Datasets:
Tasks:
Object Detection
Formats:
webdataset
Languages:
English
Size:
< 1K
ArXiv:
Tags:
webdataset
License:
Tony Fang
commited on
Commit
·
2dcb6dd
1
Parent(s):
900cef8
edited README.md
Browse files
README.md
CHANGED
|
@@ -139,9 +139,36 @@ cd transformer_benchmark
|
|
| 139 |
python train.py --config Configs/conditional_detr.yaml
|
| 140 |
```
|
| 141 |
|
| 142 |
-
###
|
| 143 |
- Use `tracklet_id` (1-8) from the PKL file as labels.
|
| 144 |
-
- **Temporal Split**: 30% train / 30% val / 40% test (chronological order).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
## Key Results
|
| 147 |
|
|
|
|
| 139 |
python train.py --config Configs/conditional_detr.yaml
|
| 140 |
```
|
| 141 |
|
| 142 |
+
### Temporal Classification
|
| 143 |
- Use `tracklet_id` (1-8) from the PKL file as labels.
|
| 144 |
+
- **Temporal Split**: 30% train / 30% val / 40% test (chronological order).
|
| 145 |
+
|
| 146 |
+
### Benchmark vision models for temporal classification:
|
| 147 |
+
|
| 148 |
+
Step 1: cropping the bounding boxes from `pmfeed_4_3_16.mp4` using the correct labels in `pmfeed_4_3_16_bboxes_and_labels.pkl`. Then convert the folder of images cropped from `pmfeed_4_3_16.mp4` into lmdb dataset for fast loading:
|
| 149 |
+
```
|
| 150 |
+
cd identification_benchmark
|
| 151 |
+
python crop_pmfeed_4_3_16.py
|
| 152 |
+
python construct_lmdb.py
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
Step 2: get embeddings from vision model:
|
| 156 |
+
```
|
| 157 |
+
cd big_model_inference
|
| 158 |
+
```
|
| 159 |
+
Use `inference_resnet.py` to get embeddings from resnet and `inference_transformers.py` to get embeddings from transformer weights available on Huggingface:
|
| 160 |
+
```
|
| 161 |
+
python inference_resnet.py --resnet_type resnet18
|
| 162 |
+
python inference_transformers.py --model_name facebook/convnextv2-nano-1k-224
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
Step 3: use the embeddings and labels obtained from step 2 to conduct knn evaluation and linear classification:
|
| 166 |
+
|
| 167 |
+
```
|
| 168 |
+
cd ../classification
|
| 169 |
+
python train.py
|
| 170 |
+
python knn_evaluation.py
|
| 171 |
+
```
|
| 172 |
|
| 173 |
## Key Results
|
| 174 |
|