Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Languages:
Vietnamese
Size:
1K - 10K
DOI:
License:
Vu Anh
commited on
Commit
·
0702fa5
1
Parent(s):
5fb8014
Simplify validation script - only test HuggingFace Hub loading
Browse files- Removed file structure validation
- Removed JSONL format validation
- Removed data content validation
- Removed data consistency checks
- Keep only HuggingFace Hub loading test
- Much cleaner and focused validation
- validate.py +7 -263
validate.py
CHANGED
|
@@ -1,172 +1,15 @@
|
|
| 1 |
"""
|
| 2 |
-
Validation script to verify the UTS2017_Bank dataset
|
| 3 |
"""
|
| 4 |
|
| 5 |
-
import json
|
| 6 |
-
from pathlib import Path
|
| 7 |
-
|
| 8 |
from datasets import load_dataset
|
| 9 |
|
| 10 |
|
| 11 |
-
def validate_file_structure():
|
| 12 |
-
"""Validate that all required files and directories exist."""
|
| 13 |
-
print("=" * 60)
|
| 14 |
-
print("VALIDATING FILE STRUCTURE")
|
| 15 |
-
print("=" * 60)
|
| 16 |
-
|
| 17 |
-
required_files = [
|
| 18 |
-
"data/classification/train.jsonl",
|
| 19 |
-
"data/classification/test.jsonl",
|
| 20 |
-
"data/sentiment/train.jsonl",
|
| 21 |
-
"data/sentiment/test.jsonl",
|
| 22 |
-
"data/aspect_sentiment/train.jsonl",
|
| 23 |
-
"data/aspect_sentiment/test.jsonl",
|
| 24 |
-
"raw_data/train.txt",
|
| 25 |
-
"raw_data/test.txt",
|
| 26 |
-
"README.md",
|
| 27 |
-
"preprocess.py",
|
| 28 |
-
"stats.py"
|
| 29 |
-
]
|
| 30 |
-
|
| 31 |
-
missing_files = []
|
| 32 |
-
for file_path in required_files:
|
| 33 |
-
if not Path(file_path).exists():
|
| 34 |
-
missing_files.append(file_path)
|
| 35 |
-
else:
|
| 36 |
-
print(f"✓ {file_path}")
|
| 37 |
-
|
| 38 |
-
if missing_files:
|
| 39 |
-
print(f"\n❌ Missing files: {missing_files}")
|
| 40 |
-
return False
|
| 41 |
-
else:
|
| 42 |
-
print("\n✅ All required files present")
|
| 43 |
-
return True
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
def validate_jsonl_format(file_path):
|
| 47 |
-
"""Validate JSONL file format and return basic stats."""
|
| 48 |
-
try:
|
| 49 |
-
with open(file_path, encoding="utf-8") as f:
|
| 50 |
-
items = []
|
| 51 |
-
for line_num, line in enumerate(f, 1):
|
| 52 |
-
try:
|
| 53 |
-
item = json.loads(line.strip())
|
| 54 |
-
items.append(item)
|
| 55 |
-
except json.JSONDecodeError as e:
|
| 56 |
-
print(f"❌ JSON error in {file_path} line {line_num}: {e}")
|
| 57 |
-
return None
|
| 58 |
-
|
| 59 |
-
return items
|
| 60 |
-
except Exception as e:
|
| 61 |
-
print(f"❌ Error reading {file_path}: {e}")
|
| 62 |
-
return None
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
def validate_data_content():
|
| 66 |
-
"""Validate the content and format of each dataset subset."""
