#!/usr/bin/env python3 """ Transform repo-style schema JSON into a Hugging Face–friendly "long list": - Top-level keys like "002125_filename" are moved into each record's INFO: INFO.ID = "002125" INFO.FILENAME = "filename" - Normalize tables and columns to consistent lists (not dicts). - Ensure presence of standard fields with sensible defaults. - Output as JSON (list) or JSON Lines. Usage: python transform_to_hf.py input.json -o output.json # JSON array python transform_to_hf.py input.json -o output.jsonl --jsonl # JSONL """ import argparse import json import sys from typing import Any, Dict, List, Optional import gzip # -------- Defaults & helpers -------- DEFAULT_COLUMN = { "TYPE": None, "NULLABLE": True, "UNIQUE": False, "DEFAULT": None, "CHECKS": [], "IS_PRIMARY": False, "IS_INDEX": False, "VALUES": None, } DEFAULT_TABLE = { "PRIMARY_KEYS": [], "FOREIGN_KEYS": [], "CHECKS": [], "INDEXES": [], } from typing import Tuple, Set from huggingface_hub import HfApi, HfFolder from datasets import Dataset def _normalize_index_like(x) -> List[str]: """ Normalize index-like fields (INDEXES, PRIMARY_KEYS) into a list[str]. - Single column indexes expressed as ["col"] or [["col"]] -> ["col"] - Composite indexes like ["a","b"] or [["a","b"]] -> ["a,b"] - Scalars pass through -> ["scalar"] """ if x is None: return [] if not isinstance(x, list): x = [x] out: List[str] = [] for item in x: if item is None: continue if isinstance(item, (list, tuple, set)): flat = [_strify_scalar(v) for v in item if v is not None] if len(flat) == 1: out.append(flat[0]) elif len(flat) > 1: out.append(",".join(flat)) else: out.append(_strify_scalar(item)) return out def _strify_scalar(x): if x is None: return None if isinstance(x, (dict, list, tuple, set)): # stable textual form for complex values return json.dumps(x, ensure_ascii=False) return str(x) def _strify_list(x): if x is None: return None if not isinstance(x, list): x = [x] return [_strify_scalar(v) for v in x] def split_id_filename(key: str): """Split '002125_filename.ext' into ('002125', 'filename.ext') if possible.""" if "_" in key: id_part, filename = key.split("_", 1) return id_part, filename return None, key # no obvious ID; put the whole key as filename def norm_list(x, *, default_empty_list=True): if x is None: return [] if default_empty_list else None if isinstance(x, list): return x # tolerate single item -> list return [x] def coalesce(a, b): """Merge dictionaries with 'a' taking precedence where keys overlap.""" out = dict(b or {}) out.update(a or {}) return out def normalize_column(col_name: str, col_payload: Dict[str, Any]) -> Dict[str, Any]: # Normalize keys, handle weird VALUES’ key variants payload = {} weird_values_keys = [k for k in col_payload.keys() if str(k).strip("’'\"").upper() == "VALUES"] for k, v in (col_payload or {}).items(): key_up = str(k).strip().upper().strip("’\"") if key_up == "VALUES" or k in weird_values_keys: payload["VALUES"] = v else: payload[key_up] = v base = DEFAULT_COLUMN.copy() base.update(payload) # Coerce heterogeneous fields to stable types checks = _strify_list(base.get("CHECKS")) or [] values = _strify_list(base.get("VALUES")) # None or list[str] default_val = _strify_scalar(base.get("DEFAULT")) ctype = _strify_scalar(base.get("TYPE")) normalized = { "NAME": col_name, "TYPE": ctype, "NULLABLE": bool(base.get("NULLABLE", True)), "UNIQUE": bool(base.get("UNIQUE", False)), "DEFAULT": default_val, "CHECKS": checks, "IS_PRIMARY": bool(base.get("IS_PRIMARY", False)), "IS_INDEX": bool(base.get("IS_INDEX", False)), "VALUES": values, } return normalized def normalize_table(table_name: str, table_payload: Dict[str, Any]) -> Dict[str, Any]: