import json from collections import defaultdict from datasets import load_dataset def check_jsonl_file(filename): valid = True errors = [] column_types = defaultdict(set) with open(filename, 'r', encoding='utf-8') as f: for i, line in enumerate(f): line = line.strip() if not line: continue try: obj = json.loads(line) except Exception as e: valid = False errors.append(f"Line {i+1}: Invalid JSON ({e})") continue if not isinstance(obj, dict): valid = False errors.append(f"Line {i+1}: Not a JSON object") continue for k, v in obj.items(): column_types[k].add(type(v).__name__) # Check for consistent column types inconsistent = {k: v for k, v in column_types.items() if len(v) > 1} if inconsistent: valid = False for k, types in inconsistent.items(): errors.append(f"Column '{k}' has inconsistent types: {types}") # Check for trailing data (extra non-JSON lines) with open(filename, 'rb') as f: f.seek(-2, 2) last = f.read().decode(errors='ignore') if not last.endswith('\n'): errors.append("File does not end with a newline (possible trailing data)") if valid: print("data.jsonl passed all checks.") else: print("data.jsonl failed checks:") for err in errors: print(err) if __name__ == "__main__": check_jsonl_file("data.jsonl") ds = load_dataset("cwolff/schemapile", split="full") print(f"Loaded dataset with {len(ds)} records.") print(ds[0])