy= @, and
for al n, let Ship = W(S,). After we have constructed S, for all ne N, welet S, = U{Sy: n
e N}. Ingenerd, if Sy, has been defined, we set Sy+1 = W(Sy), and if ocisalimit ordinal
(i.e. anordina whichisnot $+1 for any ), we set S, = U{ S3: p < o} . We show by
induction on o that S, is sound for all o; given the definition of S, this meansthat S, ¢
So+1- Clearly, §yissound. If Sy issound,i.e. Sy, < Sgq+1, then w(Sy) < w(Sy+1) by
monotonicity, i.e. Sy11 < Spo. Now let o be alimit ordinal, and suppose Sy is sound for
alB<oa. Letxe S, By thedefinition of Sy, x € Sgfor somef <o, and S5 = S, By
monotonicity, W(Sg) < W(Sy) = Su.+1, and by the inductive hypothesis Sg < y(Sg), sox €
So+1- Since x was arbitrary, Sy, < Sy1-

So the sequence <S,: o anordina> isincreasing. It can't be strictly increasing, since if
it were, a new natural number would be added to S, at each stage; so at an uncountable
stage, uncountably many natural numbers would have been added, which isimpossible.
(We can make this precise, asfollows. If Sy # Sy, for each o, then Sy;1 - S, must be
nonempty for each o, so let ¢(or) be the least element of S41 - Sy Then ¢ isa1-1 function
from the ordinalsinto N. Soif o isan uncountable ordinal, then ¢ maps{pB: <o} 1-1
into N, which isimpossible.) So the sequence must stop increasing eventually, that is there
must bea A such that S, = S),;; indeed there must be a countable such A. But this means
that y(S)) =S, i.e. S isafixed point of y.

Finaly, we can show that S, isthe least fixed point by showing, by ordina induction on
o, that if S isany fixed point, then S, ¢ S; it followsthat S,  S.
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Exercises
1. Show that for all sets S, S;, and Sy, S< S, S Iff S<S U S,.

2. Suppose Sisacompletely creative set, and let y be a completely crestive function for S
(i.e for dl x, y(x) € Siff y(x) € Wy). First, show that there isarecursive function y1
such that Wy, (x,s) = Wx - { &, ..., @}, where scodes{ &, ..., &}, and arecursive function y
such that Wy, yy = Wx U {y}. Next, define o and y* simultaneously, asfollows. a(n, 0)
=x1(n, s), where sisthe smallest code of {y*(0), ..., y*(n-1)}; ou(n, m+1) = x(o(n, M),
y(o(n, m))); w*(0) = y(0); and y*(n+1) = y(ou(n+1, go)), where g is the least g such that
y(o(n+1, q)) isdistinct from al of y*(0), ..., y*(n). Provethat y* istota recursive, 1-1,
and a completely creative function for S.

Use this and previous exercises to show that the notions 1-complete, m-complete,
creative, 1-1 creative, completely creative, 1-1 completely creative and being anr.e.
nonrecursive set satisfying the effective form of Godel’ s theorem are all equivalent.

Remark: remember that | said that r.e. setsthat arise naturally, as opposed to being
cooked up by recursion theorists, are al ether recursive or 1-1 complete. The latter case can
be characterized in al the ways on the list above.

3. Usethe method of axiomatizing in first-order logic, as given in class, to show that al
Turing-computable functions are recursive.

4. Recall the sdlf-reference lemmawith parameters from class: if A(X) isany formula, there
isarecursive function y and aformula PS(x, y) that represents y in Q, such that for al m,
y(m) isthe Godel number of the formula (3z)(PS(0(M), z) A A(2)), which is provably
equivalent in Q to A(0(w(M)). Usethisto provethat every r.e. set is nicely weakly
representable in every consistent r.e. extension of Q, asfollows. Let I" be any consistent r.e.
extenson of Qand let Sbeany r.e. set. Let R(X, y) beaformulaof Lim such that the
formula (Fy)R(x, y) defines S. Let Pr(x, y) be aformulaof Lim such that (3y)Pr(x, y)
definesthe set of theorems of I'. Let A(x) be the formula (3z)(PS(x, 2) A (Fy)(R(X, y) A (w
<y)~Pr(z, w))), where PS represents the function y such that y(m) isthe Godel number of
the formula A(0(M). Show that A(x) weakly represents Sin T, and moreover that A(x)
defines S.

Remark: a previous exercise proved that every r.e. set isweakly representable in every
consistent extension of Q, but not that the weak representation was nice. Shepherdson gave
this as an dternative way of getting the earlier result, and then Kreisel pointed out that this
method gives a nice weak representation.

5. Consider the language that is like RE except that the bounded universal quantifier is
replaced by the ordinary unbounded universal quantifier. This can be called the positive
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language of arithmetic, PL.

(a) Prove that the same sets and relations are definable in the (ordinary) language of
arithmetic, L, asare definablein PL.

Now consider the language PL[P}] obtained by adding to PL a single monadic predicate
P}, just asin the case of RE. Analogously to enumeration operators, we can define positive
arithmetical operators. Also, let ¢(S) be the set of all (Godel numbers of) true sentences of
PL[P}], where the extra predicate P} isinterpreted as S.

(b) Show that in contrast to the case of RE[P}] , &(S) isnot apositive arithmetical
operator. Also show that every enumeration operator is a positive arithmetical operator.
Show aswell that positive arithmetical operators need not in general befinite.

(c) Provethat ¢(S) is monotonic, and show how to deduce that every positive
arithmetical operator is monotonic.

(d) In classiit was proved that every monotonic operator has aleast fixed point. Prove
the following statements by similar methods: every monotonic operator has a unique largest
fixed point. Also, for every monotonic operator, every sound point S has aleast fixed point
above S, and every closed point S has alargest fixed point below S.

Notice that by (c) the conclusions of (d) apply to ¢ and to every positive arithmetical
operator. In particular, they al have least fixed points and largest fixed points.

(e) If P% isinterpreted by any fixed point of ¢, show that the language PL[P]l_'l contains
its own truth predicate and its own satisfaction predicates Saty(x, my,...,mk), for each k.

(f) The sdlf-reference lemmafor the language PL[P}] (for the case of formulae with one
free variable) saysthat for any formula of thislanguage A(x1), with only x4 free and x1
never bound, thereisaformula G with Godel number m such that, independently of the
interpretation of the extra predicate Pf, G=A(0(M)) is always provable from the axioms of
Q, if we consider the theorems of Q derivable in the broad language of arithmetic
supplemented by the predicate Pi. A corollary isthat G=A(0(M)), where m is the Godel
number of G, isawaystrue, regardless of how the extra predicate is interpreted. Prove the
self-reference lemmafor PL[P11]. (Infact, al the forms of the salf-reference lemma proved
in class for the language of arithmetic generalize over to this case in asimilar manner.
However, here we only consider the form of the lemmawe need for part (g).)

(g) Consider a sentence G such that GzP}(O(m)) (where m isthe Godel number of G)
istrue, regardless of the interpretation of Pll Such a sentence exists by (f). Prove that there
isat least one fixed point S; of ¢ such that if P% isinterpreted by S;, G istrue, and another
fixed point S; such that if P% isinterpreted by S, G isfase. Prove that Gistrue if P% is
interpreted by the largest fixed point of ¢ and falseif Pll isinterpreted by the least fixed
point of ¢. (This showsthat there are at least two distinct fixed points and that in fact the
largest and the least fixed points are distinct. In fact, the number of fixed pointsisthe
cardinality of the continuum.)

Remark: thisfinally shows that alanguage even with unbounded quantifiers of both
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kinds, and with an expressive power greater than or equal to the language of arithmetic, can
express its own truth and satisfaction predicates, aslong asit lacks negation. Any
interpretation of PLin PL by afixed point has these properties. We have seen that thereiis
more than one such interpretation of P% The same argument could be used for RE[P}], but
it islessinteresting there, because all the languages RE[P]l], and RE itsdlf, contain their own
truth and satisfaction predicates.

The congtruction is related to one | have discussed elsewhere, but differsin that it isfor
classical languages without negation.

137



Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

Lecture XIX

The Enumeration Operator Fixed-Point Theorem (Continued)

We could adapt either proof that every monotonic operator has aleast fixed point to give us
additional information. For example, for any sound point S, thereisaleast fixed point S
suchthat Sc S. We can show thiseither by letting G = {S: S'isclosedand Sc S} in
the first proof, or by letting So = Sin the second proof. Also, for any closed point S, there
isagreatest fixed point Sc S. Again, we can imitate the first proof (switching "closed"
and "sound" and making similar changes throughout) or fiddle with the second proof
(letting <S,> be adecreasing sequence with Sy = S).

In the second proof, we know that afixed point is reached at some countable stage. If
the operator y isfinite, then it isreached at stage .

Theorem: If yisamonotonic and finite operator, then the set S, from the proof of the last
theoremisy'sleast fixed point.

Proof: We only have to show that S, = S.1; Since S, < Sy+1, We just have to show that
Sot1 € Sy Letx e Sy = W(Sy)- By finiteness, we can find afinite X < S, such that x
e y(X). Since X isfinite, X c S, for somen < ®. By monotonicity, X € y(S,). But Sy+1
=y(Sy), soX € Spi1 C Sp.

Since enumeration operators are finite and monotonic, we know aready that each
enumeration operator has aleast fixed point, and that it is constructed by stage . To show
that thisfixed point isr.e., we need to generalize the generated sets theorem dightly.

When a set is generated from a basis set and a collection of rulesin the sense of the
usua generated sets theorem, the rules are finite in number and each has afixed finite
number of premises. However, since we can code up finite sets of numbers asindividual
numbers, we can make sense of anr.e. generating rule having a variable finite number of
premises. Specifically, we can identify such arule with abinary relation R(s, x), where s
codes afinite set of premises and x isthe conclusion. We can formulate an appropriate
notion of proof sequence for such arelation; specifically, we may say that <xg, ..., X,>isa
proof sequence for R if for every i<n thereisafinite set s such that al elementsof sarein
<X1, ..., Xp> before x; and R(s, X;). Then naturally we define the set generated by R to be the
set of all numbersthat have proof sequences. Aslong asRisr.e., the notion of proof
sequence will ber.e., and therefore the set generated by R will also ber.e. Weleavethe
details to the reader.

Enumeration Operator Fixed Point Theorem: Every enumeration operator has a least
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fixed point (namely S,), and that fixed point isr.e.

Proof: Lety be an enumeration operator, and let S, be asabove. Let R betherelation {<s,
x>: scodesaset Ssuchthat x € y(S)}. Risr.e, asiseasly seen (if A isthe RE[P]
formula corresponding to v, then R is defined by the formula A' obtained from A by
replacing P(t) by t € sthroughout). Let G bethe set generated by R, which isthereforer.e.
We show that G = S,,,.

Firg, G ¢ S,. We show by induction on the length of proof sequencesthat if x occurs
on aproof sequence, thenx € S;,. Let <Xy, ..., Xp> be aproof sequencefor R. Then R(s,
Xn), Where s codes afinite set of x;'s, i < n. By theinductive hypothes's, s codes a subset S
of Sy, S0 by monotonicity w(S) c w(Sy) = Sp- Since xp € W(S), Xn € Se.

Next, S, < G. Weshow by inductiononnthat S, c G. Sg=3 < G. Suppose S, <
G,andlet x € Sh+1 = W(S,). By finiteness, x € y(S) for somefinite Sc S,,. Since Sy+1
c G, we can find proof sequencesfor al the elements of S; by stringing them together, we
can find a proof sequencefor x. Sox e G.

Kleene'sfirst recursion theorem is stated in terms of partia recursive functions. An
enumeration operator that maps partial functionsinto partial functionsis called a partial
recursive operator; Kleene showed that every partial recursive operator has aleast fixed
point, and that this fixed point isapartia recursive function. We can prove this using the
enumeration operator fixed point theorem asfollows. By identifying partial functionswith
their graphs, and identifying relations with sets of coded pairs, we can see that any partial
recursive operator y has aleast fixed point R, where R isanr.e. relation. Toseethat Ris
singlevaued, we usethefact that RisR,. Rp=dissinglevaued; if R,issingle valued,
then sincey isapartial recursive operator, Ry+1 = W(R) issingle valued; so each R, is
singlevalued. Suppose[x,y] and[x, z] € R,. Thenfor somem, n, [X,y] € Ry and[X, Z]
€ Rn. Let p=max(m, n); then[x, Y], [X, Z] € Rp. SinceRyissinglevalued,y =z. SOR,,
issingle valued.

The First and Second Recursion Theorems.

Here are the two recursion theorems:

(1) For al enumeration operators vy, thereisaleast set S such that y(S) = S, and moreover
Sisr.e.
(2) For al recursive functions ¢, there is an e such that We = Wg).

Neither of these theorems impliesthe other. On the one hand, the second recursion theorem

impliesthat every enumeration operator has anr.e. fixed point, but not that it has aleast
fixed point. To seethis, let y be any enumeration operator, and let A be aformulaof RE[P]

139



Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

corresponding toit. Let A*(e, x) be the formula of RE obtained from A by replacing P(x)
by W(e, x) throughout. Then A* (e, X) definestherelation {<e, n>: ne y(Wg)}, so that
relationisr.e. Using the S theorem, we can find arecursive function ¢ such that W) =
y(We) for all e. Tofind anr.e. fixed point for y, apply (2) to find an e such that W =
Wie) = W(We). We need not be the least fixed point, however.

On the other hand, we can use (1) to prove (2) only in aspecial case. Sincethe ¢ in(2)
isafunction on numbers rather than sets, it is quite possible that We = Wt and W) #
W(r) for some e and f; in that case, the "operator” F(We) = W e Will not even be well-
defined, let alone an enumeration operator. However, let us say that afunction ¢ is
extensional if for all eand f, if We = W then W) = We(r). Then the operator F(We) =
Wi (e) iswell-defined. It turns out that whenever ¢ is extensional, there is an enumeration
operator  such that yw(We) = Wy for al e. We can thus apply (1) to y to obtain an e
such that We = y(Weg) = Woe).

If we only applied (2) with extensional ¢ in practice, then this would not be much of a
limitation. However, there are important applications of (2) in which ¢ is nonextensiond, or
at least in which there is no good reason to think that ¢ is extensional; the study of recursive
ordinalsis an example of this.

(1) and (2) have many applicationsin common. For example, we can use (1), aswe
used (2), to prove that certain functions defined in terms of themselves are recursive. Take
the factorial function, for example. We can define apartial recursive operator as follows:
() =y, wherex(0) = 0 and x(n+1) = ¢(n)-(n+1). Itiseasy to check that ® isapartial
recursive operator; applying the version of (1) for such operators, we see that thereisa
partial recursive ¢ such that (o) = ¢, so that ¢(0) = 0 and ¢(n+1) = o(n)-(n+1), i.e. ¢(n) =
n! for al n. (Infact, this proof that the factorial function is recursive boils down to the
proof we gave earlier in terms of the generated sets theorem; the operator W isreally akind
of generating rule.) (1) and (2) are called recursion theorems because of these common
applications.

The Intuitive Reasons for Monotonicity and Finiteness.

We have shown, in terms of our formalism, that enumeration operators are monotone and
finite; we can aso giveintuitive proofs of the corresponding claims about the intuitive
notion of semi-computability. Let P be a semi-computation procedure which consults an
oracle; let us say that P semi-computes aset S; from S, if, whenever P is given an oracle to
S, itanswers"yes' toinput niff ne S;. Inthiscase, let uswrite S; = P(Sy). We want to
show that if S; ¢ S, then P(S1) < P(S,), and that if ne P(S), then n e P(Sp) for some
finite S S.

Suppose n € P(S;). Then whenever Pisgiven an oracleto S; and getsinput n, P halts
after afinite amount of time with answer "yes'. Since P halts after afinite amount of time,
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P only asks the oracle finitely many questions, so afinite amount of information about S1
sufficesfor P to decide that n e P(S;). Moreover, thisinformation is positive information,
since the oracle only gives"yes' answersto Psquestions. Let So={x € S;: theoracle
gives an answer "yes' to the question "x € $,?7'}; then §yisfinite, Sy < S, and the
information in Sy sufficesfor P to decide that n e P(S;). It followsthat n e P(Sp) and that
ne P(S) whenS; ¢ Sp: if Pisgiven an oracleto the set Sy (or Sp) and given input n,
then it will proceed asit did when given an oracleto S;, asking it exactly the same questions,
and it will get the same "yes" answers, which suffice to make P halt and give an answer
"yes'.

We can use thisfact to prove anormal form theorem for semi-computability. If S; is
semi-computable in a semi-computation of Sy, then S; = P(S,) for some P, and by our
monotonicity and finitenessresult, ne P(Sy) iff ne P(Sp) for somefinite So < Sp. Now,
therelation n e P(Sp) (holding between nand ) is clearly a semi-computable relation,
since we can transform P into a procedure P* that semi-computesit: whenever P consults
the oracle about whether nisan element of the set in question, let P* invoke a semi-
computation procedure for therelationn e Sy. Note that P* is a semi-computation
procedure without oracles. We have thus shown that whenever aset S; is semi-computable
in asemi-computation of Sy, there is a semi-computable relation R such that S; = {n: (4
finite Sp)(So < S, A R(n, Sy))}. If the unrelativized version of Church's thesisis true, then
R must ber.e., and therefore thereisanr.e. relation such that S; = {n: (3 finite Sp)(So = S
A R(n, S))}. But thisholds precisely when S; <¢ S,. So the unrelativized version of
Church'sthesisimpliesthe relativized version.