|
| 67 |
-
print("\n" + "=" * 60)
|
| 68 |
-
print("VALIDATING DATA CONTENT")
|
| 69 |
-
print("=" * 60)
|
| 70 |
-
|
| 71 |
-
# Classification subset validation
|
| 72 |
-
print("\n📊 Classification Subset:")
|
| 73 |
-
for split in ["train", "test"]:
|
| 74 |
-
file_path = f"data/classification/{split}.jsonl"
|
| 75 |
-
items = validate_jsonl_format(file_path)
|
| 76 |
-
|
| 77 |
-
if items is None:
|
| 78 |
-
continue
|
| 79 |
-
|
| 80 |
-
print(f" {split}: {len(items)} examples")
|
| 81 |
-
|
| 82 |
-
# Check required fields
|
| 83 |
-
if items:
|
| 84 |
-
required_fields = ["text", "label"]
|
| 85 |
-
sample = items[0]
|
| 86 |
-
missing_fields = [f for f in required_fields if f not in sample]
|
| 87 |
-
|
| 88 |
-
if missing_fields:
|
| 89 |
-
print(f" ❌ Missing fields: {missing_fields}")
|
| 90 |
-
else:
|
| 91 |
-
print(" ✓ Required fields present")
|
| 92 |
-
|
| 93 |
-
# Check label variety
|
| 94 |
-
labels = {item["label"] for item in items}
|
| 95 |
-
print(f" ✓ {len(labels)} unique labels")
|
| 96 |
-
|
| 97 |
-
# Sentiment subset validation
|
| 98 |
-
print("\n😊 Sentiment Subset:")
|
| 99 |
-
for split in ["train", "test"]:
|
| 100 |
-
file_path = f"data/sentiment/{split}.jsonl"
|
| 101 |
-
items = validate_jsonl_format(file_path)
|
| 102 |
-
|
| 103 |
-
if items is None:
|
| 104 |
-
continue
|
| 105 |
-
|
| 106 |
-
print(f" {split}: {len(items)} examples")
|
| 107 |
-
|
| 108 |
-
# Check required fields
|
| 109 |
-
if items:
|
| 110 |
-
required_fields = ["text", "sentiment"]
|
| 111 |
-
sample = items[0]
|
| 112 |
-
missing_fields = [f for f in required_fields if f not in sample]
|
| 113 |
-
|
| 114 |
-
if missing_fields:
|
| 115 |
-
print(f" ❌ Missing fields: {missing_fields}")
|
| 116 |
-
else:
|
| 117 |
-
print(" ✓ Required fields present")
|
| 118 |
-
|
| 119 |
-
# Check sentiment values
|
| 120 |
-
sentiments = {item["sentiment"] for item in items}
|
| 121 |
-
expected_sentiments = {"positive", "negative", "neutral"}
|
| 122 |
-
if sentiments.issubset(expected_sentiments):
|
| 123 |
-
print(f" ✓ Valid sentiments: {sentiments}")
|
| 124 |
-
else:
|
| 125 |
-
print(f" ❌ Unexpected sentiments: {sentiments - expected_sentiments}")
|
| 126 |
-
|
| 127 |
-
# Aspect-sentiment subset validation
|
| 128 |
-
print("\n🎯 Aspect-Sentiment Subset:")
|
| 129 |
-
for split in ["train", "test"]:
|
| 130 |
-
file_path = f"data/aspect_sentiment/{split}.jsonl"
|
| 131 |
-
items = validate_jsonl_format(file_path)
|
| 132 |
-
|
| 133 |
-
if items is None:
|
| 134 |
-
continue
|
| 135 |
-
|
| 136 |
-
print(f" {split}: {len(items)} examples")
|
| 137 |
-
|
| 138 |
-
# Check required fields
|
| 139 |
-
if items:
|
| 140 |
-
required_fields = ["text", "aspects"]
|
| 141 |
-
sample = items[0]
|
| 142 |
-
missing_fields = [f for f in required_fields if f not in sample]
|
| 143 |
-
|
| 144 |
-
if missing_fields:
|
| 145 |
-
print(f" ❌ Missing fields: {missing_fields}")
|
| 146 |
-
else:
|
| 147 |
-
print(" ✓ Required fields present")
|
| 148 |
-
|
| 149 |
-
# Check aspects structure
|
| 150 |
-
if "aspects" in sample and isinstance(sample["aspects"], list):
|
| 151 |
-
if sample["aspects"]:
|
| 152 |
-
aspect_sample = sample["aspects"][0]
|
| 153 |
-
aspect_fields = ["aspect", "sentiment"]
|
| 154 |
-
missing_aspect_fields = [f for f in aspect_fields if f not in aspect_sample]
|
| 155 |
-
|
| 156 |
-
if missing_aspect_fields:
|
| 157 |
-
print(f" ❌ Missing aspect fields: {missing_aspect_fields}")
|
| 158 |
-
else:
|
| 159 |
-
print(" ✓ Aspect structure valid")
|
| 160 |
-
|
| 161 |
-
# Count multi-aspect examples
|
| 162 |
-
multi_aspect = sum(1 for item in items if len(item["aspects"]) > 1)
|
| 163 |
-
print(f" ✓ Multi-aspect examples: {multi_aspect}/{len(items)}")
|
| 164 |
-
|
| 165 |
-
|
| 166 |
def validate_huggingface_loading():
|
| 167 |
"""Validate that the dataset can be loaded from HuggingFace Hub."""
