Upload folder using huggingface_hub
Browse files- convert_to_hf.py +37 -6
- data.jsonl +2 -2
convert_to_hf.py
CHANGED
|
@@ -44,6 +44,32 @@ from typing import Tuple, Set
|
|
| 44 |
from huggingface_hub import HfApi, HfFolder
|
| 45 |
from datasets import Dataset
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
def _strify_scalar(x):
|
| 48 |
if x is None:
|
| 49 |
return None
|
|
@@ -116,7 +142,8 @@ def normalize_column(col_name: str, col_payload: Dict[str, Any]) -> Dict[str, An
|
|
| 116 |
|
| 117 |
|
| 118 |
def normalize_table(table_name: str, table_payload: Dict[str, Any]) -> Dict[str, Any]:
|
| 119 |
-
tp = {(k.strip().upper() if isinstance(k, str) else k): v
|
|
|
|
| 120 |
|
| 121 |
columns_obj = tp.get("COLUMNS", {}) or {}
|
| 122 |
columns_list: List[Dict[str, Any]] = []
|
|
@@ -128,7 +155,8 @@ def normalize_table(table_name: str, table_payload: Dict[str, Any]) -> Dict[str,
|
|
| 128 |
for c in columns_obj:
|
| 129 |
if isinstance(c, dict):
|
| 130 |
col_name = (
|
| 131 |
-
c.get("NAME") or c.get("name") or
|
|
|
|
| 132 |
)
|
| 133 |
columns_list.append(normalize_column(str(col_name), c or {}))
|
| 134 |
|
|
@@ -138,7 +166,7 @@ def normalize_table(table_name: str, table_payload: Dict[str, Any]) -> Dict[str,
|
|
| 138 |
base["CHECKS"] = list(tp.get("CHECKS", []) or [])
|
| 139 |
base["INDEXES"] = list(tp.get("INDEXES", []) or [])
|
| 140 |
|
| 141 |
-
# Normalize FKs
|
| 142 |
norm_fks = []
|
| 143 |
for fk in base["FOREIGN_KEYS"]:
|
| 144 |
if not isinstance(fk, dict):
|
|
@@ -152,16 +180,19 @@ def normalize_table(table_name: str, table_payload: Dict[str, Any]) -> Dict[str,
|
|
| 152 |
"ON_UPDATE": _strify_scalar(fk_up.get("ON_UPDATE")),
|
| 153 |
})
|
| 154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
return {
|
| 156 |
"TABLE_NAME": table_name,
|
| 157 |
"COLUMNS": columns_list,
|
| 158 |
-
"PRIMARY_KEYS":
|
| 159 |
"FOREIGN_KEYS": norm_fks,
|
| 160 |
"CHECKS": _strify_list(base["CHECKS"]) or [],
|
| 161 |
-
"INDEXES":
|
| 162 |
}
|
| 163 |
|
| 164 |
-
|
| 165 |
def normalize_record(key: str, payload: Dict[str, Any]) -> Dict[str, Any]:
|
| 166 |
id_part, filename = split_id_filename(key)
|
| 167 |
|
|
|
|
| 44 |
from huggingface_hub import HfApi, HfFolder
|
| 45 |
from datasets import Dataset
|
| 46 |
|
| 47 |
+
def _normalize_index_like(x) -> List[str]:
|
| 48 |
+
"""
|
| 49 |
+
Normalize index-like fields (INDEXES, PRIMARY_KEYS) into a list[str].
|
| 50 |
+
- Single column indexes expressed as ["col"] or [["col"]] -> ["col"]
|
| 51 |
+
- Composite indexes like ["a","b"] or [["a","b"]] -> ["a,b"]
|
| 52 |
+
- Scalars pass through -> ["scalar"]
|
| 53 |
+
"""
|
| 54 |
+
if x is None:
|
| 55 |
+
return []
|
| 56 |
+
if not isinstance(x, list):
|
| 57 |
+
x = [x]
|
| 58 |
+
|
| 59 |
+
out: List[str] = []
|
| 60 |
+
for item in x:
|
| 61 |
+
if item is None:
|
| 62 |
+
continue
|
| 63 |
+
if isinstance(item, (list, tuple, set)):
|
| 64 |
+
flat = [_strify_scalar(v) for v in item if v is not None]
|
| 65 |
+
if len(flat) == 1:
|
| 66 |
+
out.append(flat[0])
|
| 67 |
+
elif len(flat) > 1:
|
| 68 |
+
out.append(",".join(flat))
|
| 69 |
+
else:
|
| 70 |
+
out.append(_strify_scalar(item))
|
| 71 |
+
return out
|
| 72 |
+
|
| 73 |
def _strify_scalar(x):
|
| 74 |
if x is None:
|
| 75 |
return None
|
|
|
|
| 142 |
|
| 143 |
|
| 144 |
def normalize_table(table_name: str, table_payload: Dict[str, Any]) -> Dict[str, Any]:
|
| 145 |
+
tp = {(k.strip().upper() if isinstance(k, str) else k): v
|
| 146 |
+
for k, v in (table_payload or {}).items()}
|
| 147 |
|
| 148 |
columns_obj = tp.get("COLUMNS", {}) or {}
|
| 149 |
columns_list: List[Dict[str, Any]] = []
|
|
|
|
| 155 |
for c in columns_obj:
|
| 156 |
if isinstance(c, dict):
|
| 157 |
col_name = (
|
| 158 |
+
c.get("NAME") or c.get("name") or
|
| 159 |
+
c.get("COLUMN_NAME") or c.get("column_name") or "unknown"
|
| 160 |
)
|
| 161 |
columns_list.append(normalize_column(str(col_name), c or {}))
|
| 162 |
|
|
|
|
| 166 |
base["CHECKS"] = list(tp.get("CHECKS", []) or [])
|
| 167 |
base["INDEXES"] = list(tp.get("INDEXES", []) or [])
|
| 168 |
|
| 169 |
+
# Normalize FKs
|
| 170 |
norm_fks = []
|
| 171 |
for fk in base["FOREIGN_KEYS"]:
|
| 172 |
if not isinstance(fk, dict):
|
|
|
|
| 180 |
"ON_UPDATE": _strify_scalar(fk_up.get("ON_UPDATE")),
|
| 181 |
})
|
| 182 |
|
| 183 |
+
# ✅ Use the new normalizer here
|
| 184 |
+
norm_pks = _normalize_index_like(base["PRIMARY_KEYS"])
|
| 185 |
+
norm_indexes = _normalize_index_like(base["INDEXES"])
|
| 186 |
+
|
| 187 |
return {
|
| 188 |
"TABLE_NAME": table_name,
|
| 189 |
"COLUMNS": columns_list,
|
| 190 |
+
"PRIMARY_KEYS": norm_pks,
|
| 191 |
"FOREIGN_KEYS": norm_fks,
|
| 192 |
"CHECKS": _strify_list(base["CHECKS"]) or [],
|
| 193 |
+
"INDEXES": norm_indexes,
|
| 194 |
}
|
| 195 |
|
|
|
|
| 196 |
def normalize_record(key: str, payload: Dict[str, Any]) -> Dict[str, Any]:
|
| 197 |
id_part, filename = split_id_filename(key)
|
| 198 |
|
data.jsonl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a084eed9ffba1a69765f70c4825589d3b5e1bca2d80e1b7315d3b2094aacae87
|
| 3 |
+
size 337091098
|