Degrees of Unsolvability.

Suppose abinary relation < isreflexive and transitive; then the relation =, defined by a=b
iff a<band b<a isan equivaencereation. To verify this, we must show that =is
reflexive, symmetric, and trangitive. That = issymmetric isimmediate from the definition
and does not depend on any properties of <. ='sreflexivity follows from that of <. Finally,
if a=band b= c, thena< b and b < c by the definition of =, so a< ¢ by <'stransitivity, and
similarly c < a so a=c. We have shown that al of our reducibility notions are reflexive
and trangitive, so in each case the relation of interreducibility is an equivaence relation. We
write A =B for A <¢B & A <¢ B, and similarly for =, =, and =7. The equivalence
classes are called degrees of unsolvability, or smply degrees. In particular, the=¢-, =1-, =~
and =r- equivalence classes are called enumeration degrees, 1-degrees, m-degrees, and
Turing degrees, respectively. (We use lowercase lettersto denote degrees.) Theidea
behind thisterminology isthat when aset A isreducibleto aset B, B isharder to compute
than A, i.e. the decision problem for B has a higher degree of difficulty than that of A. (Or
the semi-decision problem, in the case of enumeration degrees.) Degrees, especially Turing
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degrees, have been studied extensively.

Let uswrite dege(A) (degr(A), etc.) for the enumeration degree (Turing degree, etc.) of a
set A, i.e. the degree of which A isamember. We can place an ordering on degrees
corresponding to the reducibility relation between sets. we say that degr(A) < degr(B) iff A
<t B (and similarly for other kinds of degrees). It iseasy to check that < iswell-defined,
and that it partialy orders the degrees. When "<" denotes this relation between degrees, we
do not write asubscript: if aand b are both degrees of the same sort, then thereis only one
less-than relation which is defined between them, so if we know what sort of degreesaand
b are, "a< b" isunambiguous. Thereisaleast enumeration degree (under this ordering),
namely the degree consisting of ther.e. sets. Thereisaso aleast Turing degree, namely the
one consisting of the recursive sets.

If <isoneof our reducibility relations, we define A <Btomean A <B and not B <A.
Equivalently, A <Biff A<B andnot A =B. Similarly, if aand b are degrees, we say that a
<bifa<bandnotb<a orequivalently if a< b and a# b; note that Deg(A) < Deg(B) iff
A <B.

The Jump Operator.

Recall that A <¢B, Ciff A<,BUC, soinparticular, Aisr.e. inBiff A <,B,-Biff A<.B
U-B. Recall dsothat AUB <, Ciff A<, CandB < C. Itfollowsthat A <t Biff Au-A
<. B U -B.

Recall our enumeration of the sets enumeration reducibleto aset S, namely the relation
given by (As)(sc SA W(e, X, 5)). Givenaset S, we define S* to be the set {[e, m]: (F9)(s
cSAW(e m,9s))}. S capturesal the sets enumeration reducibleto S, and isitself
enumeration reducibleto S, since we have in effect just defined S* in RE[P], with P
interpreted as S.

Let us prove some basic properties of the* operator. First of all, forall A, if A < S,
then A <1 S*. For suppose A <¢ S; then A has someindex ein the enumeration of the sets
<eS,soforalm me Aiff (As)(sc SAW(e m,9)) iff [e, m] € S*, s0A <1 S* by the
map m — [e, m]. It follows, by taking A = S, that S<; S* foral S. Since S<; S* implies
S<e S, wehave S< S* and S* < S, i.e. S=. S*. We aso have thefollowing
equivalences.

AGSF SASSF AT SALS
Wehave A <1 S = A< S = A < S immediately. A < S* = A < Shbecause S =¢
S. Findly, A < S= A < S*, aswe saw earlier.

In practice, we will forget about the exact definition of * and apply these equivalences
directly. There are alternative definitions of * which would also yield thesefacts. Theidea
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behind our definition of * isthat S* encodes an enumeration of all the sets<¢ S; to get this
effect, we could have taken S* to be {[e, m]: m satisfies the formula of RE[P] whose Godel
number ise}. Or, since we can reduce satisfaction to truth, we could have taken S* to be
the set of Godel numbers of true sentences of RE[P]. Both of these sets are recursively
isomorphic to S* aswe actually defined it.

Another important equivaenceinvolving * isthe following:

A <. B & A* <; B*.

For suppose A <¢B. Then since A =¢ A* and B =¢ B*, A* <, B*; but then A* <; B*. On
the other hand, suppose A* <1 B*. Then A* < B by the equivalencesfor *, and so A <, B
since A = A*.

While S* isalways<¢ S, -S* isnever < S. The proof is analogous to the proof that K
isnot recursive. Suppose-S* < S, andlet A ={m: [m, m] ¢ S*}; A <-S*, so by the
trangitivity of <, A <¢S. A hassomeindex e soforadl m,me A iff [e, m] € S*,and in
particular, ec A iff [e €] € S*; butee Aiff [e €] ¢ S* by the definition of A,
contradiction.

We now define S to betheset (Su -S)*. Siscalledthejump of S. (Whilethe
operation * is not astandard part of recursion theory, the jump operation is very standard.)
Justas S* < S, S'isr.e.in S (SU -S)* < SU -Shy the propertiesof *,i.e. (SU-S)* is
re.inS/i.e. Sisr.einS. However,-Sisneverr.e. inS: if -Sisr.e.in S, then-(Su -§)*
<e SU -S, which we have just seen to be impossible. So S isnever recursivein S.
However, S<t S: by the basic propertiesof *, (SU -S) <¢ (SU-S)*, s0 S< S and -S<¢
S. So S isawaysof ahigher Turing degreethan S.

Asin the case of *, the exact definition of ' islessimportant than its basic properties.
We could have defined S' to be {[e, m]: m satisfies the formula of RE[P;, P,] with Godel
number €}, where P; and P, are interpreted as S and -S, respectively. We could also have
defined S to be the diagonal set { e: e satisfies the formula of RE[P;, P,] with Godel
number €} . Inthisway, we seethat S can be viewed asardativization of K totheset S.

Aswith*, we have the following equivaencesinvolving ":

AiSeASK S A S AisreinS.
In general, we will forget about the definition of ' and work directly from these equivalences.
SinceAisr.e. in Siff A <¢ SU -S, thisfollows directly from our equivalencesfor * by
replacing Sby Su -S.

We aso have the following:

A<TBo A B oA <, B oA <B.
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A'51B ' © A ' B' o A'<B'isimmediate fromtheabove. A<rB < A'<;B'isa
special caseof A < B < A* <1 B*, replacing A and Bby A U-A and B U -B,
respectively. Noticealsothat A <t B impliesthat A'<tB'(A<tB=A'<1B'= A'<1 B)Y).
However, the converseisfase.

It followsimmediately from thisthat A = B = A'=, B', whether =, is=q, =, or =r. Let
uswritethisasA =1 n 1B = A"=; , 7 B'". If aisthedegree of A (under one of these
three reducibilities), then we define a to be the degree of A'. We seethat a iswell defined,
becauseif B € deg(A), thenB=,A (r=1,m,or T), 0 B'=; A', i.e. Deg(B') = Deg(A"). It
also follows from the above that whenever a<b,a <b'.

Thus, we see that the jump operator is an order-preserving map on the degrees. It can
also be regarded as an embedding of the T-degrees into the 1-degrees, i.e. an isomorphism
of the structure <{ T-degrees}, <> onto a subset of the structure <{ 1-degrees}, <>. More
precisely, the map Degr(A) — Degy(A") issuch an embedding. Thisissimply because
Degr(A) < Degr(B) iff A < B iff A' <t B'iff Degy(A") < Degy(B"). Infact, the same
argument shows that the map Dege(A) — Degi(A*) isan embedding of the enumeration
degrees into the 1-degrees.

Thereis also an embedding of the Turing degreesinto the enumeration degrees. We
have already seen that A <7 B iff A U -A < B U -B; it follows that the map Degr(A) —
Dege(A U -A) iswell-defined and is also an embedding. An enumeration degree in the
range of thisembedding iscalled total. Clearly, an enumeration degreeistotal just in caseit
contains aset of theform A U -A. An enumeration degree is aso tota iff it contains the
graph of atotal function (hence the name).

Let f be the embedding Degr(A) — Dege(A U -A), and let g be the embedding Degg(A)
— Degy(A*). If we compose f and g, the result is an embedding h of the Turing degrees
into the 1-degrees. Moreover, his precisely the map Degr(A) — Degi(A") which we have
aready seen to be an embedding.
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Lecture XX

More on the Jump Operator.

Aswe have seen, thereisaleast T-degree, namely 0, the set of all recursive sets. Using the
jump operator, we can form an increasing sequence of degrees. 0, 0, 0", .... Ingenerd, we
write 00 (the nth jump of 0) for the result of applying ' to 0 ntimes. We know that this
sequenceisdtrictly increasing, i.e. 0<0'< 0" ..., Snce A" isnever recursivein A.

If aand b are degrees, where a=deg(A) and b = deg(B), we definea u b to be deg(A U
B). For any of the four kinds of degrees we have been considering, au b iswell-defined
and is an upper bound of aand b (i.e. a, b<au b). Moreover, if aand b are either Turing
or enumeration degrees, au b isthe least upper bound of aand b, i.e. for all degreesc, if a,
b<c,thenaub<c.

Firdt, let us verify that au biswell defined, i.e. that the degree of A U B does not
depend on which sets A and B we pick from the degreesaand b. That is, we must show
thatif A=, Ajand B = B;,thenAUB=A1UB; (forr=1,m, T, €). Weassumethat A
= A1 and B = By, and show that A U B <; A1 U B, (asthe proof that A1UB; <A UB
will be exactly the same). We know already from our previouswork that A U B <y A1 U B;
iff both A and B are <t A1 U By, iff both A and B are<t A1, B1. But A <t A1, By Since A
<t A by hypothesis, and similarly B <t A1, B1. The same holdsfor <. So consider the
caser=m. A<y AjandB <, By, solet ¢ and y berecursive functions such that ¢: A <,
Ajand y: B <, B1. Let y be the recursive function such that y(2n) = 2¢p(n) and x(2n+1) =
2y(n)+1;, x: AUB < A1 U B4, Findly, if ¢ and y are1-1, theny isalso1-1, SOAUB 5
A1 U Bj.

Next, since A U B isan upper bound of A and B in all of our reducibility notions,
Deg/(A) and Deg,(B) are< Deg(A U B) forall A andB,i.e.a b<aub. Findly, aswe
saw, A,B <t CimpliesAUB <t «C,s0a b<cimpliesaub<cifa b,andcare
enumeration degrees or Turing degrees.

We say that apartialy ordered set is an upper semilattice if any two elements of it have
aleast upper bound, and alower semilattice if any two elements have a greatest lower
bound. A partially ordered set which isboth an upper and alower semilatticeis called a
lattice. Thus, we see that the degrees form an upper semilattice; however, it turns out that
they do not form alower semilattice, and hence do not form alattice.

It iseasy to check that the operator U is associative and commutative, and that for all &,
ey 8y A U ... U & iStheleast upper bound of &, ..., a,. (Thesefacts depend only on the
fact that au b istheleast upper bound of aand b.) Thus, any finite set of degreeshasa
least upper bound. 1t does not follow, however, that every set of degrees has aleast upper
bound. Infact, thisisnot the case: if Fisafamily of degrees, then for F to have aleast
upper bound, it is necessary and sufficient that there be afinite E ¢ F such that for al ae F
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thereisabe Ewitha<b. Thus, in particular, the sequence0, 0', 0", ... has no least upper
bound, since no such E exists.

Noticethat 0" isthe degree of @' (since 0 is the degree of &), and that &' isa1-1
complete set. To seethis, notethat @' = (@ U N)* ={odds}* = {[e, m]: (39)(s < { odds}
AW(e m, 9)}; soif Alisanyr.e s, therelation R given by R(x, y) iff xe AAye Nis
r.e., and therefore hasanindex e: so for dl m, me A iff for some (or any) s, R(m, ), iff
W(e, m, s) for somesuch s, iff [e, m] € &'. SO A <1 @ by themap m — [e, m]. Thus, we
seethat O’ isthe degree of a 1-1 complete set.

Any set Se 0 iscalled T-complete, or smply complete. O' contains sets which are not
1-complete; for example, Post's smple set isan element of 0'. In fact, Post invented this set
in an attempt to solve what is known as Post's problem: the problem of finding anr.e. set
which is neither recursive nor complete (or showing that thereis no such set). A Turing
degreeissaid to beanr.e. degreeif it containsan r.e. set; so Post's problem is equivalently
stated as the problem of whether there are any r.e. degrees other than 0 and 0'.  Post failed
in his search for such degrees, and it was conjectured by some that 0 and 0" arethe only r.e.
degreesthere are. However, the problem was solved in 1956 by Friedberg and Mucnik
(working independently). They proved this by finding two incomparabler.e. sets, i.e. setsA
and B such that neither A <t B nor B <t A. It followsthat their degreesaand b are
incomparablein the ordering <; since 0 and O' are comparable, it follows that a can be
neither O nor 0', since then it would be comparable with b.

Clearly, 0<a<0' for any r.e. degreea(since @ <t A <t @' for any r.e. set A); however,
there are degrees between 0 and O' which arenot r.e. (It iseasy to see that not all sets
recursivein @ arer.e.. -K <t @' for example; it turns out that there are sets <t @ which are
not even =7 any r.e. sets.) Itisrelatively easy to produce incomparable degrees between 0
and 0, but harder to producer.e. degrees with this property.

It turns out (though we shall not prove this) that the jump operator isfirst-order
definable from the relation <. That is, the graph of the jJump operator is definablein the
interpreted first order language whose domain consists of all the Turing degrees, and in
which thereisonly asingle binary relation which isinterpreted as the < relation between
degrees.

The Arithmetical Hierarchy.

A X, formula (for n > 1) isaformula consisting of a block of unbounded quantifiers,
followed by ablock of bounded quantifiers, followed by a quantifier-free formula, where the
block of unbounded quantifiers begins with an existential quantifier, is of length n, and
aternates between existential and universal quantifiers. (Thus, for example, (Ix)(y)(32) x +
y =zisaZsformula) Weasowrite "E,?' for "X,". Sinceany formulaof Limis
equivalent to aformulawhich consists of a string of bounded quantifiersfollowed by a
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quantifier-free formula, every X, formulais equivalent to aformula consisting of astring of
n aternating quantifiers (of which thefirst is existential) followed by aformulaof Lim. A
I, formula (or H,?) begins with a universal quantifier; otherwise the definition is the same.
We sometimes call aformula X, (or ITy) if it isequivalent to a X, (IT,) formula.

A set or relationissaid to be X, (ITy) if it is defined by a X, (IT,,) formula. A set or
relation issaid to be A, if it is both X, and IT,. Sometimeswe use X, (I, Ap) to denote the
set of al X, (I, Ap) Sets, thus we write A = 2, N I, for example. Aswe have already
seen, then, X4, IT; and A; arethe sets of r.e,, co-r.e,, and recursive sets, respectively.

There are two basic facts about the Z-IT hierarchy that we shall provein this section.
Thefirgt isthat every arithmetical set (i.e. every set definable in the language of arithmetic)
belongs to this hierarchy (whichiswhy it is called the "arithmetical hierarchy"); the second
isthat X, and I'l, get moreinclusive as nincreases. Before doing this, we shall prove an
enumeration theorem for this hierarchy.

Notethat Se X, iff -Se Il,, and Se I1,iff -Se X, Toseethis, suppose Se X,
and let A bea X, formulathat definesit. Then ~A defines-S; but ~A isequivalent to all,
formula, since we can push the negation sign through theinitial string of quantifiers,
changing universalsto existentials and vice versa, and then through the bounded quantifiers.
So -Sisdefined by all, formula, i.e. -S e I1,. Similarly, we can show that if Se IT,, then
-Se Z,. Itfollowsfromthisthat A, ={S: S,-Se X} ={S' S, -Se I1}.

Noteasothat if SisZ,, then SisasoI1y:1: if AisaX,formuladefining S,andzisa
variable not occurring in A, then (2)A isall,1 formulawhich aso defines S. ((2) isa
vacuous quantifier here.)) Similarly, if SisX, then SisX;1: if A isaX, formulathat
defines S, then let A' come from A by adding a vacuous quantifier onto the end of A's string
of unbounded quantifiers; then A'isaX,+; formulathat defines S. Thus, X, < An+1, and
by similar reasoning, I, < Anp+1.

