--- dataset_info: features: - name: en dtype: string - name: vi dtype: string splits: - name: train num_bytes: 536891664 num_examples: 2977999 - name: dev num_bytes: 3341942 num_examples: 18719 - name: test num_bytes: 3633646 num_examples: 19151 download_size: 317794951 dataset_size: 543867252 configs: - config_name: default data_files: - split: train path: data/train-* - split: dev path: data/dev-* - split: test path: data/test-* license: apache-2.0 --- - The original dataset is the high-quality work of VinAI Research. - I just simply to process and reformat this data into the standard Hugging Face datasets structure, making it accessible for pretraining compact models. ```python @inproceedings{PhoMT, title = {{PhoMT: A High-Quality and Large-Scale Benchmark Dataset for Vietnamese-English Machine Translation}}, author = {Long Doan and Linh The Nguyen and Nguyen Luong Tran and Thai Hoang and Dat Quoc Nguyen}, booktitle = {Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, year = {2021}, pages = {4495--4503} } ```