|
| 168 |
|
| 169 |
-
print("
|
|
|
|
| 170 |
print("VALIDATING HUGGINGFACE HUB LOADING")
|
| 171 |
print("=" * 60)
|
| 172 |
|
|
@@ -187,111 +30,12 @@ def validate_huggingface_loading():
|
|
| 187 |
except Exception as e:
|
| 188 |
print(f" ❌ Failed to load {config} from Hub: {e}")
|
| 189 |
|
| 190 |
-
|
| 191 |
-
def validate_data_consistency():
|
| 192 |
-
"""Validate data consistency across subsets."""
|
| 193 |
-
print("\n" + "=" * 60)
|
| 194 |
-
print("VALIDATING DATA CONSISTENCY")
|
| 195 |
-
print("=" * 60)
|
| 196 |
-
|
| 197 |
-
# Load all classification data to get baseline
|
| 198 |
-
classification_train = validate_jsonl_format("data/classification/train.jsonl")
|
| 199 |
-
classification_test = validate_jsonl_format("data/classification/test.jsonl")
|
| 200 |
-
|
| 201 |
-
sentiment_train = validate_jsonl_format("data/sentiment/train.jsonl")
|
| 202 |
-
sentiment_test = validate_jsonl_format("data/sentiment/test.jsonl")
|
| 203 |
-
|
| 204 |
-
aspect_train = validate_jsonl_format("data/aspect_sentiment/train.jsonl")
|
| 205 |
-
aspect_test = validate_jsonl_format("data/aspect_sentiment/test.jsonl")
|
| 206 |
-
|
| 207 |
-
if all([classification_train, classification_test, sentiment_train,
|
| 208 |
-
sentiment_test, aspect_train, aspect_test]):
|
| 209 |
-
|
| 210 |
-
# Check example counts consistency
|
| 211 |
-
train_counts = [len(classification_train), len(sentiment_train), len(aspect_train)]
|
| 212 |
-
test_counts = [len(classification_test), len(sentiment_test), len(aspect_test)]
|
| 213 |
-
|
| 214 |
-
if len(set(train_counts)) == 1:
|
| 215 |
-
print(f"✓ Train counts consistent: {train_counts[0]} examples")
|
| 216 |
-
else:
|
| 217 |
-
print(f"❌ Train counts inconsistent: {train_counts}")
|
| 218 |
-
|
| 219 |
-
if len(set(test_counts)) == 1:
|
| 220 |
-
print(f"✓ Test counts consistent: {test_counts[0]} examples")
|
| 221 |
-
else:
|
| 222 |
-
print(f"❌ Test counts inconsistent: {test_counts}")
|
| 223 |
-
|
| 224 |
-
# Check text consistency (first few examples)
|
| 225 |
-
print("\n🔍 Checking text consistency across subsets:")
|
| 226 |
-
for i in range(min(3, len(classification_train))):
|
| 227 |
-
clf_text = classification_train[i]["text"]
|
| 228 |
-
sent_text = sentiment_train[i]["text"]
|
| 229 |
-
asp_text = aspect_train[i]["text"]
|
| 230 |
-
|
| 231 |
-
if clf_text == sent_text == asp_text:
|
| 232 |
-
print(f" ✓ Example {i+1}: Text consistent")
|
| 233 |
-
else:
|
| 234 |
-
print(f" ❌ Example {i+1}: Text inconsistent")
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
def generate_validation_summary():
|
| 238 |
-
"""Generate a summary of dataset statistics."""