Suppose X, = X1 and I, = Ipeq for somen. Then as X, < [y and I, < Ep4, it
followsthat £, c I, and I, C X, i.e. £, = I1,. Thus, if we can show that X, # ITj, it will
follow that X, € Zp4q O I, c Ih41 (hereweuse A c Btomean A < B & A #B). Infact,
both will follow: if Se Zn41 - Zp, then -S e T4 - Iy, S0 Xn < Xptq implies T, < Tpe,
and by the same reasoning the converse holds. We know that X, # I1;; we only haveto
show that X, # I, for n > 1.

Now let us prove the enumeration theorem we mentioned above.

Theorem: For al n, the X, (ITy,) sets can be enumerated by a X, (I1,,) relation.

Proof: Suppose A isaX, formulaand that nisodd, so that A's string of unbounded
quantifiersendsinan 3. Then A is(3x1)...(3Axn)R(X1, ..., Xn, y) for some formulaR of Lim.
Consider the X4 formula (Ixp)R(X1, ..., Xn, ¥). Thisformulaisequivalent to W(O(e), X1y ey
Xn-1, ) for some e, and the formulaW(e, X1, ..., Xp-1, ¥) (Where eisnow avariable) isitself
equivaent to (3x,)T(e, Xq, ..., Xn, ) for someformulaT of Lim. It followsthat A is
equivalent to the =, formula (3xy)...(3x) T(08), X4, ..., Xn, ). Since A was arbitrary, we see
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that every ¥, formulais equivalent to a =, formula of the form (3xy)...(3x) T(0©), x4, ...,
Xn, Y). Thus, the formula (3x4)...(3xn) T(e, X1, ..., Xn, ¥) (Where eisnow avariable) defines
an enumeration of the X, sets. Thus, for al odd n, thereisabinary X, relation that
enumerates the X, sets. The same proof showsthat if niseven, then thereisabinary Iy,
relation that enumerates the I'l,, sets. We can cover the remaining cases asfollows. If nis
even and R isaTll, enumeration of theIl, sets, then therdation -R is X, and moreover -R
enumeratesthe X, sets. if Se X, then-Se I1,, s0-S={x: R(g, x)} (for somee) and S=
-{x: R(e, X)} ={x: -R(e, X)}; similarly, if nisodd and R isa X, enumeration of the X, sets,
then -R isaIl,, enumeration of the IT, sets. We can therefore conclude that for all n, there
isa Xy relation that enumerates the X, sets and aIl,, relation that enumerates the I'T,, sets.

(Thereisaso aX, (I1,) enumeration of the X, (T1,,) k-place relations, for al k; we could
either generalize the proof in the case k = 1, or use the pairing function.)
We are now ready to prove the desired

Hierarchy Theorem: X, # I, for al n.

Proof: Let nbegiven, and let D = {x: R(X, X)}, where R isan enumeration of £,. D € Zj,
s0-D e I1,. However, -D ¢ X, if -D € X, then-D = {x: R(g, x)} for somee, soee -D
iff R(e, e) iff ee D, contradiction.

Thus, the arithmetical hierarchy goes up without end. Note that thisisadirect
generalization of the proof that X, # Iy, i.e. the proof that there isanonrecursiver.e. set.

The arithmetical hierarchy gives usaway to classify the setsthat occur init. By the
level of aset inthe hierarchy, we mean the least inclusive of the various sets X,,, Iy, and A,
of whichitisanelement. Thatis, if Sisany set in the hierarchy and n isthe least n such
that Se X, U I, thenwe cal S properly Z,, properly Iy, or A, as Sisan element of X, -
I, I, - Zp, OF Ap.
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The Arithmetical Hierarchy

Next, we prove a theorem which implies that every arithmetical set belongsto the
hierarchy, and which allows us to make good estimates of the level of agiven set.

Theorem: If aset or relation isdefinablein RE[Py, ..., Py], where Py, ..., Py, areinterpreted
as X, sets, thenitisitself X,

Proof: We prove this by showing that every formula of RE[P, ..., Py] isequivalent to
some X, formula. The proof isadouble induction: we prove the theorem by an induction
on n, and for each particular n, we prove that it holds for n by induction on the complexity
of RE[Py, ..., Py] formulae.

Notethat if the theorem holds for n, then a conjunction, digunction, universal
quantification, or bounded existential quantification of aIl, formulaisII,. To seethis,
suppose that A and B areIl,. Then~(A A B) isequivalent to ~A v ~B, where ~A and ~B
are X,; so by the theorem, ~A v ~B, and hence ~(A A B), isX,,, and therefore A A B isTIj.
Similarly, if A isII,, then ~(x)A isequivaent to (3x)~A, and ~A is X, so by the theorem
(@X)~A is Xy, so (X)A isII,. The other cases are similar.

n=1. Aisaformulaof RE[P, ..., Py], where Py, ..., Py, areinterpreted as X, sets; so A
is equivaent to the formula A" obtained from A by replacing each P, by a X, formulathat
definesits extension. By the normal form theorem for RE, A', and henceaso A, is
equivalent to aX,, formula.

n>1: we now prove the induction step by an induction on the complexity of RE[P;, ...,
Pn] formulae. Let A be such aformula
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A isatomic: then either A isan atomic formulaof RE or aformula P;(x); in either case,
A isequivaent to aX, formula.

A =B A C: then B and C are equivalent to X, formulae (dy1)B' and (3y,)C', s0A is
equivalent to (Ay1)(dy2)(B' A C). Thisinturnisequivaent to (Iy)(dy: <y)@y2<y)(B' A
C). Now since B' and C' areIl,.4, it follows (by the inductive hypothesis on n and the
remarks at the beginning of the proof) that (3y1 <y)(3y2 <y)(B'A C) isasoI1,.1. Thatis,
(Fy1<y)@y2<y)(B' A C)isequivaent to someIl,.; formulaD, so (Fy)3y1 <y)[Ay2 <
y)(B' A C'), and hence A, is equivalent to the Z, formula (3y)D.

A =B v C: B and C are equivalent to X, formulae (3y)B' and (Iy)C', where B' and C'
arellnq; SOA isequivaent to (Jy)(B'v C),and again B' v C'isIlp.1, SOA iSZ.

A =(3y)B. ThenB isequivalent to aX, formula(3z)B', so A isequivaent to
(Fy)(F2)B', where B' isall,.; formulg; thisin turnis equivaent to (3w)(3y <w)(dz < w)B/,
and again (y < w)(dz <w)B' isI1,.1, so thewhole formulais X,.

A =(x <t)B: then A isequivaent to (x < t)(dy)B' for someIl,.; formulaB’, whichisin
turn equivaent to (Iw)(x < t)(Ay <w)B'; again, (X < t)(Iy <w)B'isII,.1, so thewhole
formulais ..

Notice that the proof isreally just an elaboration of the proof of the normal form theorem
for RE.
We now have:

Theorem: All arithmetical sets and rlations are X, for somen.

Proof: We show, by induction on the complexity of formulae of the language of arithmetic,
that those formulae define rations that are X, for somen. Atomic formulae define £, sets.
Suppose A definesa X, relation and B defines a X relation. Letting n = max(m, p), A and
B both define X, relations. A A B, A v B, and (Fy)A define Z, relations, as we have seen.
~A definesall, relation, whichisalso aXy relation. Finaly, (y)A definesall,.y
relation, which isalso a Zy+o relation.

We could have proved this more quickly. We could, for example, have used Kleene's
proof: to show that aformula A of the language of arithmetic is equivaent to aZ, formula,
put A into prenex normal form, and then contract blocks of like quantifiers (i.e. all
existential or all universal) into asingle quantifier. (The contraction could use the pairing
function, or it could imitate the above proof.) More quickly till, to obtain aX, formula
equivaent to A, put A into prenex normal form and then add enough vacuous quantifiers to
make the unbounded quantifiers dternate.

The virtue of the above theorem isthat it gives usaway of caculating agood estimate of
thelevel of arithmetical setsand relations. If A isaformulaof the language of arithmetic,
first move al negation signsin (either al the way in, or far enough in that they only occur
before formulae whose levels are known). The resulting formulawill be built up via
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conjunction, digunction, and existential and universal quantification from formulae whose
levels are known. We can then use the theorem to get an estimate of the level of the
formula, using e.g. the factsthat (3x)B isZy if B isand that if B and C are X, and X,
respectively, then A A B and A v B are X,,, where n = max(m, p). Alternatively, if al of the
unbounded quantifiers occur at the beginning of the formula, we can use the theorem to
contract blocks of like quantifiers and read an estimate of the formulaslevel directly off the
result.

Suppose the predicates Py, ..., Py, in the theorem all define I, sets. In that case, they
define 41 Sets, so every set or relation definable in RE[Py, ..., Pn] iSZn+1. Since being
definablein RE[Py, ..., Py isthe same as being enumeration reducibleto S, ..., Sy, it
followsthat any set or relation enumeration reducibleto all, setisX,+1. Infact, the
converseistrue: any Xp+1 Setis<esomell, set. To seethis, let Sbeany X+ Set, and let
(F2A(X, 2) beaZyiq formulathat definesit. Then A(X, z) definesall, relation R, s0 S<¢
R (since Sis defined by the formula (3z)P2(x, z) of RE[PZ]), and therefore S < {[x, y]:
R(x, y)}, whichiseasily seento beIl,. Soasetor relationis X, iff itis<esomell, set.

Thus, we begin to see arelation between the arithmetical hierarchy and the various
reducibility notions. We shall examine this relation further, and prove afamous theorem of
Post relating the arithmetical hierarchy to the jJump hierarchy (i.e. the hierarchy 0, 0', 0",...).

Exercises

1. Caculate upper bounds as good as you can find for the levelsin the arithmetical
hierarchy of the following sets:

{e Wgisinfinite};

{e Wgisrecursive};

{e: Wgisnonempty};
{e dgisatotal function}.

2. (a) Inthe classwe defined aset Sastotal (with respect to enumeration reducibility) iff
-S<eS. (i) Provethat if Sisany set, SU -Sisawaystotal. (ii) Proveasothat aset S
consisting of ordered pairs [m,n] that codes the graph of atotal function (not necessarily
recursive) istotal. (iii) Which r.e. setsaretotal? (iv) If Sisany set, and St isthe set of pairs
coding the graph of the characteristic function of S, provethat S*=.Su -S. (v) Prove the
following normal form theorem, whenever the predicate P} isinterpreted by aset S coding
the graph of atotal function: every enumeration operator when confined to such sets can be
written in the form (3s)(R(x,9) A ScPi A (j<s)(n<s)([j,n]e s (i<j)(@m<s)([i,m]€9)))
where R isanr.e. relation. (Given that S codes the graph of atotal function, the clauses at
the end mean that s codes a partia function whose domain isafiniteinitial segment of the
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natural numbers.)

(b) An enumeration degreeis called total if it contains at |east onetotal set. (i) Prove that
an enumeration degreeistotd iff it contains a set of pairs that codes the graph of some total
function. (ii) Prove that the Turing degrees, as a partially ordered structure, are isomorphic
to the total enumeration degrees. (iii) Prove that every enumeration degree contains a set
coding the graph of apartia function. (For this reason, enumeration degrees are sometimes
called partial degrees.) (iv) Give an example of aset that is not total but whose enumeration
degreeis neverthelesstotal. (v) Show that if Sisany fixed-point of the function ¢ defined in
exercise 5 of Lecture XVI1I1, then the enumeration degree of Sisnot total.

3. Hereisyet another variation on the notion of a 1-complete set. A set Sissaid to be
"weakly credtive" iff Sisr.e. and thereisapartial recursive function ¢ such that whenever
Wy N S=0, o(x) isdefined and ¢(x) ¢ S Wy. The difference between the notions
"weakly cregtive" and creativeisthat here ¢ need not betotal. (We can cal ¢ a"weakly
creative" function for S.) Actually, this definition was the original definition of "creative'.
Provethat al weakly creative sets are credtive. (Hint: show that for every partial recursive
function ¢ thereis atotal recursive y such that W, ) = Wy if ¢(x) is defined, W) = @
otherwise. Define y(x) = d(x(x)). Show that y istotal recursive and is a creative function
for Sif ¢ isaweakly creative function for S.)

Thiswill complete our list of equivaent notions. weakly cregtive, credtive, 1-1 cregtive,
completely credtive, 1-1 completely creative, many-one complete, 1-1 complete, and satisfies
the effective form of Godel's theorem. There are afew others, but well stop here.
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L ecture XXI

The Arithmetical Hierarchy and the Jump Hierarchy.

Let us now look at some of the interrelations between the notions X, and I, on the one
hand, and the notions connected with rel ative recursiveness on the other. We proved that a
setis X4 Iff it isenumeration reducible to some I, set. If Sisenumeration reducibleto a
I, set, then afortiori itisr.e. inally, set, or equivalently, inaX, set. (Sypisr.e. inSiff §
isr.e. in-Sy, by the definition of "r.e. in".) Now suppose Sy isr.e.inall,set S,. Then $§;
is definablein RE[Py, P,], with P, and P, interpreted as S, and -S,, respectively. Both S,
and -S; are 41, S0 Sy isitsaf X411, Thuswe have the following result.

Theorem: A set SisX,.1 iff Sisenumeration reducibleto all,, s&t, iff Sisr.e. inall, s,
iff Sisr.e.inaX, set.

Let us now relate thisto the hierarchy 0, 0', 0", ... of degrees. Wefirst prove the following

Lemma: Foral n, asetisr.e. in @0 iff itis X1
Proof: We prove this by induction on n. For n =0, the theorem states that aset is X, iff it
isre ind. Butasetisr.e.in@iff itisr.e, so thetheorem statesthat asetisr.e. iff itisX,
which we aready know to be the case.

Now let n > 0, and suppose the theorem holds for everything less than n.

=: Suppose Sisr.e. in @M. By the properties of the jump operator, @ = Fn-1)' js
r.e.in @1, By theinductive hypothesis, then, @M isX,. SoSisr.e.inaX,setandis
therefore p+1.

<. Suppose SisX +1. Then Sisr.e.insomeX, set S;,. By the inductive hypothes's,
S isr.e. in@M1). By thejump properties, S; <; @)’ = &), so a fortiori S; <t @M.
By the weak transitivity property of r.e. in, Sisr.e. in @,

If disaTuring degree, we can say that aset Sisr.e. indiff Sisr.e.insomesetind. If
Sisre.inagivensetind, thenSisr.e.inevery setind: supposeSisr.e.inS; € d, and
S, e d; then S; <1 Sp, s0 by the weak trangitivity property, Sisr.e. in S,. By the same
reasoning (thistime using the transitivity of <t), we can say that aset isrecursivein diff it
isrecursive in some, or equivaently every, setind. Thuswe can restate the above result as
follows:

Corollary: A setisX,.qiffitisr.e.in 0.
Proof: 0 isthe degree of @M.
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We aso have the following:

Corollary (Post's Theorem): A setisrecursivein O iff it is An+s.
Proof: Sisrecursivein 0 iff both Sand -Sarer.e. in 0M), iff both Sand -S are 41, iff
S iSAn+l.

This theorem was proved in a paper by Post in the early 40's; he also introduced the notions
of smple and cresative setsin that paper. The paper, by the way, was very important
methodologically, asit was thefirst to rely heavily on the intuitive notion of acomputation:
previous work in recursion theory was al written out in avery formal way.

Post's theorem might be more of a surprise given other formalisms than our own (e.g.
the Turing machine formalism), asit displays an intimate connection between the recursion-
theoretic jump hierarchy on the one hand and on the other the arithmetical hierarchy, which
was defined in terms of definability in a certain language.

* Given our own formalism this should be less surprising, since on our approach recursion-
theoretic notions are themselves given in terms of definability, and Post's theorem simply
shows that two different notions given in terms of definability match up in a certain way.

A setissaid to be 1-complete X, (or smply complete %) if itisa X, set towhich all X,
setsare 1-1 reducible. Thus, aset is 1-complete X, just in caseit is 1-complete. We could
define m-complete X, analogoudly, but it turns out that, just asin the special casen = 1, the
two notions coincide.

Before going on, we should notice that every set many-one reducibleto aX, set isitsalf
Xnh. (Soinparticular, every set 1-1 reducibleto aX, setisX,.) To seethis, suppose S; <m
S, and S isX,. Thenthereisarecursive function y such that S; = {x: y(X) € S}, 0SS
is defined by the formula (Fy)(PS(X, y) A A(y)), where A isa X, formulathat defines S and
PS(x, y) isaZ; formulathat defines the graph of y. We can then calculate the whole
formulato be X,. (A(y) and PS(x, y) are both X, so their conjunction is, too; and adding an
existential quantifier to aX, formulajust yields another X, formula.) Therefore, the set S;
iSXn.

It isimmediate from this that any set many-one reducible to aIl,, set isitself IT,. For
suppose S <m S, and Sy isTly,; then -S <y -S,and -Sy is X, S0-S1isX, and s0 S is
IT,,. If Smany-one reducesto aA, set, then S many-one reduces to a set that is both X, and
IT,, and istherefore itself both X, and I, i.e. it iSAp.

