Upload jolma_split.py
Browse files- jolma_split.py +159 -0
jolma_split.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import pandas as pd
|
3 |
+
import datasets
|
4 |
+
from functools import cached_property, cache
|
5 |
+
|
6 |
+
logger = datasets.logging.get_logger(__name__)
|
7 |
+
|
8 |
+
|
9 |
+
_CITATION = """\
|
10 |
+
@article{jolma2010multiplexed,
|
11 |
+
title={Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities},
|
12 |
+
author={Jolma, Arttu and Kivioja, Teemu and Toivonen, Jarkko and Cheng, Lu and Wei, Gonghong and Enge, Martin and \
|
13 |
+
Taipale, Mikko and Vaquerizas, Juan M and Yan, Jian and Sillanp{\"a}{\"a}, Mikko J and others},
|
14 |
+
journal={Genome research},
|
15 |
+
volume={20},
|
16 |
+
number={6},
|
17 |
+
pages={861--873},
|
18 |
+
year={2010},
|
19 |
+
publisher={Cold Spring Harbor Lab}
|
20 |
+
}
|
21 |
+
"""
|
22 |
+
|
23 |
+
_DESCRIPTION = """\
|
24 |
+
PRJEB3289
|
25 |
+
https://www.ebi.ac.uk/ena/browser/view/PRJEB3289
|
26 |
+
Data that has been generated by HT-SELEX experiments (see Jolma et al. 2010. PMID: 20378718 for description of method) \
|
27 |
+
that has been now used to generate transcription factor binding specificity models for most of the high confidence \
|
28 |
+
human transcription factors. Sequence data is composed of reads generated with Illumina Genome Analyzer IIX and \
|
29 |
+
HiSeq2000 instruments. Samples are composed of single read sequencing of synthetic DNA fragments with a fixed length \
|
30 |
+
randomized region or samples derived from such a initial library by selection with a sequence specific DNA binding \
|
31 |
+
protein. Originally multiple samples with different "barcode" tag sequences were run on the same Illumina sequencing \
|
32 |
+
lane but the released files have been already de-multiplexed, and the constant regions and "barcodes" of each sequence \
|
33 |
+
have been cut out of the sequencing reads to facilitate the use of data. Some of the files are composed of reads from \
|
34 |
+
multiple different sequencing lanes and due to this each of the names of the individual reads have been edited to show \
|
35 |
+
the flowcell and lane that was used to generate it. Barcodes and oligonucleotide designs are indicated in the names of \
|
36 |
+
individual entries. Depending of the selection ligand design, the sequences in each of these fastq-files are either \
|
37 |
+
14, 20, 30 or 40 bases long and had different flanking regions in both sides of the sequence. Each run entry is named \
|
38 |
+
in either of the following ways: Example 1) "BCL6B_DBD_AC_TGCGGG20NGA_1", where name is composed of following fields \
|
39 |
+
ProteinName_CloneType_Batch_BarcodeDesign_SelectionCycle. This experiment used barcode ligand TGCGGG20NGA, where both \
|
40 |
+
of the variable flanking constant regions are indicated as they were on the original sequence-reads. This ligand has \
|
41 |
+
been selected for one round of HT-SELEX using recombinant protein that contained the DNA binding domain of \
|
42 |
+
human transcription factor BCL6B. It also tells that the experiment was performed on batch of experiments named as "AC".\
|
43 |
+
Example 2) 0_TGCGGG20NGA_0 where name is composed of (zero)_BarcodeDesign_(zero) These sequences have been generated \
|
44 |
+
from sequencing of the initial non-selected pool. Same initial pools have been used in multiple experiments that were \
|
45 |
+
on different batches, thus for example this background sequence pool is the shared background for all of the following \
|
46 |
+
samples. BCL6B_DBD_AC_TGCGGG20NGA_1, ZNF784_full_AE_TGCGGG20NGA_3, DLX6_DBD_Y_TGCGGG20NGA_4 and MSX2_DBD_W_TGCGGG20NGA_2
|
47 |
+
"""
|
48 |
+
|
49 |
+
_DOWNLODE_MANAGER = datasets.DownloadManager()
|
50 |
+
_RESOURCE_URL = "https://huggingface.co/datasets/thewall/DeepBindWeight/resolve/main"
|
51 |
+
SELEX_INFO_FILE = _DOWNLODE_MANAGER.download(f"{_RESOURCE_URL}/ERP001824-deepbind.xlsx")
|
52 |
+
PROTEIN_INFO_FILE = _DOWNLODE_MANAGER.download(f"{_RESOURCE_URL}/ERP001824-UniprotKB.xlsx")
|
53 |
+
pattern = re.compile("(\d+)")
|
54 |
+
URL = "https://huggingface.co/datasets/thewall/jolma_split/resolve/main"