tp = {(k.strip().upper() if isinstance(k, str) else k): v for k, v in (table_payload or {}).items()} columns_obj = tp.get("COLUMNS", {}) or {} columns_list: List[Dict[str, Any]] = [] if isinstance(columns_obj, dict): for col_name, col_payload in columns_obj.items(): columns_list.append(normalize_column(str(col_name), col_payload or {})) elif isinstance(columns_obj, list): for c in columns_obj: if isinstance(c, dict): col_name = ( c.get("NAME") or c.get("name") or c.get("COLUMN_NAME") or c.get("column_name") or "unknown" ) columns_list.append(normalize_column(str(col_name), c or {})) base = DEFAULT_TABLE.copy() base["PRIMARY_KEYS"] = list(base.get("PRIMARY_KEYS", [])) + list(tp.get("PRIMARY_KEYS", []) or []) base["FOREIGN_KEYS"] = list(tp.get("FOREIGN_KEYS", []) or []) base["CHECKS"] = list(tp.get("CHECKS", []) or []) base["INDEXES"] = list(tp.get("INDEXES", []) or []) # Normalize FKs norm_fks = [] for fk in base["FOREIGN_KEYS"]: if not isinstance(fk, dict): continue fk_up = {(k.strip().upper() if isinstance(k, str) else k): v for k, v in fk.items()} norm_fks.append({ "COLUMNS": _strify_list(fk_up.get("COLUMNS")) or [], "FOREIGN_TABLE": _strify_scalar(fk_up.get("FOREIGN_TABLE")), "REFERRED_COLUMNS": _strify_list(fk_up.get("REFERRED_COLUMNS")) or [], "ON_DELETE": _strify_scalar(fk_up.get("ON_DELETE")), "ON_UPDATE": _strify_scalar(fk_up.get("ON_UPDATE")), }) # ✅ Use the new normalizer here norm_pks = _normalize_index_like(base["PRIMARY_KEYS"]) norm_indexes = _normalize_index_like(base["INDEXES"]) return { "TABLE_NAME": table_name, "COLUMNS": columns_list, "PRIMARY_KEYS": norm_pks, "FOREIGN_KEYS": norm_fks, "CHECKS": _strify_list(base["CHECKS"]) or [], "INDEXES": norm_indexes, } def normalize_record(key: str, payload: Dict[str, Any]) -> Dict[str, Any]: id_part, filename = split_id_filename(key) # Merge INFO with synthesized fields info_in = payload.get("INFO", {}) or {} info_norm = dict(info_in) # shallow copy if id_part: info_norm.setdefault("ID", id_part) info_norm.setdefault("FILENAME", filename) # Normalize TABLES -> list of tables tables_obj = payload.get("TABLES", {}) or {} tables_list = [] if isinstance(tables_obj, dict): for tname, tpayload in tables_obj.items(): tables_list.append(normalize_table(tname, tpayload or {})) elif isinstance(tables_obj, list): # Already a list; ensure each is normalized and has TABLE_NAME for t in tables_obj: if isinstance(t, dict): tname = t.get("TABLE_NAME") or t.get("name") or "unknown" tables_list.append(normalize_table(tname, t)) normalized = { "ID": info_norm.get("ID", None), "FILENAME": info_norm.get("FILENAME", None), "URL": info_in.get("URL", None), "LICENSE": info_in["LICENSE"] if "LICENSE" in info_in else "UNKNOWN", "PERMISSIVE": bool(info_in.get("PERMISSIVE", False)), "TABLES": tables_list, } return normalized def transform(data: Dict[str, Any]) -> List[Dict[str, Any]]: if not isinstance(data, dict): raise ValueError("Expected top-level object to be a dict mapping keys like '002125_filename' to records.") out: List[Dict[str, Any]] = [] for key, payload in data.items(): out.append(normalize_record(str(key), payload or {})) return out # -------- CLI -------- def main(): with gzip.open("schemapile-perm.json.gz", "rt", encoding="utf-8") as f: data = json.loads(f.read()) records = transform(data) # Emit fh = open("data.jsonl", "w", encoding="utf-8") close = True try: for rec in records: fh.write(json.dumps(rec, ensure_ascii=False) + "\n") finally: if close: fh.close() # Upload to Hugging Face Hub using the datasets library # Load the JSONL file into a Hugging Face Dataset dataset = Dataset.from_json("data.jsonl") if __name__ == "__main__": main()