We can therefore show that A set Siscomplete X, justincasefor all S;, $isXhn < S
<1 S. Clearly, if S isX, < $ <1 Sfordl S, then SisZy, (since S<; S) and every X, set
1-1reducesto S, i.e. Siscomplete Z,. If, on the other hand, Sis complete X, then S; isZ,,
= $; <1 Sfor dl Sp, soweonly haveto show that S; <1 S= S; isX,. But we know that
Sis Xy, so by the preceding remarks we know that any set 1-1 reducible to Sisalso X.,.

Asacorollary to the lemma, we can deduce that each @M is complete .
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Theorem: For all n> 0, @M iscomplete ,.
Proof: Thisisjust to say that for al S, S<; @M iff SisX,. But S<; @M iff Sisr.e.in
@), by the jump properties, iff Sis X, by the lemma.

Wetherefore have severa different characterizations of th
e 2n+1 %ts

SisXh © S<esomell, set & Sisr.e. in some X, set
& Sisre in@ o S<; P o S<, @),

(Asfor the last biconditiona: if S<; @M1 then obviously S<,, @D, and if S <, @(M+1)
then, since @M1 isX41, Sisalso Zni1.)

Tria-and-Error Predicates.

In the special case n = 1, Post's theorem implies that the A, sets are precisely the sets
recursivein 0. There are also other interesting characterizations of the A, sets.

One such characterization has to do with a modification of the notion of a computation.
Consider acomputing machine that gives tentative answers to questions that are put to it.
When asked "isx in S?', it may answer "yes', but then later on change its mind and answer
"no". Infact, it may change its mind severa times; however, werequireit to settleon a
single answer after afinite number of changes of mind. If M is such a machine, the set
computed by M istheset {x: M eventually settleson a"yes"' answer for theinput x} .
Once this notion is made precise, it turns out that the sets computed by such machines are
precisely the A, sets. (The notion of thiskind of computation, and this result, are due to
Hilary Putnam.)

One way to makethis preciseisasfollows. Consider atotal recursive function y in two
variables which takes only the values 0 and 1. Suppose that for any m, thereis an 5o such
that w(m, s) = y(m, ) for all s> 5. (Sp need not be the samefor all m.) y representsa
machine of the sort we are considering, and y(m, s) represents the sth answer given for the
input m. (O and 1 represent the answers "no" and "yes', respectively.) The set associated
with the function y isthe set S={m: y(m, s9) = 1, where y(m, 59) = y(m, s) for al s> s} .
(Since sp depends on m, we can equivalently define S={m: y(m, p(m)) = 1}, wherep is
any function such that for all m and for al s> p(m), y(m, s) = y(m, p(m)). p(m) need not
be the least such 5p. p is called amodulus of convergence for y. Swill always be recursive
in any modulus of convergence for y.)

Let us call aset associated with such a in the indicated way atrial-and-error
predicate. It can be shown that the trial-and-error predicates are precisely the Ap sets. The
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proof that al trial-and-error predicates are A, is easy and is |eft as an exercise for the reader.
The other direction is harder, and we shall sketch an informal proof. First, notice that any
r.e. setisatrial-and-error predicate, for suppose Sisr.e. and let P be any semi-computation
for S. Then we can compute S (in the present sense of "compute™) by setting P going and
giving "no, no, no, ..." asoutput. If and when P says"yes', then we change our minds and
start giving "yes, yes, ..." asoutput; if at any point P has not said anything, however, we
continueto say "no". Thus, our outputs involve only afinite number of changes of mind
(either one or none at all), so we have computed Sin the appropriate sense. So all X, sets
aretrial-and-error predicates; the same appliesto I'1; sets by reversing "yes' and "no".

Now consider the general case. Suppose aset SisAy; thenitisrecursivein some
particular r.e. set (&', for example). So Siscomputed by some procedure P with an oracle
to@'. Since @ isr.e, we have atrial-and-error machine for &'. For agiven x, we can
compute tentative answers to the question "isx in S?' asfollows. Suppose we are being
asked for the nth time. We run P for n steps, except that when P consults its oracle about
whether ae &', we ask our tria-and-error machine whether ae &' (If n> 1, then we may
have asked it this question before)) If after n steps we have obtained an answer, we give that
answer; otherwise we say "no" (or "yes'; it doesn't matter which). Now, when Pisrun with
an oracleto @', the oracle is consulted only finitely many times before P halts with the
correct answer to whether X € S, i.e. thereisafinite collection &y, ..., a of sets such that
when Pis given correct answersto the questions"ay € @'?", ..., "ac € @'?7', and isgiven
enough timeto run, it will halt with the correct answer to the question "x € S?'. So we will
eventually reach a stage in our computation such that we have asked the trial and error
machine the questions"a, € @'7', ..., "ac € @'?" often enough to get correct answers, and
such that we run P long enough to get an answer, which must be the correct answer, to
whether x e S. So for any X, thereis an n large enough that our computation always gives
the correct answer to "x e S?' after stagen.

The Rdlativization Principle.

Thereisagenera principlein recursion theory, which is hard to make precise but which
ought to be stated nonetheless. It isthat whenever we have a proof of some statement about
the absol ute notion of recursiveness or recursive enumerability, then we can demonstrate,
using essentially the same proof, an analogous statement about the relative notion of
recursivenessin a set or of recursive enumerability in a set. Or in general, any statement
involving an absolute notion relativizes to the corresponding relative notion and by the same
proof, provided the relative notion involves an oracle (or extrapredicate, etc.) to both a set
and its complement. This must be taken with agrain of sdt, since if we have shown that
some particular set is not recursive, or that it isnot r.e., we do not thereby show that thereis
no set inwhich itisrecursive or r.e. However, thisis not the sort of statement that is

156



Elementary Recursion Theory. Preliminary Version Copyright © 1996 by Saul Kripke

intended in the principle; once one has some experience with this principle, one gets afeel
for what sort of statements are and are not allowed.

Consider, for example, the result that K isr.e. but not recursive. Let us define, for any
given set S, WS to be the relation { <e, m>: (3s)(Sc SU-SA W(g, X, 9))}. WSisthusan
enumeration of the setsr.e. in S. Thus, for any e, WS istheset {m: (Is)(sc SU-SA
W(e, X, 9))},and S'issimply theset {[e, m]: me Wes}. We can define KS to be the set {e:
ee W§} . KSredlly has the same definition as K, except that we now relativize the relevant
notionsto S. The analog of the fact that K isr.e. but not recursive is the fact that KSisr.e.
in Sbut not recursivein S; this holds, and is shown by the very same proof we used to
show that K isr.e. but not recursive.

As another example, we can relativize the X,-TT,, hierarchy to aset S by considering
formulae in the language of arithmetic plus an extra predicate interpreted as S. (We thereby
get an atomic formula, namely ~P(x), which defines the complement of S, since the
language of arithmetic has negation.) Thus, we have the relativized notions X, in Sand I,
in S with the obvious definitions. We similarly say that aset or relation isarithmetical in S
if it is defined by some formulain the language of arithmetic with the extra predicate
interpreted as S. We can prove, by the same proofs we used to prove the corresponding
absolute theorems, that every set arithmetical in Sisether X, or I, in Sfor some n, that
thereis an enumeration of the sets X, (or I1y) in Swhichisitsdlf X, (IT,) in S, and that
thereisawaysaset that isI1, in Sbut not X, in S. We also have arelativized version of
Post's theorem, and by the same proof: if disthe degreeof S, thenasetisAp+1 in Siffitis
recursive in d,

Now, people have tried to State the relativization principle formally, but every attempt so
far has been unsuccessful. That is, every formal claim which has been put forth asa
candidate statement of the principle has turned out to have counterexamples; however, these
counterexamples are not intuitively counterexamplesto the relativization principle itself.

The relativization principle does not hold for complexity theory. Whereasin recursion
theory we do not place atime limit on a computation procedure, complexity theory is
concerned with computations for which atime limit is given in advance. Corresponding to
the question whether every r.e. set isrecursive is the complexity-theoretic problem whether
P = NP, which is unsolved to thisday. Whatever the answer may be to this problem,
however, we can be sure that it provides a counterexampl e to the relativization principle. We
can relativize the P = NP problem by considering computations with an oracle to a given set;
it turns out that there are some oracles for which P = NP and some for which P# NP.
Obvioudy, if arelativization principle held in complexity theory, then we would have either
P=NPfor al oraclesor P= NP for al oracles.
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A Refinement of the Godel-Tarski Theorem.

We know from the work of Godel and Tarski that the set of true sentences of the language
of arithmetic isnot itself definablein arithmetic. That is, for any formula A(x) of the
language of arithmetic, there is a sentence B such that

(T) A(M) =B

does not hold, where misthe Godel number for B (or in other words, B isa
counterexampleto (T)). For if there were no such B, then the above biconditional would
hold for all B, and so A(x) would define the set of Godel numbers of true statements. Our
work on the arithmetical hierarchy alows usto get arefinement of thisresult. Specificaly,
if A isX, (resp. Iy), then we can choose B to be T, (resp. Z).

To seethis, suppose A(X) isX,. Let B(x) beall, formulathat is not X,; we know from
our previous work that such a B(x) must exist. Now consider the function y(m) = the
Godel number of B(0O(M). v is evidently recursive, so its graph is defined by some X1
formulaPS(x, y). Consider the formula (3y)(PS(X, y) A A(y)). Thisformulaistrueiff
w(m) satisfies A(x), i.e. iff the Godel number of the formula B(0(M)) satisfies A(x); if (T)
has no IT,, counterexamples, then this holdsiff B(0O(M) istrue, iff m satisfies B(x). Soin
that case (Ay)(PS(X, y) A A(y)) isequivaent to B(x). Moreover, that formulais Xy, by our
calculations. But then B(x) isequivaent to aX, formulaafter al, which isimpossible. So
(T) has aTIl, counterexample, and by similar reasoning, reversing theroles of X and IT, if
A(X) isII, then (T) has a X, counterexample. (Inthat case, we use the formula (y)(PS(X, y)
D A(y)) instead of (Ay)(PS(x, y) A A(y)).)

Looking more closely at this argument, we see that if misanumber such that
@y)(PS(0(M), y) A A(y)) and B(0(M)) have different truth values, then B(0O(M) isitself aTl,
counterexample to (T); otherwise (Fy)(PS(0(M), y) A A(y)) istrueiff A(0@) istrue (whereq
= y(m)) iff B(0O(M) istrue (since g isthe Godel number of B(0(M)). Moreover, since the
only fact about B(x) we used wasthat it isall, formulawhichisnot X, we see that for any
such formulaB(x) and any X, formula A(x), we can find a number m such that B(0(M) isa
counterexampleto (T). However, thisis not to say that we can find m effectively from B(x)
and A(X); in fact, just asnot all sets satisfy the effective form of Godel's theorem, not al IT,
predicates B(x) are such that we can effectively find m from A(x).

It aso turns out that this refinement of the Godel-Tarski theorem is the best we can get,
i.e. given aX, formula A(x), there may not be a X, counterexampleto (T). Infact, for all n
> 1, thereisa X, formulathat defines truth for X,, sentences, and also aIl, formulathat
defines truth for IT,, sentences. We prove this by induction on n.

First, we show that if thereisa X, formulathat defines truth for X, sentences, then there
isall, formulathat defines truth for I, sentences. Suppose A(x) issuch aX, formula.
Let y be arecursive function such that if m isthe Godel number of aTl, sentence B, then
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y(m) isthe Godel number of a X, sentence equivalent to ~B, and let PS(x, y) beaX;
formulathat defines the graph of y. Then all,, sentence B istrueiff ~B isnot true, so
(Y)(PS(X, y) © ~A(y)) definestruth for I, sentences, and is equivalent to aIl, formula.

Now we know already that thereisa X, formulathat defines truth for X; sentences, so
the theorem holdsfor n= 1. Supposeit holdsfor n, and let A(x) be aIl,, formulathat
defines truth for IT,, sentences. Let y be arecursive function such that if (3x)C(x) isaXn+
sentence with Godel number m, then y(m, p) isthe Godel number of C(0(P)), and let CH(x,
y) be aX; formulathat defines the graph of . (3x)C(x) istrueiff for some C(0(P)) istrue
for some p, so (Fy)(3z)(CH(X, z, y) A A(y)) defines truth for X,+1 sentences and is itself
Zn+1. Aswe have dready seen, it follows that there is alln.; formulathat defines truth for
I+ Sentences, so we are done.
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Lecture XXI1

The o-rule.

Recall that Goddl's theorem gives us auniversally quantified statement (xX)A(x) all of whose
instances are provable but which is not itself provable. Thus, whileintuitively it might seem
like (X)A(x) followsfrom A(0), A(0"), ..., infact, while dl of thelatter are provable, the
former is not provable. However, it would be provable if we added to our formal system the
following rule, known asthe w-rule: from A(0), A(0'), ... toinfer (X)A(x). Infact, thiswas
Hilbert's suggestion when he first heard about Godel's result.

The w-rule can't actually be applied in practice, sinceit has infinitely many premises and
so aproof using the w-rule would be infinitely long. Moreover, even if we can prove each
of the instances of (X)A(x), we may not bein aposition to know that they are al provable.
For example, consider Goldbach's conjecture. Supposing that it isin fact true, we can easily
prove each of itsinstances; nonetheless, we are not now in aposition to know that al of its
instances are provable, sSince we are not now in a position to prove that the statement itself is
true.

Nonetheless, we can consider formal systems which contain the w-rule, even if we
cannot actually use such systems. If we add the w-rule to an ordinary first-order deductive
system (Q, for example), then not only will there be no true but unprovable I'T; statements:
all true statements will be provable. To seethis, suppose we start out with a system which
proves al true sentences of Lim, and which is such that every sentence of the language of
arithmetic is provably equivalent to aZ, or I, sentence, for somen. If we add the o-ruleto
such a system, then we will be able to prove every true X, or I, sentence, and therefore
every true sentence whatsoever. We show this by induction on n. (For the sake of the
proof, we define aformulato be both Xg and Iy if it isaformulaof Lim.) We know it
holds for n = 0, because by hypothesis all true sentences of Lim are provable. Suppose it
holdsfor n, and let A beaX, ;1 formula. Then A is (3x)B(x) for some IT, formulaB(x). If
A istrue, then B(0(M) istrue for some m, so by the inductive hypothesis B(0(M) is
provable in the system, so A isaso provable. Now let A beall,+; formula. Then A is
(x)B(x) for some T, formula B(x). If A istrue, then B(0(M) istrue for all m, so by the
inductive hypothesis, B(0(M) is provable for all m. Now we apply the o-rule: from the
sentences B(0), B(0'), ..., we can infer the sentence (X)B(X), i.e. the sentence A, s0A is
provable.

So aslong as we stay within the first-order language of arithmetic, we can get around
the Godel theorem by allowing our formal systemsto include the w-rule. However, if we
consider richer languages (e.g. languages with quantifiers over sets of numbers, or with
extra predicates), we will not necessarily be able to get around the Godel result in thisway.
In fact, there are languages richer than the first-order language of arithmetic such that, even
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when we alow formal systemsto contain an w-rule, we get a Godel-type result. Thiswas

first discovered by Rosser, but it was not until much later, when extensions of the
arithmetical hierarchy were being studied in the 50's, that his ideas were taken up again.

The Anaytical Hierarchy.

We have already seen how to enrich the language of arithmetic by adding extra predicates
and function symbols. We can also treat these new symbols as variables, and even quantify
over them. Theresulting formulae will then have two types of variables. onetypefor
numbers and one type for sets (or functions); if aformula has n number variables and k set
variables, then it defines an n+k-place relation between numbers and sets, in which the first
n places are occupied by numbers and the remaining places are occupied by sets. Similarly,
if there are k function variables, then the formula defines an n+k-place relation between
numbers and functions. (The formulaf(x) =y, for example, defines the 3-place relation
{<x,y,f> x,ye Nandf: N — N and f(x) =y}.) When the variables are function
variables, their values are dways total functions.

We could get by with only unary predicates, reducing functions and other predicates to
unary predicates via standard methods. We could also use only unary function symbols.
That is, we could rewrite f(Xa, ..., Xn) asf([Xy, ..., Xn]), @d replace sets by their characteristic
functions. In principle it doesn't matter what we do, but it will turn out to be convenient to
require al the new variables to be unary function variables, so we shall do so. We use lower
case Greek letters for function variables.

In the case of =2 formulae, a version of the monotonicity and finiteness theorems hold.
Thatis, if A(Xq, ..., Xn, 01, ..., Ok) isaZﬁ_’formuIa, then<mqy, ..., my, fq, ..., f> satisfiesit iff
there arefiniteinitia segments sy, ..., S of fy, ..., fx, such that <mq, ..., mp, sy, ..., > satisfies
it. (Unary functions on N can be seen asinfinite sequences of numbers; an initia segment
of afunction f isthen a sequence <f(0), ..., f(x)> for somex.) Actualy, thisway of putting
it isn't quite correct, because we require the values of the variablesto be total functions, so
we must restate it asfollows. Let A* be the result of replacing o;(x) =y by (32)(Seql(s, X)
AX<ZA[X Y] € §)whereverit occursin A. (If function variables are embedded in A, we
iterate thisprocess.) Then<my, ..., my, fq, ..., fk> satisfies A iff for somefiniteinitia
segments sy, ...,  of fy, ..., fk, respectively, <my, ..., mp, oy, ..., oy satisfies A*.