|
55 |
+
|
56 |
+
|
57 |
+
class JolmaSplitConfig(datasets.BuilderConfig):
|
58 |
+
def __init__(self, protein_prefix="", protein_suffix="", max_length=1000, max_gene_num=1,
|
59 |
+
aptamer_prefix="", aptamer_suffix="", **kwargs):
|
60 |
+
super(JolmaSplitConfig, self).__init__(**kwargs)
|
61 |
+
self.data_dir = kwargs.get("data_dir")
|
62 |
+
self.protein_prefix = protein_prefix
|
63 |
+
self.protein_suffix = protein_suffix
|
64 |
+
self.aptamer_prefix = aptamer_prefix
|
65 |
+
self.aptamer_suffix = aptamer_suffix
|
66 |
+
self.max_length = max_length
|
67 |
+
self.max_gene_num = max_gene_num
|
68 |
+
|
69 |
+
|
70 |
+
class JolmaSubset(datasets.GeneratorBasedBuilder):
|
71 |
+
|
72 |
+
SELEX_INFO = pd.read_excel(SELEX_INFO_FILE, index_col=0)
|
73 |
+
PROTEIN_INFO = pd.read_excel(PROTEIN_INFO_FILE, index_col=0)
|
74 |
+
|
75 |
+
BUILDER_CONFIGS = [
|
76 |
+
JolmaSplitConfig(name=key) for key in ["p70c10s61087t100", "p99c3s325414t1000"]
|
77 |
+
]
|
78 |
+
|
79 |
+
DEFAULT_CONFIG_NAME = "p70c10s61087t100"
|
80 |
+
|
81 |
+
def _info(self):
|
82 |
+
return datasets.DatasetInfo(
|
83 |
+
description=_DESCRIPTION,
|
84 |
+
features=datasets.Features(
|
85 |
+
{
|
86 |
+
"id": datasets.Value("int32"),
|
87 |
+
"identifier": datasets.Value("string"),
|
88 |
+
"seq": datasets.Value("string"),
|
89 |
+
"quality": datasets.Value("string"),
|
90 |
+
"count": datasets.Value("int32"),
|
91 |
+
"protein": datasets.Value("string"),
|
92 |
+
"protein_id": datasets.Value("string"),
|
93 |
+
}
|
94 |
+
),
|
95 |
+
homepage="https://www.ebi.ac.uk/ena/browser/view/PRJEB3289",
|
96 |
+
citation=_CITATION,
|
97 |
+
)
|
98 |
+
|
99 |
+
@cached_property
|
100 |
+
def selex_info(self):
|
101 |
+
return self.SELEX_INFO.loc[self.config.name]
|
102 |
+
|
103 |
+
@cached_property
|
104 |
+
def protein_info(self):
|
105 |
+
return self.PROTEIN_INFO.loc[self.config.name]
|
106 |
+
|
107 |
+
def design_length(self):
|
108 |
+
return int(pattern.search(self.protein_info["Ligand"]).group(0))
|
109 |
+
|
110 |
+
def get_selex_info(self, sra_id):
|
111 |
+
return self.SELEX_INFO.loc[sra_id]
|
112 |
+
|
113 |
+
def get_protein_info(self, sra_id):
|
114 |
+
return self.PROTEIN_INFO.loc[sra_id]
|
115 |
+
|
116 |
+
@cache
|
117 |
+
def get_design_length(self, sra_id):
|
118 |
+
return int(pattern.search(self.get_protein_info(sra_id)["Ligand"]).group(0))
|
119 |
+
|
120 |
+
def _split_generators(self, dl_manager):
|
121 |
+
train_file = dl_manager.download(f"{URL}/{self.config.name}_train.csv.gz")
|
122 |
+
test_file = dl_manager.download(f"{URL}/{self.config.name}_test.csv.gz")
|
123 |
+
return [
|
124 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_file},),
|
125 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_file}, ),
|
126 |
+
]
|
127 |
+
|
128 |
+
def _generate_examples(self, filepath):
|
129 |
+
"""This function returns the examples in the raw (text) form."""
|
130 |
+
logger.info("generating examples from = %s", filepath)
|
131 |
+
data = pd.read_csv(filepath)
|
132 |
+
for key, row in data.iterrows():
|
133 |
+
sra_id = row["identifier"].split(":")[0]
|
134 |
+
protein_info = self.get_protein_info(sra_id)
|
135 |
+
proteins = protein_info["Sequence"]
|
136 |
+
gene_num = protein_info["Unique Gene"]
|
137 |
+
protein_id = protein_info["Entry"]
|
138 |
+
protein_seq = f"{self.config.protein_prefix}{proteins}{self.config.protein_suffix}"
|
139 |
+
aptamer_seq = f'{self.config.aptamer_prefix}{row["seq"]}{self.config.aptamer_suffix}'
|
140 |
+
if len(protein_seq)>self.config.max_length:
|
141 |
+
continue
|
142 |
+
if gene_num>self.config.max_gene_num:
|
143 |
+
continue
|
144 |
+
if str(proteins)=="nan" or len(str(proteins))==0:
|
145 |
+
continue
|
146 |
+
ans = {"id": key,
|
147 |
+
"protein": protein_seq,
|
148 |
+
"protein_id": protein_id,
|
149 |
+
"seq": aptamer_seq,
|
150 |
+
"identifier": row["identifier"],
|
151 |
+
"count": int(row["count"]),
|
152 |
+
"quality": row['quality']}
|
153 |
+
yield key, ans
|
154 |
+
|
155 |
+
|
156 |
+
if __name__=="__main__":
|
157 |
+
from datasets import load_dataset
|
158 |
+
dataset = load_dataset("jolma_split.py", split="all")
|
159 |
+
|