|
| 239 |
print("\n" + "=" * 60)
|
| 240 |
-
print("
|
| 241 |
print("=" * 60)
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
total_train = 0
|
| 245 |
-
total_test = 0
|
| 246 |
-
|
| 247 |
-
classification_train = validate_jsonl_format("data/classification/train.jsonl")
|
| 248 |
-
classification_test = validate_jsonl_format("data/classification/test.jsonl")
|
| 249 |
-
|
| 250 |
-
if classification_train and classification_test:
|
| 251 |
-
total_train = len(classification_train)
|
| 252 |
-
total_test = len(classification_test)
|
| 253 |
-
|
| 254 |
-
print(f"📊 Total Examples: {total_train + total_test}")
|
| 255 |
-
print(f" - Train: {total_train}")
|
| 256 |
-
print(f" - Test: {total_test}")
|
| 257 |
-
print(f" - Ratio: {total_train/total_test:.2f}:1")
|
| 258 |
-
|
| 259 |
-
# Count unique labels
|
| 260 |
-
labels = {item["label"] for item in classification_train + classification_test}
|
| 261 |
-
print(f"🏷️ Unique Labels: {len(labels)}")
|
| 262 |
-
|
| 263 |
-
# Most common labels
|
| 264 |
-
from collections import Counter
|
| 265 |
-
label_counts = Counter(item["label"] for item in classification_train + classification_test)
|
| 266 |
-
print("📈 Top 3 Labels:")
|
| 267 |
-
for label, count in label_counts.most_common(3):
|
| 268 |
-
print(f" - {label}: {count}")
|
| 269 |
-
|
| 270 |
-
print("\n📁 Available Configurations:")
|
| 271 |
-
print(" - classification: Banking aspect classification")
|
| 272 |
-
print(" - sentiment: Sentiment analysis")
|
| 273 |
-
print(" - aspect_sentiment: Aspect-based sentiment analysis")
|
| 274 |
|
| 275 |
|
| 276 |
if __name__ == "__main__":
|
| 277 |
-
|
| 278 |
-
print("=" * 60)
|
| 279 |
-
|
| 280 |
-
# Run all validations
|
| 281 |
-
file_structure_ok = validate_file_structure()
|
| 282 |
-
|
| 283 |
-
if file_structure_ok:
|
| 284 |
-
validate_data_content()
|
| 285 |
-
validate_data_consistency()
|
| 286 |
-
validate_huggingface_loading()
|
| 287 |
-
generate_validation_summary()
|
| 288 |
-
|
| 289 |
-
print("\n" + "=" * 60)
|
| 290 |
-
print("✅ VALIDATION COMPLETE")
|
| 291 |
-
print("=" * 60)
|
| 292 |
-
print("🎉 Dataset appears to be properly created and formatted!")
|
| 293 |
-
print("💡 You can now use: load_dataset('undertheseanlp/UTS2017_Bank', config_name)")
|
| 294 |
-
|
| 295 |
-
else:
|
| 296 |
-
print("\n❌ VALIDATION FAILED")
|
| 297 |
-
print("Please check the missing files and run preprocessing again.")
|
|
|
|
| 1 |
"""
|
| 2 |
+
Validation script to verify the UTS2017_Bank dataset can be loaded from HuggingFace Hub.
|
| 3 |
"""
|
| 4 |
|
|
|
|
|
|
|
|
|
|
| 5 |
from datasets import load_dataset
|
| 6 |
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
def validate_huggingface_loading():
|
| 9 |
"""Validate that the dataset can be loaded from HuggingFace Hub."""
|
| 10 |
|
| 11 |
+
print("🔍 UTS2017_Bank Dataset Validation")
|
| 12 |
+
print("=" * 60)
|
| 13 |
print("VALIDATING HUGGINGFACE HUB LOADING")
|
| 14 |
print("=" * 60)
|
| 15 |
|
|
|
|
| 30 |
except Exception as e:
|
| 31 |
print(f" ❌ Failed to load {config} from Hub: {e}")
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
print("\n" + "=" * 60)
|
| 34 |
+
print("✅ VALIDATION COMPLETE")
|
| 35 |
print("=" * 60)
|
| 36 |
+
print("🎉 Dataset can be loaded from HuggingFace Hub!")
|
| 37 |
+
print("💡 Usage: load_dataset('undertheseanlp/UTS2017_Bank', config_name)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
if __name__ == "__main__":
|
| 41 |
+
validate_huggingface_loading()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|