Now let us consider formulae which may contain quantifiers over functions; arelation
between natural numbers and functions defined by such aformulais caled analytical. In
particular, a set of numbers defined by such aformulais called analytical.

A 2% formulais aformulathat consists of an alternating string of function quantifiers of
length n, beginning with an existential quantifier, followed by a single number quantifier of
the opposite type from the last variable quantifier in the string, followed by aformula of
Lim. The definition of 1'[,]; is the same except that we require the first quantifier to be
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universal. Thus, for example, the formula (o) (3B)(X) cu(x) = B(X) isaH%formuIa, A
relationis =t or T} if it isdefined by a =2 or T1 formula, respectively; arelationisAlif itis
both 3% and IT}. The hierarchy of 3} and I setsis called the analytical hierarchy. This
hierarchy was first studied by Kleene, who invented its name.

In general, aX} or I formulais an alternating string of type-m quantifiers of length n
followed by aformulacontaining only quantifiers of type < m. Quantifiers over numbers
are type-0, quantifiers over functions on N, sets of numbers, etc., are of type 1, quantifiers
over sets of sets of numbers are of type 2, etc.

The analytical relations are not to be confused with the analytic relations, i.e. the Z}
relations. When Kleene first studied the analytical hierarchy, a certain class of functions
had aready been studied and were called "analytic"; it was only discovered later that these
functions are precisely the Z% functions. To avoid conflicting notations, the term
"analytica" was chosen for the more inclusive class. Nowadays, in order to avoid
confusion, the term "X7" is generally used instead of "analytic".

Normal Form Theorems.

An arithmetical formulais aformulathat does not contain any quantifiers over functions
(though it may contain free function variables). We would like to show that every formula
isequivaent to somezﬁ or Hrl, formula (for somen), and in particular that every arithmetical
formulais equivalent to some X1 formula and to some IT; formula. At this point it should
be far from obvious that thisisthe case, since aformula can have several number
quantifiers, and a):% or H% formulais only allowed to have a single number quantifier, and
that of the opposite type from the last function quantifier. In this section we shall show how
to find a =2 or I equivalent for any formula of the language of arithmetic.

Clearly, any formula can be put into prenex form. (We consider aformulato bein
prenex form if it consists of a string of unbounded quantifiers followed by a formula of
Lim.) However, theinitia string of quantifiers that results may not alternate, and it may also
include number quantifiers. So to put the formulain the desired form, we must move the
number quantifiers to the end of the string, collapse them to a single quantifier of the
opposite type from the last function quantifier, and make the string of function quantifiers
aternate.

First, let us work on moving the number quantifiersto theend. To do this, it sufficesto
show that any formula of the form (Qx)(Q'a)A is equivalent to aformula (Q'o)(Qx)A*,
where Q and Q' are quantifiersand A differsfrom A* only inthe part that isin Lim: if we
have this result, then we can apply it repeatedly to any prenex formulato produce an
equivalent prenex formulawith all the number quantifiers at theend. Thisiseasy to show
when Q = Q" (IX)(Fa)A isawaysequivalent to (o) (IX)A, and (X)(cr)A isaways
equivalent to (a)(X)A. So the only difficult caseiswhen Q # Q.
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Consider aformula of the form (x)(da)A. Thisistruejust in case for every number x
thereisafunction oy such that A(x, o) holds. Letting ®(x) = oy, thisimpliesthat thereis
afunction @ such that for al x, A(x, ®(x)) holds; conversaly, if such an ® exists, then
obvioudly (X)(Jo)A(X, o) holds. @ isahigher-order function, and the quantifiersin our
formulae only range over functionsfrom N to N, so we cannot rewrite (X)(3a)A as
(FD)(X)A(X, P(x)). However, thereisaway to get around this. Suppose ® maps humbers
onto functions; then let y be the function from N to N such that y([x, y]) = (®(x))(y). Let
A*(X, ) betheresult of replacing all occurrences of at) in A by y([X, t]), for any term t;
clearly, A and A* differ only inthe part that isin Lim. It iseasy to see that A* (X, y) holds
iff A(x, @(x)) holds. Therefore, (X)(3a)A holdsiff thereisa® such that for al x, A(X,
d(x)) holds, iff thereisay such that for all x, A*(x, y) holds, iff (y)(3x)A*(x, y) holds. So
we have the desired result in this case.

Thereisonly one remaining case, namely the case of formulae of the form (3x)(c)A(X,
o). But (Ix)(a)A(X, o) isequivalent to ~(x)(Ja)~A(X, o), which, aswe have just seen, is
equivalent to ~(3y)(X)~A*(x, g), which is equivalent to (y)(IxX)A* (X, ). So we have proved
thefollowing

Theorem: Any formulais equivaent to a prenex formulain which all the unbounded
number quantifiers occur at the end.

Notice that, in moving from (X)(3a)A to (IP)(X)A (X, D(X)), we have assumed the axiom of
choice: if the axiom of choice fails, then even though for every x thereisan a such that
A(X, o) holds, there may be no single function which takes x to an appropriate o.

Theinitia string of function quantifiers may not yet alternate. However, using the
pairing function, we can collapse adjacent quantifiers of the sametypeinto asingle
quantifier, and by repeating this process, we can make theinitial string alternate. That is, for
any formulaA(o, B), let A*(y) be aformulathat differsfrom A only inthe Lim part, and
such that A(a., B) isequivalent to A*([a, B]) for al o, B. (Such an A* iseasy tofind.)
Then (o) (FP)A (o, B) isequivaent to (IY)A*(y), and (o)) (B)A(a, B) isequivalent to
(A*(y). (Here we are assuming that our pairing functionisonto.) Thus, we have the
following

Theorem: Any formulais equivalent to a prenex formula consisting of an alternating string
of function quantifiers followed by afirst-order formula.

To get the desired result, we must show how to collapse the number quantifiersinto a
single quantifier. We shall do this by proving that any first-order formulais equivaent to
both a1 and a T3 formula. Once we have done this, we can prove our main result as
follows. Let A be any formula, and take any prenex equivaent with all the function
quantifiersin front. Suppose the last function quantifier is existential, and let B be the first-
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order part of theformula. Then A isequivalent to aformula (Qo)...(30,)B. Now let
(Hon+1)(X)C be a Z% equivalent of B; A isequivalent to (Qop)...(3an) (Fon+1)(X)C. We
can collapse the adjacent quantifiers (o) and (Join+1); thus A is equivalent to
(Qog)...(3a)(X)D, with D inLim, i.e. A isequivalent to aZ&formuIa If the last function
quantifier isuniversal we argue similarly, thistime using aH% equivaent of B.

Theorem: Every first-order formulais equivalent to both a2 and a I} formula.

Proof: Let A beany first-order formula. We know already that we can take A to be either
22 or Hﬁ, for somen. By adding vacuous quantifiersif necessary, we can assumethat A is
I1° for some n and that niseven. Thus, A isequivalent to aformula
(x1)@y1)...(Xm)(@ym)B with B in Lim. Now any formula (x)(3y)C(x, y) isequivaent to
(Fa)(X)C(x, o(x)), as we can see using the same sort of argument we used before. (If
(Fa)(X)C(x, o(x)) holds, then obvioudy (x)(3y)C(x, y) holds; conversdly, if (X)(3y)C(X, y)
holds, then (3a)(X)C(x, (X)) holds, letting o(x) = the least y such that C(x, y) holds.)
Iterating this, and moving the number quantifiers to the end, we see that A isequivaent to
(Foty)...(Foum) (X2)...(xm)B' for B' in Lim. We can collapse the existential function
quantifiers, and we can also collapse the universal number quantifiers using a bounding
trick. TheresultisZ], so A isequivalent to aX] formula.

To seethat A isaso equivalent to aH%formuIa, notice that the foregoing argument
shows that the formula~A is equivalent to some Z% formula (Jor)(x)B, and so A itself is
equivalent to the I formula (o)) (3x)~B.

By the foregoing remarks, we finally have our main result.

Theorem: Every formulais equivalent to some It or £ formula, for somen. Moreover, if
A isaformulaconsisting of an aternating string of quantifiers of length n, the first
quantifier of whichisexistential (universal), followed by afirst order formula, then A is
equivalent to ax? (I13) formula.

(Thetrick of replacing (x)(3y)C(X, y) by (Fa)(X)C(x, cu(X)) isdue to Skolem. Notice
that, in contrast to the previous case, we have not assumed the axiom of choice, since we
defined ou(x) to bethe least y such that C(x, y). We were able to do this because we know
that our domain (viz. N) can be well-ordered. Skolem'strick can be applied to any domain
that can be well-ordered; however, if the axiom of choicefails, then there will be domains
that cannot be well-ordered.)

Aswith the arithmetical hierarchy, we can define the level of an anaytical relation to be
the least inclusive 2}, T, or Al of whichiitisan element. The above discussion gives us
ways of estimating the level of agiven anaytical relation.

All arithmetical relations are Al, as we have seen. Moreover, if A isa Xl formula, then
(o)A isequivaent to az,} formula since we can collapse (Jor) with A'sinitial quantifier;
similarly, if A isaIl: formula, then (o)A is equivalent to aIl: formula. In short, the X} and
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Hrl] relations are closed under existential and universal functional quantification, respectively.
Similarly, if A isX}, then so are both (x)A and (3x)A, and the sameistrueif A isTI3. This
IS because, as we have seen, we can aways move number quantifiersinwards without
affecting the variable quantifiers.

It isalso not hard to see that if A and B are 3 (or I12), thensoare A AB and A v B.
We can show this by induction on n. Since X5 = 1‘[(1, = {arithmetical relations}, thisclearly
holdsfor n=0. Supposeit holdsfor n. If A and B are Z%ﬂ, then they are (4o)C and
(3B)D for H% formulaCand D. Then A A B and A v B are equivaent to (3o)(3B)(C A D)
and (3o)(3B)(C v D), respectively, which are Z&ﬂ, by the inductive hypothesis and
collapsing the quantifiers (o) and (3B). If A and B are Hr1,+1, we argue similarly.

Thus, the situation is similar to that of the arithmetical hierarchy, except that function
guantifiers and unbounded number quantifiers play the role here that bounded and
unbounded number quantifiers play in the arithmetical case. Using asimilar argument to
the one we gave there, we can see that if arelation is enumeration reducible to some 32
(resp. T13) relations, thenitis =2 (resp. T12). It followsimmediately that anythingr.e.ina
Alrdationisitself AL afortiori, anything recursivein aAl relationis AL

Exercise

1. Recall that A and B arerecursively isomorphic (A = B) iff thereisa 1-1 total recursive
function ¢ whose rangeis N, and such that B = {¢(x): x € A}. Show that for all A and B,
A =B iff A =1 B. Thefollowing sketches a method of proof. If A =B, then A =; B follows
easily, so suppose A =1 B. Let ¢ and y be 1-1 recursive functions such that x € A iff ¢(x)
e Bandx e Biff y(x) € A, all x. Define, asequence &, &, ... and asequence by, by, ..., as
follows. Supposeay, ..., &, and by, ..., b, have been defined (where possibly n=0). If nis
even, then let a,+1 be the least number distinct from ay, ..., &, and let b,+1 be such that a,+1
€ A iff b+ € B and by isdistinct from all of by, ..., by, If nisodd, do the samething in
reverse (i.e. let b1 be the least number distinct from by, ..., b, €tc.). Moreover, do thisin
such away that the function y such that x(a,) = b, for al ne N isrecursive. Conclude that
y isal-1tota recursive function whose rangeis N, and such that for al x, x € A iff x(X) €
B, and therefore that A = B. Hint: Informally, the problem reducesto finding an
appropriate b1 effectively from ay, ..., &, a1 and by, ..., by (or @41 from by, ..., by+g and
ay, ..., &, If nisodd). If ¢(a,) ¢ {by, ..., by}, then we can put b,+1 = ¢(a,). However, we
may have ¢(a,) = bj for somei = 1, ..., n; show how to get around this.

A recursive isomorphismtype is a=-equivaence class. Conclude that 1-degrees are
therefore recursive isomorphism types, and that there is a 1-degree (which isaso an m-
degree and arecursive isomorphism type) which consists of the cregtive sets.

Comment: Dekker proposed that the notions studied by recursion theory should al be
invariant under recursive isomorphism. While all the notions studied in this course are
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invariant under recursive isomorphism, thereis at least one notion, that of aretraceable set,
which is not so invariant and which has been studied by recursion theorigts. (Offhand, |
don't know whether this notion was proved to be not recursively invariant before Dekker's
proposal or only afterwards.)
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Lecture XXII1

Relative X'sand IT's.

The absolute notions =0, 10, X, and IT2 can be relativized, just aswe relativized the notions
of recursiveness and recursive enumerability earlier. Let ussay that aset is>0in the unary
functions oy, ..., oy, if it is definable by aZ,? formula of the language of arithmetic with extra
function symbols for the functions o, .., oy, and similarly for the notions I12, =2, and IT}
inoy, ..., o Soin particular, arelation between numbers, is=Yin B (AYin B) justin case it
isr.e.in B (recursivein f3).

Another way of looking at thisisasfollows. Consider an arbitrary formula A(Xy, ..., Xn,
Y1r -s Yy O, ooy O, B, ..., Bg) OF the language of arithmetic (possibly with function
quantifiers), where the x's and y's are free number variables and the o's and B's are free
function variables. Theformula A defines an m+n+p+g-place relation, with m+n places for
numbers and p+q places for functions. (Of course, any of m, n, p, and g may be 0.) Now
suppose we regard the y's and B's as having fixed vaues (the numbers kg, ..., km and the
functionsfy, ..., fq, say). Relaiveto thesefixed values, A defines an n+p-placerelation. In
the case of the fixed number values, we can get the same effect by considering the formula
A* in which each variabley; is replaced by the numeral 0(ki); however, we cannot treat
functions in the same way, since we do not have aterm in the language for each function.
(Infact, aslong as we only have countably many termsin the language, we cannot have a
term for each function, since there are uncountably many functions.) Ignoring the y's and
k's, then, if the relation defined by A (with the B's treated as variables) is 30, then the relation
defined by A with the values of the p's fixed will be 30inf, ..., f, (and similarly for I1°, 3%
and T1Y).

Equivaently, an n+p-place relation Ris =9 (or 15, &tc.) in By, ..., Bq iff thereisan
n+p+g-place =2 (or T, etc.) relation R’ such that R = {<Xg, ..., Xn, 01, -, 0> <X1, -y Xy
01, .oy Opy B, .., B> € R}. Thus, we can characterize the relative notions directly in terms
of the corresponding absol ute notions.

Aswith our other relative notions, we can reduce the general caseto the case q = 1, this
time using a pairing function on functions. There are severd pairing functions that we could
use. For example, we could take [B1, B2] to be the function 3 such that B(m) = [B1(m),
Bo(m)]; alternatively, we could take it to be the function B such that B(2n) = 31(n) and
B(2n+1) = Bo(n) for al n. (Thelatter has the advantage of being an onto pairing function.)
It iseasy to verify that this successfully reduces the general case to the case of asingle
function.

We say that arelation Ris S0 iff thereisafunction p such that Ris2%in . We define
PO St and Pl similarly, and D is defined in the usual way. (So boldface letters are used for
the notions with function parameters, lightface letters for the notions without function
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parameters.) Thisnotion isnot very interesting if R isarelation between numbers, sincein
that case R will always be DY (since R is always A in its characteristic function). However,
thisis not the case if some of R's places are occupied by functions (i.e. if p > 0).

Let'slook at SYinthecasen=0and p = 1 (i.e. the case of S sets of functions). A set
Sis S}iff thereisa2-place X relation R and a function p such that S= {o:: <o, B> € R}.
We can also characterize the §f setstopologically. Baire spaceisthe topological space
whose points are total functions from N to N and whose open sets are those sets S such that
for every function ¢ in S, thereisafiniteinitial segment s of ¢ such that every function
extending sisalsoin S. To verify that thisisindeed atopologica space, we must show that
if two sets satisfy our characterization of the open sets then their intersection does as well,
and that if Fisafamily of sets satisfying that characterization then UF also satisfiesit.
Alternatively, we can characterize Baire space asfollows. For any finite sequencess, let Og=
{0: ¢ isatotal function which extends s} ; then the sets of the form Os form abasis for
Baire space.

Theorem: The § sets are precisely the open sets of Baire space.

Proof: First, suppose Sis §f Then thereisa 2-place Z‘f relation R between functions and
aparticular function B suchthat S={a: <o, B> € R}. Supposeca. € S,i.e <o, f>€ R.
By the monotonicity and finiteness properties of 28 relations, thereis an initial segment s of
o such that <y, B> € R for al yextending s, and thereforey e Sfor all suchy. Since
was arbitrary, it followsthat Sis open.

