Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Languages:
Vietnamese
Size:
1K - 10K
DOI:
License:
| import json | |
| from pathlib import Path | |
| from collections import Counter | |
| import statistics as stats | |
| def load_jsonl(file_path): | |
| """Load JSONL file and return list of items.""" | |
| items = [] | |
| with open(file_path, 'r', encoding='utf-8') as f: | |
| for line in f: | |
| items.append(json.loads(line.strip())) | |
| return items | |
| def calculate_text_statistics(items): | |
| """Calculate statistics for text fields.""" | |
| text_lengths = [len(item['text'].split()) for item in items] | |
| char_lengths = [len(item['text']) for item in items] | |
| return { | |
| 'avg_words': stats.mean(text_lengths), | |
| 'min_words': min(text_lengths), | |
| 'max_words': max(text_lengths), | |
| 'median_words': stats.median(text_lengths), | |
| 'avg_chars': stats.mean(char_lengths), | |
| 'min_chars': min(char_lengths), | |
| 'max_chars': max(char_lengths), | |
| 'median_chars': stats.median(char_lengths), | |
| } | |
| def analyze_classification_subset(): | |
| """Analyze classification subset statistics.""" | |
| print("\n" + "="*60) | |
| print("CLASSIFICATION SUBSET ANALYSIS") | |
| print("="*60) | |
| for split in ['train', 'test']: | |
| file_path = Path(f'data/classification/{split}.jsonl') | |
| items = load_jsonl(file_path) | |
| print(f"\n{split.upper()} Split:") | |
| print(f" Total examples: {len(items)}") | |
| # Label distribution | |
| label_counter = Counter(item['label'] for item in items) | |
| print("\n Label Distribution:") | |
| for label, count in label_counter.most_common(): | |
| percentage = (count / len(items)) * 100 | |
| print(f" {label:20s}: {count:4d} ({percentage:5.1f}%)") | |
| # Text statistics | |
| text_stats = calculate_text_statistics(items) | |
| print("\n Text Statistics:") | |
| print(f" Words per text - Avg: {text_stats['avg_words']:.1f}, " | |
| f"Min: {text_stats['min_words']}, Max: {text_stats['max_words']}, " | |
| f"Median: {text_stats['median_words']:.1f}") | |
| print(f" Chars per text - Avg: {text_stats['avg_chars']:.1f}, " | |
| f"Min: {text_stats['min_chars']}, Max: {text_stats['max_chars']}, " | |
| f"Median: {text_stats['median_chars']:.1f}") | |
| def analyze_sentiment_subset(): | |
| """Analyze sentiment subset statistics.""" | |
| print("\n" + "="*60) | |
| print("SENTIMENT SUBSET ANALYSIS") | |
| print("="*60) | |
| for split in ['train', 'test']: | |
| file_path = Path(f'data/sentiment/{split}.jsonl') | |
| items = load_jsonl(file_path) | |
| print(f"\n{split.upper()} Split:") | |
| print(f" Total examples: {len(items)}") | |
| # Sentiment distribution | |
| sentiment_counter = Counter(item['sentiment'] for item in items) | |
| print("\n Sentiment Distribution:") | |
| for sentiment, count in sentiment_counter.most_common(): | |
| percentage = (count / len(items)) * 100 | |
| print(f" {sentiment:10s}: {count:4d} ({percentage:5.1f}%)") | |
| # Text statistics | |
| text_stats = calculate_text_statistics(items) | |
| print("\n Text Statistics:") | |
| print(f" Words per text - Avg: {text_stats['avg_words']:.1f}, " | |
| f"Min: {text_stats['min_words']}, Max: {text_stats['max_words']}, " | |
| f"Median: {text_stats['median_words']:.1f}") | |
| def analyze_aspect_sentiment_subset(): | |
| """Analyze aspect-sentiment subset statistics.""" | |
| print("\n" + "="*60) | |
| print("ASPECT-SENTIMENT SUBSET ANALYSIS") | |
| print("="*60) | |
| for split in ['train', 'test']: | |
| file_path = Path(f'data/aspect_sentiment/{split}.jsonl') | |
| items = load_jsonl(file_path) | |
| print(f"\n{split.upper()} Split:") | |
| print(f" Total examples: {len(items)}") | |
| # Multi-aspect analysis | |
| single_aspect = sum(1 for item in items if len(item['aspects']) == 1) | |
| multi_aspect = sum(1 for item in items if len(item['aspects']) > 1) | |
| max_aspects = max(len(item['aspects']) for item in items) | |
| print(f"\n Aspect Coverage:") | |
| print(f" Single aspect: {single_aspect} ({(single_aspect/len(items))*100:.1f}%)") | |
