File size: 1,872 Bytes
0b08271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
task_categories:
- question-answering
- table-question-answering
- text-generation
- text2text-generation
language:
- en
tags:
- text2sql
- text-to-sql
- database
- llm
- llama
pretty_name: birdbench
size_categories:
- 100M<n<1B
---
## BirdBench Dataset in DuckDB format

BirdBench is a benchmark for text-to-SQL capabilities, now available in DuckDB format for improved performance and usability.

## About BirdBench

BirdBench is a comprehensive benchmark dataset for evaluating text-to-SQL capabilities of language models. It features a diverse collection of databases spanning various domains including:

- Business and finance
- Entertainment and media
- Sports and recreation
- Health and medicine
- Education
- Travel and geography
- And many more

## Why DuckDB?

This repository contains the BirdBench dataset converted from SQLite to DuckDB format, which offers several advantages:

- **Performance**: DuckDB is significantly faster for analytical queries
- **Integration**: Better integration with Python data science tools
- **Features**: Support for vectorized operations and advanced analytical functions
- **Compatibility**: Works well in environments where SQLite might have limitations

## Dataset Structure

The dataset maintains the original BirdBench structure, with both training and validation databases converted to DuckDB format:

- `/train` - Contains training databases
- `/validation` - Contains validation databases

Each database preserves the original schema and data from the SQLite version.

## Usage

### Loading a database

```python
import duckdb

# Connect to a database
conn = duckdb.connect('path/to/database.duckdb')

# List tables
tables = conn.execute('SELECT name FROM sqlite_master WHERE type="table"').fetchall()
print(tables)

# Run a query
result = conn.execute('SELECT * FROM your_table LIMIT 5').fetchall()
print(result)