Next, suppose Sisopen. Let F={s. o € Sfor al oo extendings}. ThenS={o: o
extendssfor somese F}. SinceF isacollection of finite sequences, wecanlet G={ne
N: n codes some element of F}, and let y be G's characteristic function. Then S isZ? invy,
and therefore S, since we can define S by the = formula (3s)(y(s) = 0' A s a). (Here's
c o abbreviatesthe formula(n < s)(m < s)([n, m] € s£ a(n) = m).)

Baire space is a so homeomorphic to theirrational numbers under the usua topology. The
onto pairing function mentioned earlier is a homeomorphism between Baire space and its
direct product with itself; since Baire space is homeomorphic to the irrationals, this shows
that the irrational plane is homeomorphic to theirrationa line. Thus, the situation is very
different from the case of theredls.

We can set up asimilar topology on sets of natural numbers by identifying these sets
with their characteristic functions; if we restrict Baire space to functionsinto {0, 1}, the
result is a space which is homeomorphic to the Cantor set. (That is, the set of al realsinthe
interval [0, 1] whose base-3 expansions contain no 1's.) Itisalso identica to the space 29,
where 2 isthe space {0, 1} with the discrete topology.

Notice that since the § sets are precisely the open sets, the D(l) sets are precisaly the
clopen sets (i.e. setsthat are both closed and open). Thisis another difference between the
reals and the rationals. whereas the only clopen subsets of R are R itself and &, clopen sets
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of irrationals exist in great abundance.

Another Normal Form Theorem.

Given afunction a, et us define Gi(n) to be some numerical code for the sequence <o(0), ...,

o(n-1)>. It doesn't matter what particular code we choose; however, for definiteness, let us

say that () = 20(0)+1.30(D)+1. .p e(n-D)+1 wherein general p, isthe nth prime. (Thisis

essentialy the coding scheme Godel used.) As Quine has remarked, coding systems are

not like matrimony, and we are free to switch back and forth between them as we please.
We now prove another normal form theorem, due to Kleene.

Theorem: If Sisan n+p-place 28 relation, then there is an n+p-place recursive relation R
suchthat S={<xy, ..., Xp, i1, ..., 0p>: (AZ)R(Xy, ..., Xn, 01 (2), ..., TWn(2))}.

Proof: We shal prove the theorem for the case n = 0 and p = 1, the other cases are similar.
Let She azfset of functions. For somerelation L (o, y) definablein Lim, S={ o
(Fy)L(c, y)}. By monotonicity and finiteness, o € Siff someinitia segment of aisin S,
so S={o: (F2)(Fy)L(T(2), y)}. Infact, S={o: (F2)@Fy < 2)L(0(2), y)}: if (F2)3Fy <
z)L(0(2), y) then certainly (32)(3y)L(0(2), y), and if L(c(k), y), thenlet z> k, y; L(0(2), y)
by monotonicity, so (3z)(dy < z)L(0(2), y). Let R(z,s) = (Ay <z)L(s, 2): R isarecursive
relation, and S={o: (32)R'(z, t(2))}. Thisisamost what wewant. Let R(s) = R'(Ih(s), 9),
where Ih(s) isthe length of the sequence s; Ris still recursive, and S={a:: (32)R(0(2))} .

This gives us anew normal form theorem for IT} relations.

Theorem: Every n+p-place [T} rdlation is{<xg, ..., Xn, 01, -, 0p>: (B)(FZR(X1, -vry X, O
)1(2), ... Tp(2), B(2))} for some recursive relation R.

Proof: Let Sheany n+p-place 11 relation. Then S={<Xy, ..., Xn, 01, -, 0> (B)T(X1, -
Xn, 01, -.., Op, B)} for some n+p+1-place 28 relation T. By what we just proved, thereisa
recursive relation R such that T(Xy, ..., Xp, 01, ..., 0, B) iff (FZ)R(Xy, ..., Xn, Ta(2), -.., Tp(2),
B(2)); it followsthat Sis{<X, ..., Xn, 01, ..., 0> (B)(F2)R(X4, -y X, 0a(2), -y Tp(2), B
)(2)}-

We can prove similar normal form theorems for the other £¥'s and IT's. The main thing to
noteisthat we have, so to speak, reduced the relation S, which may involve functions, to R, a
recursive relation among numbers.

Thereisarelated result about the various Ssand P's.
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Theorem: An n+p-placerelation S is§ iff for some 3 and somerecursive R, S={<xq, ...,
Xps 01, +.ry Op>: (FZ)R(X1, ..y Xn, 01(2), ..., Op(2), B(2)}, iff for some n+p-place relation R
on N (not necessarily recursive), S={<Xy, ..., Xn, 04, ..., 0p>: (FZ)R(X, ..., Xn, T1(2), ..., T
@)}

Proof: The equivalence of the first two conditionsisimmediate. Suppose S={<X4, ..., Xn,
01, ..oy Op>: (FZ)R(X, ...y Xy Ta(2), ..., Tp(2), 0Y(2))}, and let R' be therelation {< Xy, ..., Xn, T
)1(2), ... Tp(2)>: ze N and R(Xy, ..., Xp, Ta(2), ..., ap(z),[_S(z))}; then S={<xq, ..., Xp, 0lg, ...,
0p>: (FZR'(X1, ...y Xn, 01(2), ..., 0p(2))}. Conversely, suppose S={ <Xy, ..., Xp, O, ..., Olp>:
(ADR(x1, -.., Xn, 01(2), ..., Oip(2))} for somerelation Ron N. Let B be the characteristic
function of the set {[Xy, ..., Xn, Y1, ..., Ypl: R(X1, <oy Xy Y1, o Yp)} . ThEN S={<xq, ..., Xp,
0, s 0> (32) B(XL, wors X T(2), -, Tp(2)]) = 1}, 50 SisZYin B and istherefore S,

Similar results hold for the other Ssand P's.

The Hyperarithmetical Hierarchy.

Consider the hierarchy 0, 0', 0", ..., 0", ... of degrees. Aswe have seen, aset is arithmetical
justin caseit isrecursive in one of these degrees. We also know that not all setsare
arithmetical (e.g. the set of true sentences of the language of arithmetic), so there are sets
which are not recursive in any of these degrees; therefore, there is adegree d which isnot <
0 for any n. In fact, there are degrees d such that 0" < d for al n: it isnot too hard to
see that the degree of the set of true sentencesis such adegree. This suggests that we
should be able to extend the hierarchy 0, 0', 0", ..., 0, ... into the transfinite in some way.

In particular, it suggests that there ought to be anatural next degree, which we can call
0(@), beyond all of the degrees 0. But what is 0@)? A natural answer would be that 0(®) is
the least upper bound of the degrees 0, 0', 0", .... However, by aresult due to Spector, that
collection of degrees does not have aleast upper bound; so the most natural characterization
of 0(@) will not work.

However, the situation is not quite as bad asit first appears. Whilethereisno least
degree beyond O, 0', 0", ..., thereisaleast degree asuch that a=d" for somed >0, 0, ....
(Thisresult is due to Enderton, Putnam and Sacks.) We can define 0(®) to be the degree a
In fact, 0(®) isthe degree of the set of true sentences of the language of arithmetic.

We can use thisideato extend the hierarchy still further. In genera, we say that asetis
hyperarithmetical if it isrecursive in 0(®) for some ordina o for which 0(®) is defined. We
can define the degrees O(@+1), 0(@+2), etc. by O(@+1) = Q)| O(w+2) = Ole+l)', etc.; in generd,, if
0(®) has been defined, we can define 0(+1) to be 0(»)'. We can define the next degree
beyond all these, namely 0(@+®), similarly to the way we defined 0(@): thereisaleast degree
asuch that a= d" for some d > 0(®), 0(@+1), ... and we can define 0(@+®) to be that degree a.
In fact, we can use this technique to define 0(») for quite an extensive class of ordinals
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(known asthe recursive ordinals).

The resulting extended hierarchy is called the hyperarithmetical hierarchy. The
hyperarithmetical hierarchy wasfirst studied by Martin Davisin hisPh.D. thesis at
Princeton. It was aso invented independently by Mostowski and by Kleene (who coined
the expression "hyperarithmetical"). Most of the basic theorems about the hierarchy were
proved by Kleene and Spector.

Another approach isto define the set @), for suitable a, and then let 0(®) be the degree
of @@, On this approach, we can let @@ be {[m, n]: me @M}; the degree of F®) is
then 0(®) as we defined it before. Obvioudly, this can be carried further into the transfinite.
For example, we could et @@+ = ()" whenever @) is defined, and we could define
@o+o), for example, to bethe set {[m, n]: me @@}, To define @(©*), we can do
essentially the same thing, except thistimeit'sabit trickier: let @®*) ={[m, n]: me
@M}, We could continue in this manner for quite some time, thinking of new definitions
of @) for limit ordinals o as we need them, but we would like to give auniform definition
of @@ for all of the appropriate o. We do so as follows.

An ordinal issaid to berecursiveif it isthe order type of some recursive well-ordering
of N. For example, o isrecursive becauseit isthe order type of <0, 1, 2, ...>, and o+ iS
recursive becauseit isthe order type of <0, 2, 4, ..., 1, 3,5, ...>. Therecursive ordinals go up
quitefar. Of course, not every ordina isrecursive, since every recursive ordina is countable
but not every ordinal is countable. In fact, not all countable ordinals are recursive: since
there are only countable many recursive well-orderings, there are only countably many
recursive ordinas, but there are uncountably many countable ordinals. Once we have fixed
arecursive well-ordering R, individual natural numbers code the ordinals less than the order
type of R: specifically, we let |n|r denote the order type of the set {m: m R n} ordered by
R. (SomRniff mgr <|n|r.)

Let Sbean arbitrary recursive set, and let R be an arbitrary recursive well-ordering. We
define H,, asfollows, for al n. If |n|g =0, thenH,=S. If |n|r = o+1 and [m|r = a, then
Hn=(Hm)'. Findly, if |njgrisalimit ordinal, let Hy = {[x,y]: Xe Hyandx Ry}. A setis
said to be hyperarithmetical if it isrecursive in Hy, for some n and some choice of R and S.
(Thisdefinition is quite close to the definitions of Kleene and Spector.)

Now it might seem as though H,, depends strongly on the choice of Sand of R.
However, thisisnot redlly the case. Suppose R and R’ are recursive well-orderings of the
same order type, and S, S are any two recursive sets; then whenever [m|g = |n|r, Hm and
H,' are of the same Turing degree (where H,,' is H,, defined in terms of R and S rather than
Rand S). (The proof of thisisdue to Spector. The proof, by the way, isanice illustration
of the use of the recursion theorem in the study of recursive ordinals.) Thus, we may define
0(®) to be the degree of Hy,, where o = |n|g, for any recursive ordinal o.

If Risalowed to be arithmetical, or even hyperarithmetical, then the order type of R is
still arecursive ordinal; that is, while R may not itself be recursive, thereisarecursive well-
ordering R' which isisomorphicto R. Moreover, if R and R' are allowed to be arithmetical,
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then Hy, and H,,' are till of the same Turing degree, so the hierarchy isunaffected. If Ris
allowed to be hyperarithmetical, then the same sets get into the hierarchy, but the hierarchy
may go up at adifferent rate.

The characterization of the hyperarithmetical setsthat we havejust givenisinvariant, in
that whileit involves S and R, which are extraneous to the hierarchy itself, the same
hierarchy is given by any choice of Sand R. A characterization in terms of double jumps
(sketched at the beginning of this section), on the other hand, isintrinsic in the sense that
such extraneous entities are not involved at all. Thisis certainly avirtue of the latter
approach, although it relies on arather more advanced result than the former approach,
namely that for suitable sequences & < & < ... of degreesthereisaleast d" such that d > &,

Another characterization of the hyperarithmetical setsisasfollows. Consider those
sequences<S,: o arecursive ordinal> such that S isrecursive, So.1 = S, for dl o, and
when ocisalimit ordinal, S, isan upper bound of {Sg: B < a}. (It doesn't matter which
upper bound we choose.) Then aset will be hyperarithmetical just in case for every such
sequence, it isrecursive in some set in the sequence. There are many other equivalent
characterizations of the hyperarithmetical sets.
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Lecture XXV

Hyperarithmetical and A sets.

An important theorem about the hyperarithmetical sets, due to Kleene, isthat they are al A%.
An even more important theorem, also due to Kleene (and whose proof is more difficult), is
the converse. Thus, we have yet another characterization of the hyperarithmetical sets, this
timein terms of the analytical hierarchy.

We shall provethe easier half of thistheorem. In fact, we shall prove a somewhat
stronger result. Let us say that afunction ¢ is the unique solution of aformula A(o) if ¢
satisfies A(cor) and isthe only function that does so.

Theorem: If the characteristic function of aset Sisthe unique solution of an arithmetical
formula, then Sis AL

Proof: Let ¢ bethe characteristic function of S, and let A(o) be an arithmetical formula of
which ¢ isthe unique solution. Then Sis defined by the formula (Fo)(A(o) A o(x) = 0')
and also by the formula (o) (A(a) o a(x) = 0'). Since both A(o) A ou(x) =0 and A(a) ©
o(x) = 0' are arithmetical formulae, the two formulae that define S are equivalent to =} and
I13 formulae, respectively.

Notice that this argument goes through under the weaker assumption that A (o) isa i
formula.

Suppose Sis hyperarithmetical; then there is arecursive well-ordering R of N such that
Sisrecursivein Hy, for some n, where H, = @ when |n|g = 0, H, = Hy, when |n| = |m|r+1,
and H, = {[X, y]: xe Hyandy R n} when |n|g isalimit ordinal. Lety bethe characteristic
function of {[m, n]: me Hy}. If yisthe unique solution to some arithmetical formula,
then that set isA%. It follows easily (by the reasoning of the last section) that each Hy, isA%,
so Sisrecursivein aAj set and isthereforeitself Al Therefore, we need only find an
arithmetical formula of which v is the unique solution.

SinceRisr.e, thereisan arithmetical formula B(X, y) that defines R, and let k be the R-
least element of N. Define

Zero(n) =¢. n = 0K)
Succ(m, n) =g, B(m, n) A (y)~(B(m, y) A B(y, n))
Limit(n) =g ~Zero(n) A ~(Im)Succ(m, n).

These formulae hold just in case |n|gr = 0, |n|r = |m|r+1, and |n|r isalimit ordinal,
respectively. Next, define
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Jump(m, n, o) =g, (2)(o([z, N]) =0 = (Fe)(@M)(z=[e, m] A (FH)[W(e, M, S) A
(K)((0(ZK) e s> a([k, m]) =0') A
(0(2K)+0' € s> a(k, m]) = 0)]))

Let  beafunctioninto {0, 1} and let M and N be the sets{x: ¢([x, m]) = 1} and {x: d([X,
n]) = 1}, respectively. With alittle work, we can see that Jump(m, n, ¢) holdsiff N = M".
We are now ready to define A(o): let A(or) be the formula

()[(a(x) =0 v ox) = 0') A (oUx) =0 > (y)(3n) x = [y, n]) A
Y)()x=[y,n] >
{Zero(n) > a(x) =0 A
Limit(n) o (au(x) = 0" = (ay) = 0" A B(K2(y), n))) A
(m)(Succ(m, n) o Jump(m, n, &))})].

Now let us verify that y isthe unique solution of A(ar). First, we show that y satisfies
A(o). yisafunctioninto {0, 1} which only takesthe value 1 on arguments that code pairs,
so thefirst line of the formulais satisfied. Let x = [y, n] begiven. If |n|g =0, thenH, =,
soy ¢ Hpand y([y, n]) =0, sothethird lineis satisfied. If [n|g isalimit ordina, thenH,, =
{[z,w]: ze Hyand w R n} ={u: y(u) =1 and Ky(u) R n}, so the fourth line holds.
Finally, if |n|g = |m|r+1, then H, = Hy, so the last line holds as well.

Conversaly, suppose ¢ satisfies A(a). Then Range(¢p) < {0, 1}, and ¢(x) = Owhen x is
anonpair. Let G, ={y: ¢([y, n]) = 1} for al n; we will show by transfinite induction on
In|r that G,, = Hp, from which it followsthat ¢ = y. If |n|gr =0, then ¢([y, n]) =0 for al y,
s0 G, =@ = Hp. If |n|g = |m[r+1, then Jump(m, n, ¢) holds and G, = Gy'; by the
inductive hypothesis, Gy, = Hm, S0 G = Hy = Hp. Findly, if |n|g isalimit ordinal, then
Gn ={[z, wl: ¢([z, w]) = 1 and |w|r < |nlg} ={[z, W]: ze Gy and |w|r < |n|r} = (by the
inductive hypothesis) {[z, w]: ze H,, and |w|r < |n|r} = Hn. This completes the proof.

The definition of A(o) iscomplicated, but theideaissmple. The sequence<H;: ne
N> isdefined in terms of itself; specificaly, each Hy, is defined in terms of various Hy, for
Im|g < [n|r. So we can define the function y in terms of itself in asimilar way; if we do
things right, the result will be an arithmetical formula A(o) with y asits unique solution.