| print(f" Multi-aspect: {multi_aspect} ({(multi_aspect/len(items))*100:.1f}%)") | |
| print(f" Max aspects per example: {max_aspects}") | |
| # Aspect-sentiment pair distribution | |
| aspect_sentiment_pairs = [] | |
| for item in items: | |
| for asp in item['aspects']: | |
| aspect_sentiment_pairs.append(f"{asp['aspect']}#{asp['sentiment']}") | |
| pair_counter = Counter(aspect_sentiment_pairs) | |
| print("\n Top 10 Aspect-Sentiment Pairs:") | |
| for pair, count in pair_counter.most_common(10): | |
| aspect, sentiment = pair.split('#') | |
| percentage = (count / len(aspect_sentiment_pairs)) * 100 | |
| print(f" {aspect:20s} + {sentiment:8s}: {count:4d} ({percentage:5.1f}%)") | |
| # Overall aspect distribution | |
| aspect_counter = Counter() | |
| sentiment_by_aspect = {} | |
| for item in items: | |
| for asp in item['aspects']: | |
| aspect = asp['aspect'] | |
| sentiment = asp['sentiment'] | |
| aspect_counter[aspect] += 1 | |
| if aspect not in sentiment_by_aspect: | |
| sentiment_by_aspect[aspect] = Counter() | |
| sentiment_by_aspect[aspect][sentiment] += 1 | |
| print("\n Aspect Distribution with Sentiment Breakdown:") | |
| for aspect, count in aspect_counter.most_common(): | |
| percentage = (count / sum(aspect_counter.values())) * 100 | |
| print(f"\n {aspect:20s}: {count:4d} ({percentage:5.1f}%)") | |
| # Sentiment breakdown for this aspect | |
| sentiments = sentiment_by_aspect[aspect] | |
| total_aspect = sum(sentiments.values()) | |
| for sentiment in ['positive', 'negative', 'neutral']: | |
| if sentiment in sentiments: | |
| sent_count = sentiments[sentiment] | |
| sent_pct = (sent_count / total_aspect) * 100 | |
| print(f" - {sentiment:8s}: {sent_count:3d} ({sent_pct:5.1f}%)") | |
| def generate_summary_statistics(): | |
| """Generate overall summary statistics.""" | |
| print("\n" + "="*60) | |
| print("DATASET SUMMARY") | |
| print("="*60) | |
| total_train = len(load_jsonl('data/classification/train.jsonl')) | |
| total_test = len(load_jsonl('data/classification/test.jsonl')) | |
| print("\nTotal Dataset Size:") | |
| print(f" Train: {total_train} examples") | |
| print(f" Test: {total_test} examples") | |
| print(f" Total: {total_train + total_test} examples") | |
| print(f" Train/Test Ratio: {total_train/total_test:.2f}:1") | |
| # Available subsets | |
| print("\nAvailable Subsets:") | |
| print(" 1. Classification: Text → Label (14 banking aspect categories)") | |
| print(" 2. Sentiment: Text → Sentiment (positive/negative/neutral)") | |
| print(" 3. Aspect-Sentiment: Text → Multiple (Aspect, Sentiment) pairs") | |
| # Data format | |
| print("\nData Format:") | |
| print(" - All subsets use JSONL format") | |
| print(" - UTF-8 encoding") | |
| print(" - Vietnamese language text") | |
| # Use cases | |
| print("\nRecommended Use Cases:") | |
| print(" - Classification: Banking domain text classification") | |
| print(" - Sentiment: Customer feedback sentiment analysis") | |
| print(" - Aspect-Sentiment: Fine-grained aspect-based sentiment analysis") | |
| def save_statistics_report(): | |
| """Save statistics to a markdown file.""" | |
| import sys | |
| from io import StringIO | |
| # Capture output | |
| old_stdout = sys.stdout | |
| sys.stdout = buffer = StringIO() | |
| # Run all analyses | |
| generate_summary_statistics() | |
| analyze_classification_subset() | |
| analyze_sentiment_subset() | |
| analyze_aspect_sentiment_subset() | |
| # Get output | |
| output = buffer.getvalue() | |
| sys.stdout = old_stdout | |
| # Save to file | |
| with open('statistics_report.md', 'w', encoding='utf-8') as f: | |
| f.write("# UTS2017_Bank Dataset Statistics Report\n\n") | |
| f.write("```\n") | |
| f.write(output) | |
| f.write("```\n") | |
| print("Statistics report saved to statistics_report.md") | |
| if __name__ == "__main__": | |
| generate_summary_statistics() | |
| analyze_classification_subset() | |
| analyze_sentiment_subset() | |
| analyze_aspect_sentiment_subset() | |
| print("\n" + "="*60) | |
| save_statistics_report() |