import json import os from datasets import Dataset, DatasetDict, Image, Features, Value, Sequence def create_split_dataset(coco_dir, split): """Create a dataset for a single split with exact annotation format""" with open(os.path.join(coco_dir, f"{split}.json")) as f: coco_data = json.load(f) # Create annotation map with full COCO fields ann_map = {img['id']: [] for img in coco_data['images']} for ann in coco_data['annotations']: ann_map[ann['image_id']].append({ 'id': ann['id'], 'category_id': 0, 'bbox': [float(x) for x in ann['bbox']], # Ensure float values 'area': float(ann['area']), 'iscrowd': int(ann.get('iscrowd', 0)) }) # Build dataset entries with exact format dataset = [] for img in coco_data['images']: dataset.append({ 'image_id': int(img['id']), 'image': {'path': os.path.join(coco_dir, img['file_name'])}, 'annotations': ann_map[img['id']] # List of annotation dicts }) # Define features schema features = Features({ 'image_id': Value('int64'), 'image': Image(), 'annotations': [{ 'id': Value('int64'), 'category_id': Value('int64'), 'bbox': [Value('float32')], # List of floats for bbox 'area': Value('float32'), 'iscrowd': Value('int64') }] }) return Dataset.from_list(dataset, features=features) # Configuration coco_dir = "8_calves_coco" debug_limits = {"train": 50, "val": 20, "test": 10} seed = 42 # Initialize containers full_dataset = DatasetDict() debug_dataset = DatasetDict() # Process splits for split in ["train", "val", "test"]: # Create full split dataset full_split = create_split_dataset(coco_dir, split) full_dataset[split] = full_split # Create debug version with random samples debug_split = full_split.shuffle(seed=seed).select(range(debug_limits[split])) debug_dataset[split] = debug_split # Save debug first # debug_dataset.save_to_disk("cache_debug") # print(f"✅ Debug cache saved with {sum(len(d) for d in debug_dataset.values())} samples") # Save full dataset full_dataset.save_to_disk("8_calves_arrow") print(f"✅ Full cache saved with {sum(len(d) for d in full_dataset.values())} samples")