St and P! sets of functions are called projective, and the S-P2 hierarchy is called the
projective hierarchy. The study of the projective hierarchy and related notionsis called
descriptive set theory. Projective sets were studied years before Kleene studied the
analytical hierarchy, and Suslin proved an analog of Kleene's result that A7 =
hyperarithmetical. (Specificaly, he showed that the Borel sets are precisely the D% sets) A
unified result, of which the results of Sudlin and Kleene are special cases, is called the
udin-Kleene theorem.

Kleene was originally unaware of this earlier work on projective sets. People then
noticed anal ogies between thiswork and that of Kleene; later on, it was seen that not only
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are the theories of projective sets and anaytical setsanalogous. infact, they are really part
of the sametheory. Kleeneoriginally called the analytical sets"anaytic"; unfortunately,
"analytic" was aready aterm of descriptive set theory for the S} sets. To avoid confusion,
Kleene'sterm was replaced by "analytical”. Nowadays, to avoid confusion, most people say
"SI instead of "analytic".

Borel Sets.

The Borel setsare defined asfollows: al open sets of Baire space are Bordl; the
complement of aBorel set isBorel; and if <S,: n e N> isany countable sequence of Borel
sets, then URS, isaso Borel. (It followsthat NS, isBorel, since NS, = -Un-Sy.)

The Borel setsform ahierarchy, called the Borel hierarchy, defined asfollows. The
first level consists of the open sets and the closed sets, that is, the S sets and the P9 sets.
The next level consists of countable unions of closed sets and countabl e intersections of
open sets, or in other words, the §2’ and P(z’ sets. (Countable unions of open sets are already
open, and countable intersections of closed sets are aready closed.) We can see that the S‘z)
sets are precisely the countable unions of closed sets, asfollows. We know aready that the
P? sets are precisely the closed sets. On the one hand, suppose Sis §; then Sis{ou
(@IX)(Y)R(X, Y, a, B)} for some fixed B and some H? relation R. For eachn, let S, ={ o
Y)R(n,y, a, B)}; thenS=u,S,, and each S, is P&’ and therefore closed, so Sisacountable
union of closed sets. Conversaly, suppose S = upS,, where each S, is closed and therefore
P?. Foreachn, S, ={a: (y) a(y) € X} for some set X,, of numbers, by our normal form
theorem for Pg. Let R betheredation {<x, n>: x € Xp}; then o € URS, iff (AN)(Y)R(@(Y),
n), SO UpS, IS Sg So the Sg sets are precisaly the countable unions of closed sets, from
which it follows that the PS sets are precisaly the countable intersections of open sets. In
general, the  sets are the countable unions of PY ; sets and the PP sets are the countable
intersections of S2; sets, by the same argument.

The various S2's and P2s do not exhaust the Borel hierarchy: we can find a countable
collection of setswhich contains sets from arbitrarily high finite levels of the hierarchy, and
whose union does not occur in any of these finite levels. We therefore need another level
beyond these finite levels. Let uscall aset S if it isacountable union of sets, each of
which is S for some n, and PY if it is a countable intersection of sets, each of which is P
for somen. In general, for countable infinite ordinals o. we define aset to be S if it isthe
union of a countable collection of sets, each of which is P§ for some < o, and PJ if it is
the intersection of a countable collection of sets, each of whichis $ for somef < a. It

turns out that new Borel sets appear at each leve of this hierarchy. On the other hand, it is
easy to see that every Borel set appears eventualy in the hierarchy. For suppose not: then
thereis some countable family F of setsin the hierarchy such that UF isnot in the
hierarchy. For each Se F, let rank(S) = the least ordinal o such that Se Pg. Then
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{rank(S): Se F} isacountable collection of countable ordinals, and it therefore has a
countable upper bound o.. But then US e Sg

Notice that there are two equivalent ways to characterize at least the finite levels of the
Borel hierarchy. Oneis purely topological: the S sets are the open sets, the P sets are the
closed sets, the S5 sets are countable unions of closed sets, the PJ sets are countable
intersections of open sets, etc. Thisisthe way the Borel hierarchy was originally conceived,
before anal ogies with recursion theory were noticed. The other isin terms of definability: a
setis § iff it is definable by a§ formulawith asingle function parameter, etc. The S, P
notation was borrowed from recursion theory; the original notation (still quite standard
outside of logic) was more baroque. Countable unions of closed sets were called F,
countable intersections of open sets were caled Gg, countable unions of Gg's were called
Gsg, EiC.

Itisfairly easy to show that al Borel setsare D%. To provethis, it suffices to show that
all open sets are D}, and that D1 is closed under complements and countable unions. That
D} is closed under complementsisimmediate from its definition. Suppose Sis an open
set; then Sis{o:: R(o,, B)} for some fixed B and some =9 relation R; we know already that
any 39 relation is A}, so SisDi. Finally, suppose{Sy: ne N} isacountable family of D}
sets. In particular, each S, is P%. Each S, is{o: (B)@x)Rn(@(X), B(X))} for some relation
RhonN. Let R betherdation {<y, z, n>: Ru(Y, 2)}; UnSh = {o: @n)(B)@AX)R(@(x), B(X),
n))}. But we know already that the P% relations are closed under number quantification, so
UnShis PL. The proof that U,S, is Stissimilar.

Borel sets are analogous in a number of ways to the hyperarithmetica sets. In
particular, we can imitate the Borel hierarchy in the case of sets of numbers. 1t would not do
to have the family of sets be closed under countable unions, since then aslong as every
singleton isincluded, every set whatsoever will be included. However, if we replace unions
with recursive unions, we can get around this difficulty. Specifically, we can set up asystem
of notations for sets of numbers asfollows. Let [0, m] codethe set {m}; if ncodesaset S,
let [1, n] codethe set -S; finally, if every element of W, is dready the code of some set, let
[2, €] codethe set {S: Siscoded by some element of W¢}. We might call the sets that
receive codes under this scheme the effective Bord sets, and the hierarchy that they form the
effective Borel hierarchy. It turnsout that the effective Bordl sets are precisaly the
hyperarithmetical sets.

I1} Sets and Godel's Theorem.

It turns out that there are close analogies between the H% sets and the recursively
enumerable sets (and a so between the Ai sets and the recursive sets). For example,
consider the following extension of the notion of acomputation procedure. We can
consider, if only asamathematical abstraction, machines which are capable of performing
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infinitely many operationsin afinite amount of time. (For example, such amachine might
take one second to perform the first operation, half a second to perform the second one, and
soon.) Such amachinewill always be able to decide aHf set, for such aset is of theform
{x: (Y)R(x, y)} for somerecursiverelation R, and so the machine can run through al they's,
checking in each case whether R(X, y) holds, and then concluding that x isin the set or that
itisn't. Using similar reasoning, we can see that any arithmetical set can be decided by such
amachine. Infact, if the notion is made precise, it will turn out that the A% sets are precisely
those sets that can be decided by such amachine, and that the I sets are those that can be

semi-computed by one.

Another way in which the H% sets are analogousto r.e. sets concerns representability in
forma systems. Specifically, if we consider formal systems with the w-rule, then it will turn
out that all the sets weakly representable in such systems are H%, and conversdly that any
H% isweakly representable in such a system.

We could a so characterize the H% setsviadefinability in alanguage: analogoudly to the

language RE, we could set up alanguage with conjunction, digunction, unbounded number
quantifiers, and universal function quantifiers, in which precisaly the 1‘[% setswould be

definable.
Asin the arithmetical hierarchy, we have the following theorem.

Enumeration Theorem: For all n>0and al nand p, thereis an m+1+p-place Hrl,
relation that enumerates the m+p-place I3 relations, and similarly for 37
Proof: Inwhat follows, we use X to abbreviate X, ..., Xm, and ﬁ to abbreviate B, ..., Bp.
Let Sbeany m+p-place I} relation. Sis{<X, [_3>>: (@) (F)R@(2), X, B1(2), - Bp(2))} for
somerecursiverdation R. SinceRisr.e.,, R=W,for somee, S=
(<X, B> () @2W(e, 0(2), X, B1(@). ... Bo(2))}. Sotherelation {<e, X, B>: () @2)W(e,
a(2), X, Bi(2), ..., [_Sp(z))} enumerates the m+p-place H% relations. Moreover, that relation is
itself H%, sinceit comes from an arithmetical relation by universal function quantification.
Just as we derived the general enumeration theorem for the arithmetical hierarchy from
the specia case of 28, we can derive the present theorem from the case of H%. For example,
consider the case of m+p-place Hrl, relations with n odd. Any such relationis{<X, §>:
(001)(302)...(30tn 1) S(X, B, )} for some 1 refation S (where naturally o abbreviates o,
..., 0n-1). But then by the enumeration theorem for l‘[i relations, thisis{<X, E>>:
(0)30)...3an1)R(E X, B, 0)} for somee, whereRis aIl} enumeration of the
m+p+(n-1)-place H\O(l,l) relations. So therelation {<e, \O(X, ), \O(B,%)>:
(01)(F0)...(3on-1)R(E, X, B) )} isaTl} enumeration of the m+p-place IT relations. The
other three cases are treated smilarly.

(A similar theorem, called the parameterization theorem, holds for St and P2 relations;
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in that case, relations have functions rather than numbers asindices.)
We can use the enumeration theorem to prove the following.

Hierarchy Theorem: For al n, £} = IT..

Proof: Let R beall} enumeration of the I} sets of numbers, and let D = {x: R(X, X)}.
Then Disclearly I}, so -D is X% But -D isnot IT}, for if it were, we would have -D = {x:
R(e, x)} for somee, andsoec -Diff R(e, ) iff ee D. So-D e 31 -I1l.

Soin particular, thereisaset D € 2% - H%. ThisD isanalogousto K; we may aswell call it
K1,

Most of our earlier discussion of Godel's theorem can be duplicated in the present case.
(Of coursg, if asystem hasthe w-rule, or in general has H% inference rules, it may decide
every arithmetical statement. However, thisisnot to say that it decides every second-order
statement.) Just as we showed that any system with anr.e. set of axiomsand r.e. rules has
anr.e. set of theorems, we want to show that the set of theorems generated by afinite set of
I3 rulesisTIL.

First, let us associate with each rule of inference with the relation {<x, o>: x follows by
the rule from premisesin the set with characteristic function o} , and say that aruleisIT} if
the corresponding relation is. Thus, the w-ruleisto beidentified with the relation
{<(X)A(x), o>: o isthe characteristic function of some set that contains A(O(n)) for al n}.
Let % be arecursive function such that for al formulae A(x), if misthe Godel number of
(X)A(X), then x(m, n) = the Godel number of A(0(M); then the w-ruleisTT;, since the
corresponding relation is defined by the formula (y) a(y) <0 A (n) ou(x(x, n)) =0'. If Sis
a set of sentences, then we can get the effect of taking al of the sentencesin S as axioms by
having the single rule from any set of premisesto infer any sentencein S Thisrule
corresponds to the relation defined by (y) o(y) <0 A x € S, whichis H% if Sis. Finaly, if
Ry, ..., Ry are P rules, then the relation R = {<x, o> Ry(X, &) V ... v Ry(X, o))} isall}
relation, and a sentence is a theorem of the formal system consisting of therulesRy, ..., Ry
justin caseit isatheorem of the singlerule R. Thus, if we can show that the set of
theorems of asingle ITi ruleisitself IT1, it will follow that the set of theorems of a system
with aTT} set of axioms, afinite number of 1] rules, and the w-ruleisTTi.

GivenaruleR, let y be the following operator on sets: y(S) = {x: R(x, Ss
characteristic function)}. Let ¢ be the corresponding operator on functions: if a.isthe
characteristic function of aset S, then ¢(cr) = the characteristic function of y(S) = the
characteristic function of {x: R(x, o)}. If Risarule of inference in any reasonable sense,
then y will be monotonic, since y(S) = the set of sentences that follow via R from sentences
inS: if Sc S and A follows from some sentencesin S, then A aso obviously follows
from some sentencesin S aswell. The set of theorems of R isthe least fixed point of .
Recall that the least fixed point of y isthe set N{S: y(S) = S} ={x: (S)(Yy(S)c Soxe
S)}. Intermsof the operator ¢, thisset is{x: (a)((Y)[(d(a))(Y) =1Do(y) =1] Aatisa
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characteristic function o ox) = 1)}. Since (d(a))(y) = 1 iff R(X, o), this set is defined by
the formula (o) ([(y)(R(X, o)) 2 a(y) =0') A (y) aly) £0'] o a(x) =0'). We must check
that thisformulaisindeed H%. SinceRis H% and R(x, o) occursin the antecedent of a
conditional, the formula (y)(R(x, o) > a(y) =0') isZ%. However, that formulaitself occurs
in the antecedent of a conditional, so the formula[(y)(R(x, o) > oy) =0') A (y) oly) < 0]
S ox) = 0" isTIi. Finaly, when (o)) is added, the formularemainsITi. We therefore have
thefollowing

Theorem: If aformal system hasT1; set of axioms and afinite number of IT] rules
(possibly including the w-rule), then the set of theorems of the system isitself H%.

The definition of "weakly represents’ for such formal systemsisthe same asfor
ordinary formal systems. Let S be aset of numberswhich isweskly representable in some
such system. Then S={n: A(O(n)) isatheorem} for someformulaA(x). Lety bea
recursive function such that y(n) = the Godel number of A(O(n)); then y reduces S1-1to
the set of theorems of the system, and so Sis H%. So any set weakly representablein such
asystemisTTi.

Conversely, we can find formal systemsin the second-order language of arithmetic
which weakly represent all the H% sets, just asall ther.e. sets are weakly representablein Q.
In particular, if T is such a system, then the set of theorems of the system, being H%, is
weakly representable in the system itself. We can use thisfact to construct a sentence that
says "' Godd heterologica” is Godel heterological’, and prove that the sentenceis true but
unprovable if the system is consistent.

If T" isasystem al of whose theorems are true, then we can show directly that " is
incomplete, by showing that the set of theorems of I" is not the set of true sentences. For if
it were, then the set of true sentences of the language would be H% and therefore definablein
the language itself. But then by the usua argument satisfaction would also be definable,
which isimpossible because the language has negation.

If T isITi-complete (i.e. if every true T} sentenceis provable) and consistent, then we
can get acloser analog of Godel'stheorem. Let S be any H% set of numbersthat is not 2%;
K1 would do, for example. Then thereis aZ% formula A(x) that defines-S. Just aswe did
inthe origina Godel theorem, we can prove that there are statements of the form A(O(n))
that are true but unprovable in the system.

Arithmetical Truthis Al

We have proved that all hyperarithmetical sets are Al; since we know already that not all
hyperarithmetical sets are arithmetical, it follows that there are Al sets that are not
arithmetical. Thereisaso adirect proof of this, dueto Tarski. We know that the set of true
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arithmetical sentencesis not arithmetical; we can use Tarski's famous definition of truth to
show that this set is A7.

We showed that for a set to be Al it is sufficient that its characteristic function be the
unigue solution of some arithmetical formula (or even 2% formula) A(cr). Recall the usual
inductive definition of truth:

om) = o(N) istrueiff m=n;

A©(M), o), olP) istrueiff m+n=p;

M©(M), o), o(P)) istrue iff mn=p;

~A istrueiff A isnot true;

(A o B) istrueiff either A isnot true or B istrue;
()A(X) istrueiff for al n, A(0(M) istrue.

We can obtain A(o) by writing out this definition in the language of arithmetic, replacing "x
istrue” by "o(x) = 1". From our previous work, we have arithmetical formulae Sent(x),
At(x) and TrAt(x) which define the set of sentences of the language of arithmetic, the set of
atomic sentences, and the set of true atomic sentences, respectively. We can therefore write
A(o) asfollows:

(X)[oux) £0" A (ox) =0 > Sent(x)) A
(At(X) o (a(x) = 0" = TrAt(x))) A
@ ){ (Neg(x, y) o a(x)+afy) = 0') A
(Cond(x,y,2) o [o(x) =0 =(a(y) =0v a(2) =0)]) A
(UQ(x, y, i) o [o(x) = 0" = (n)(w)(Substa(y, w, i, n) o o(w) = 0')])}]

Where Neg(x, y) holdsiff x is the negation of y, Cond(x, y, z) holdsiff x is the conditional
(y 2 2), and UQ(X, y) holdsiff x isthe result of attaching the universal quantifier (x;) to x.
Weleaveit to the reader to verify that this works.

Once we know that all A} sets are hyperarithmetical, it will turn out that the set of truths
of the language of arithmetic is aso hyperarithmetical. We can aso give adirect proof that
this set is hyperarithmeticdl; in fact, it turns out to be recursively isomorphic to the set Hy,
where |n|gr = o, that is, it appears at the first level of the hyperarithmetical hierarchy that is
beyond the arithmetical sets.
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Lecture XXV

The Baire Category Theorem.

A subset S of Baire space is said to be denseif for any finite sequence s, thereisana e S
that extendss. (This definition coincides with the general definition of "dense” for
topological spaces.)

Theorem: Theintersection of a countable family of dense open setsis nonempty.
Proof: Let O, Oy, ... be dense open sets. We shall construct afunction oo € N0, as
follows. Let spbethe empty sequence. If s, has been defined, let oo € Opq be such that o
extends s,; thisis possible because Op.1 isdense. Since Op.1 isopen, thereisan initia
segment t of o such that every function extending tisin Op.1. Let sh41 be somefinite
sequence that properly extends both s, and t.

We have thus defined a sequence s, S, ... Of finite sequences such that i > j implies that
s properly extends s, and such that any function extending s, (for n > 0) is an element of
On. Leta=ups,; avisatotal function. Moreover, since o extendseach s, oo € O, for al
n,i.e.o € NpOn.

Thisisa special case of amore general theorem, known as the Baire Category Theorem.
(The proof of the general theorem is essentially the same as the present proof.) Notice that
for the theorem to go through, it suffices that each O,, contain some dense open set, since if
for al n O, isadense open subset of Oy, then we can apply the theoremto find o €

~nOn', whence o € Ny On. (Any set containing a dense set isitself dense, so if Oy, contains
adense open set at dl, the interior or O, (i.e. the union of all the open sets contained in Op)
will be adense open set. Thus, we can take Oy’ to be the interior of Op.) Notice also that
O1 need not be dense, but merely nonempty and open, since then we can let s; be any
sequence al of whose total extensionsarein Oy.)

The Baire Category Theorem turns out to have many applicationsin logic, and if thereis
asingle most important principlein logic, it is probably this theorem. Itisusualy applied
inthe following way. Suppose we want to show that thereis afunction that satisfiesa
certain condition C. If we can break C down into a countable family of conditions, then we
can find such afunction if we can find a single function that satisfies all of those conditions
simultaneoudly. If we can arrange things so that each of these conditions is dense and open
(or contains a dense open condition), then the theorem guarantees that such afunction
exists.

Cohen's famous proof of the independence of the continuum hypothesis can be seen as
an application of the category theorem. The theorem can aso be seen as a generdization of
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Cantor's diagona argument. In particular, we can useit to show that there are uncountably
many total functionson N. To seethis, let F be any countable family of such functions, and
foreacho e F, let O, ={P: B # o} . Each O isopen, since two functions are different iff
they disagree on someinitia segment, and each O, is dense, since any finite sequence can
be extended to a function different from .. 1t follows that there is afunction 3 such that 3
e Oy foreacha e F,i.e.suchthat ¢ F. (Thisapplication of the category theorem really
boils down to Cantor's own proof, since in the latter afunction outside F is constructed
stage by stage in just the same way that the function o is constructed in the former.)

Incomparable Degrees.

Let us now consider an application of thistheorem. For all we have said so far, the Turing
degrees might be linearly ordered. It turns out that they are far from being linearly ordered;
in this section, we shall construct a pair of incomparable degrees, i.e. degreesaand b such
that neithera<bnorb<a

Call apair of functions recursively incomparableif neither isrecursivein the other. To
find apair of incomparable degrees, it sufficesto find a pair of recursively incomparable
functions, for then those functions will be of incomparable degrees. Recall that afunction o
isrecursivein 3 just in case o is definable in the language RE with an extra function
symbol for B. Let us define W to be the relation { <k, p>: (3s)(sisan initial segment of B
and W(e, s, k, p))}, and let usidentify functions with their graphs. Then aisrecursivein 3
justin case o = WE for some g, and o is nonrecursive in B iff o= WE for al e. Thus, o
and B will be recursively incomparable if they satisfy all of the conditions o. = WE and B #
W¢ simultaneoudly; to find such o and 3, we need only show that those conditions contain
dense open conditions.

Theorem: There areincomparable Turing degrees.

Proof: Forany e, let Ae={[co, B]: 0.2 WB} and B¢ = {[ct, B]: B # W% . If each of the
Ag¢'s and Be's has a dense open subset, then we can apply the Baire category theorem to
obtain o. and 3 such that [o, B] isin Ae and Be for each e, from which it follows that o and
B arerecursively incomparable. We show that A has a dense open subset; the proof that
Be doesis the same.

Let Ac ={ye Aeg (Is)(sisaninitial segment of v, and any function extending sisin
Agt. Ag isopen, for let ye A and let sc v be such that any function extending sisin Ag;
then any function extending sisasoin A¢. (Infact, A¢ istheinterior of Ae.) We need
only show that A¢' is dense.

Let sbe any finite sequence, and let s; and s, be the even and odd parts of s,
respectively (that is, if s=<x0, ..., Xn>, with n = 2m, then s1 = <xQ, X2, ..., X2m> and 2 =
<X1, X3, ..., X2m-1>, and similarly if n = 2m+1); we need to show that some function
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extending sisin A¢. It sufficesto find an s extending s (or extended by s) such that any
function extending s isin Ae. Noticethat if y=[a, B], then y extends siff o extends s;
and B extends s,.

Case 1. WB c s; fordl B extending s,. In that case, WB # oo whenever o and B
extend s; and sp, because any such o istotal and therefore properly extends s;, so we can
lets=s.

Case 2. WB ¢ s, for some B extending s,. Fix B, and let <k, p>e W - 5. Let sy be
aninitial segment of B such that W(e, ', k, p); then <k, p> e W& for all B’ extending s;'.
We can find an extension ;' of s; such that <k, p> ¢ o' for al o' extending s;: either s;'
has a kth element that is different from p, inwhich we can let s;' = s1, or ;" has no kth
element, in which we can let s;' be an extension of s; whose kth element is different from p.
Let S be an extension of s such that the even and odd parts of s extend s;" and s,'. Then
whenever [o, ] extends s, [a, B] € Ag, asrequired.

We can aso give adirect proof that does not appeal directly to the category theorem.

Second Proof: We construct finite sequences s, S1, &, ... and to, ty, to, ... such that o =
UnS, and B = unt, aretotal functions; we then show that o and 3 are recursively
incomparable.

Let sp=tg=. Suppose s, and t, have been defined. If n=2m, we proceed as
follows. If W < s, for all extensions B of t,, then let sh+1 and th+1 be any finite sequences
that extend s, and t,,. Otherwise, find an extension t,’ of t, and apair <k, p> such that W(e,
ty, Kk, p), and let ;' be an extension of s, such that olk) # p for all extensions o, of sy, asin
thefirst proof. Let sy+1 =S, and th+y =ty If n=2m+1, then do exactly the same, except
reversing therolesof sand .

Now let o0 = Ups, and B = Untn. If v isrecursivein B, then o = W, for some m; but o
and B extend spm and tom, and it is clear from the construction of the ssand t'sthat o = W§,
for any such oo and 3. So o is not recursive in 3, and by same argument 3 is not recursive
ina,i.e. oand P are recursively incomparable.

The construction of the Ssand t'sin this proof is not effective, sinceif it were, o and 3
would be recursive and therefore recursively comparable. In particular, we cannot
effectively decide whether W§, c s, for all extensions B of t,,, since that would involve
surveying all the infinitely many extensions of t,. However, if we had an oracle which gave
us the answer to this question, we could useit to effectively construct o and 3, so o and 3
would be recursive in the oracle. We can therefore modify the proof to place an upper
bound on the Turing degrees of o and B.

Theorem: There areincomparable Turing degrees below 0.
Proof (sketch): It sufficesto show that the functions o, and B constructed in the above
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proof arerecursivein 0'. Consider therelation R ={<s, t, m>: W,  sfor all B extending
t}. Thereation-Risr.e, since<s,t, m>e -Rjust in case (3t' extending t)(IK)(Ip)(W(m, t',
K, p) A <k,p>¢ 9). It followsthat both R and -R arerecursivein 0. Let ¢ beapartia
function which uniformizesther.e. relation {<s, t, [t', k, p]>: t' extendst A W(m, t', k, p) A
<k,p>¢ s}.

We can then construct s, and t, effectively interms of R and ¢. Specificaly, we set 59
= tp = the code of the empty sequence. If n=2m, we set $,+1 = $°<0> (i.e. the
concatenation of s, with the unit sequence <0>) and t+1 = t,"<0> if R(sy, th, M) holds. If
R(sn, th, M) doesn't hold, let [t', k, p] = &(sn, tn). Thent' extendst,, and for any B extending
t', <k, p> e WE - s,. Wethenlett,.1 =t and let sh+1 be some extension of s, such that the
kth element of s,+1 exists and is different from p. (Sy+1 can obviously be found
effectively.) If n=2m+1, we do the same, but with the roles of sand t reversed.

So we see that the mapsn — s, and n — t,, arerecursivein 0'. o and 3 are therefore
aso recursivein 0', since o(n) = the nth member of the sequence sy(n+1) and B(n) = the nth
member of the sequence tyn+1).

This theorem was originally proved by Kleene and Post. Notice that it does not show that
there are any incomparable r.e. degrees, since a degree can be below 0" without containing
any r.e. sets. In fact, the proof that incomparabler.e. degrees exist is a souped-up version
of the proof we just gave.

We can also get arefinement of these results:

Theorem: For any nonrecursive degree a, thereis a degree incomparable with a.
Proof: Let o beatotal function of degree & we need to find afunction 3 recursively
incomparable with o.. For all e, let Aq = {B: oo 2 WB} and B = {B: P = W%} ; it sufficesto
show that each A¢ and each B¢ has a dense open subset. B is dense and open dready, asis
easily seen. Let A¢ betheinterior of Ag asbefore, i.e. Ag ={B: (3s< B)(B)(if B’ extends s
then oo = WE}. We need only show that A is dense.

Let s be any finite sequence; we need to show that A¢' contains some function extending
s, i.e. that thereis a sequence s extending s such that for all B extending s, o = WE.
Suppose thisis not the case; then for al s extending sthereis a3 extending s such that o
= WB. Inthat case, o = {<k, p>: (3s)(sc S AW(e, S, k, p))}. (Suppose <k, p> € o; since
thereisaP extending s such that o. = W, thereisan s extending s such that W(e, s, k, p).
On the other hand, if S extends sand W(e, s, k, p), then <k, p> < WE for al B extending s;
since WE = o for some such B, it follows that <k, p> € o..) Butinthat case, a.isanr.e.
relation and is therefore a recursive function, contradicting our assumption that aisa
nonrecursive degree.

We can refine this a bit further and show that for any nonrecursive degree a, thereisa
degree b below & that isincomparable with a. The proof of thisislike the proof that there
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are incomparable degrees below 0'. (Notice that this result does not directly imply that there
are incomparable degrees below 0', because we cannot takea=0.)

The Separation Theorem for S Sets.

In this section, we show that every D} setisBorel. In fact, we shall prove something
stronger. Call apair (S;, Sp) Borel separableif thereisaBorel set which contains S; and
isdigoint from S,. We shall prove atheorem dueto Lusin, namely that any digoint pair of
St setsis Borel separable. If Sis D, then (S, -S) isadisjoint pair of St sets, so thereisa
Borel set B which separates S from -S; but then S = B, and therefore Sis Bordl.

Notice that aset SisBorel inseparable from aset T iff thereisno Borel set B with S
B < -T. We begin by proving the following.

Lemma: If S=u,S, and SisBorel inseparable from T, then thereisan n such that S;, is
Borel insgparable from T.

Proof: Suppose S, isBorel separable from T for each n. For each n, let B,, be aBorel set
suchthat S, c B, -T. Thenu,S, c unB, < -T. But then S=uU,S, isBorel separable
from T, since u,,B, is Bordl.

Corollary: If the sets of two countable unions are pairwise Borel separable, then the two
unions are Borel separable.

Theorem: Any two digjoint S} sets are Borel separable.

Proof: Let S; and S, be any two S} sets, and assumethat S; and S, are Borel inseparable.
We show that Sy " S, #0. SinceS; and S; are Zi, therearerelations Ry and R, on N
such that

St = {B1: o) (X)R1(T1(x), El(x))}1
Sz = {B2: (o) (X)Ra(T2(X), B2(X))} -

We construct four infinite sequences <dV>, <t)>, <dl)> <bil>, where dlV, etc. are
sequences of length n. First, set &2 = b{® = &9 = b)) = the empty sequence. If sand t are
finite sequences, let

$1%'={B1: @o)(sc o1 A t < Br A (RL(@(X), B2(X)))}

and define S,° ' similarly. In particular, let SV = $,2. b1 and SV = 5,2 ™ Then

S = {B1: @or)(@1(n) = & A Ba(n) = bV A (YR1(T1(X), B1(X)))}
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and similarly for S5, Now suppose &, b{", etc. have been defined and S is Borel
inseparable from S, and define ™7, etc. asfollows. Noticethat SV = U{S;> ! sand t
are sequences of length n+1 that extend the sequences a({‘) and bﬁ“), respectively}, so by our
lemma, we can find such sand t so that ;%' is Borel inseparable from S, Let &™) =
and b{"Y =t for some such sandt. So S"V isBorel inseparable from SIV. Similarly,
we can find sequences s and t of length n+1 which extend &Y and b? and such that S, !
isBorel inseparable from Sy(M; let ax(M= s and by(M=t for some such sandt. S{"? and
S are therefore Borel inseparable.

Thus, the §1”)'s and %”)'s are progressively narrower subsets of S; and S, that are Borel
inseparableif S, and S, themselves are. Moreover, & properly extends &™ whenn>m,
and similarly for by, a, and by; so we can define o, = Updl?, B1 = Unb{?, and similarly for
Ol and Bz.

Observethat 3; = 3. For suppose not; then 31(n) # B2(n) for somen. Let p=1(n),
andlet O ={p: B(n) = p}. Oisopen, asiseasly seen, and istherefore Borel. However,
S < 0 and ™Y < -0, so S™Y and STV are Borel separable, contradiction.

We now show that S intersects S, by showing that B; € S1 N Sp. To provethis, it
suffices to show that (x)R1(ci1(x), B1(X)) and (X)Ra(T2(X), B2(X)). We prove the former;
the proof of the latter isthe same. Suppose ~(X)Ry(Ti1(X), P1(X)). Then for some n, ~R(c
)a(n), B(n)). By our definition of &" and b{?, this just means that ~Ry (&, b{"). It
followsthat SV = @. But then SV isaBorel set that separatesitsalf from SV, which is
impossible. This concludes the proof.

We have aready seen that all Borel sets are D}; we have therefore established Sudlin's
theorem: D% = Borel. Thisisan unusually simple proof for such a sophisticated result.
Notice that it issimilar in flavor to the proof of the existence of incomparable degrees; in
particular, the function 1 is constructed via a stage-by-stage process.

Exercises

1. Consider the language of arithmetic with one extra predicate P(x).

(a) Consider a system in this langual3ge whose axioms are an r.e. set of the language of
arithmetic containing Q. Add the axioms P(0(N)) for each ne S, where Sisany set. No
axioms except these contain the extra predicate P. Assume that the resulting system is -
consistent. On these assumptions, characterize the sets weakly representable in the system
and prove the characterization.

(b) Make the same assumptions asin (a) except that now we have P(0(N)) for each ne S
and ~P(0(N)) for each ng S. Characterize the weakly representable sets and prove the
answe.
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(c) Under the assumptions of (b), characterize the strongly representable (binumerable)
sets, and prove the answer.

2. Consider a system in the second order language of arithmetic (i.e., the language of
arithmetic supplemented with variables and quantifiers for 1-place number theoretic
functions), with al‘[i set of axioms containing at least the axioms of Q, and with the w-rule
added to the usual logical rules.

(a) Under the assumption that al the axioms are true, define a statement analogous to
"GOdel heterological" is Godel heterological' and show that it is true but undecidable.

(b) Show that every true H% sentence is provable. Use thisto show that if al of the
axioms are true, then the sets weakly representable in the system are precisely the 1‘[% Sets.
(Hint: Prove the contrapositive (i.e., that if aHi sentence is not provable, then it is not true)
by a method similar to the proof of the S} separation theorem and its corollary the Sudlin
characterization of the D% sets. Y ou may assume in your proof that the system contains any
reasonable axioms, over and above those in the language of arithmetic, to handle function
quantifiers; in particular, relevant axioms might include (m)((n)(a(m)=noA(c)))2A(cr).)

(c) Let A(x) be aE% formulawith one free number variable. Using (b), show that if the
system is consistent and the set defined is not I}, then some sentence of the form A(0(1)
istrue but unprovable.

(d) Show that if the system is consistent (not necessarily true), then the statement
"Godel heterological” is Godel heterologica' of part (a) must be true but unprovable.

3. Let R be any binary relation on the natural numbers. Suppose that for any partia
recursive function ¢ thereis atotal recursive function y such that R(y(x),0(x)) whenever
o(x) is defined. Prove that, under this hypothesis, for any total recursive function x thereisa
number m such that R(m,y(m)). Show that immediate consequences of this principle for
suitable choices of R are: the self-reference lemma, that every maximal enumeration hasthe
fixed-point property, and that there are two digoint r.e. sets without recursive separation.
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